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Overview



Asynchronous Gibbs sampling is a popular
algorithm that’s used in practical ML systems.
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Problem: given a probability distribution,
produce samples from it.

* ec.g to do inference in a graphical model
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Problem: given a probability distribution,
produce samples from it.

* ec.g to do inference in a graphical model

Algorithm: Gibbs sampling

e de facto Markov chain Monte Carlo
(MCMC) method for inference

* produces a series of approximate samples
that approach the target distribution
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What 1s Gibbs Sampling?

Algorithm 1 Gibbs sampling

/

Require: Variables z; for 1 <71

loop

Choose s by sampling uniformr n3L,...,nt.

\

Compute its conditional

distribution given the
other variables.

v

Re-sample x4 uniformly from P (@ﬁx{l,...,n}\{s})

output r
end loop




What 1s Gibbs Sampling?

Algorithm 1 Gibbs sampling A

Compute its conditional

Require: Variables x; for 1 <1 gicribution given the

loop other variables.

. . /
Choose s by sampling uniformn (L, . nT.
Re-sample z, uniformly from P (271, n1\{s)):

T r

e Update the variable by

— sampling from its

conditional distribution.
L /




What 1s Gibbs Sampling?

Algorithm 1 Gibbs sampling

Require: Variables z; for 1 < < n, and distribution 7.

I Output the current
state as a sample.

ling uniformly from {1,...,n}.
formly from Pr(xs|Tg1 . ni\{s1)-

output x
end loop
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Gibbs Sampling: A Practical Perspective

* Pros of Gibbs sampling

— Fasy to implement

— Updates are sparse = fast on modern CPUs

* Cons of Gibbs sampling

— sequential algorithm = can’t naively parallelize

64 core

No parallelism

Leave up to 98%
of performance
on the table!
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* Run multiple threads in parallel without locks
— also known as HOGWILD!

— adapted from a popular technique for stochastic

gradient descent (SGD)

* When we read a variable, it could be stale

— while we re-sample a variable, its adjacent variables
can be overwritten by other threads

— semantics not equivalent to standard (sequential)
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...and what does it mean for it to work?
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Question

Does asynchronous Gibbs sampling work?

...and what does it mean for it to work?

Two desiderata

want to get

accurate estimates

v/

bound the
bias

want to be independent
of initial conditions

quickly

bound the
mixing time
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Parallelizing Stochastic Gradient Descent”
— Niu et al, NIPS 2011.

follow-up work: Liu and Wright SCIOPS 2015, Liu et
al JMLR 2015, De Sa et al NIPS 2015, Mania et al
arxiv 2015

* “Analyzing Hogwild Parallel Gaussian
Gibbs Sampling” — Johnson et al, NIPS 2013.
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Does
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Question

work?
for 1t to work?

Two desiderata

want to be independent
ot initial conditions

quickly

bound the
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— standard measurement: total variation distance
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“Folklore”: asynchronous Gibbs 1s also unbiased.
...but this is not necessarily true!




Simple Bias Example



Simple Bias Example

p(0.1)=p(1,0)=p(1L,1) =3 p(0,0)=0.



Simple Bias Example

p(0.1)=p(1,0)=p(1L,1) =3 p(0,0)=0.




Simple Bias Example

p(0,1)=p(1,0) =p(1,1) = 5 p(0,0)=0.

starting here.

Two threads update}




Simple Bias Example

p(0.1)=p(1,0)=p(1L,1) =3 p(0,0)=0.

starting here.

Two threads update}




Simple Bias Example

p(0.1)=p(1,0)=p(1L,1) =3 p(0,0)=0.

Two threads update}

starting here.

probability!

{ Should have zero
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Nonzero Asymptotic Bias

Distribution of Sequential vs. HOGWILD! Gibbs

0.4 I I | | Measured
s sequential )
035 | mmmmm HOGWILD! | Bias
0.3 (total variation
distance)
& 0.25
:5‘ .
s 02 sequential
@)
a8, 0.15 < 01%
0.1 unbiased
0.05
asynchronous
0 0
(0,0) (1,0) (0,1) 1,1) 9.8%
state biased

Bias introduced by HoGWILD!-Gibbs (10° samples). 44



Nonzero Asymptotic Bias

Marginal distribution of Sequential vs. HOGwILD! Gibbs

0.8 Measured

e sequential | | .
0.7 | mmmmm HOGWILD! Bias

(total variation
distance)

sequential
< 0.1%

unbiased

probability

asynchronous

(0,X5) (L,X,) (X,,0) (X,1) 9.8%
state biased

Bias introduced by HoGwILD!-Gibbs (10° samples). I
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Are we using the right metric?

* No, total variation distance 1s too conservative
— depends on events that don’t matter for inference

— usually only care about small number of variables

* New metric: sparse variation distance

= vsviw) = max w(A) —v(A)]

where |A| is the number of variables on which event A depends

Simple Example: Bias of Asynchronous Gibbs

Total variation: 9.8% Sparse Variation (w = 1): 0.4%
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* Old condition that was used to study mixing
times of spin statistics systems
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— m;(+| X1\ i) is conditional distribution of variable i
oiven the values of all the other variables in state X.

— Dobrushin’s condition holds when
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Asymptotic Result

* For any class of distributions with bounded
total influence @ = O(1).

— big-O notation 1s over number of variables 77.

* If O(n) timesteps of sequential Gibbs suffice to
achieve arbitrarily small bias
— measured by w-sparse variation distance, for fixed W

* ...then asynchronous Gibbs requires only O(1)
additional timesteps to achieve the same bias!



Asymptotic Result

* For any class of distributions with bounded
total influence @ = O(1).

— big-O notation 1s over number of variables 72.

* If O(n) timesteps of sequential Gibbs suffice to
achieve arbitrarily small bias

— measured by w-sparse variation distance, for fixed W

* ...then asynchronous Gibbs requires only O(1)
additional timesteps to achieve the same bias!

more details, explicit bounds, et cetera in the paper
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* How long do we need to run until the samples
are independent of initial conditions?

* Mixing time of a Markov chain is the first time
at which the distribution of the sample is close
to the stationary distribution.

—in terms of total variation distance

— feasible to run MCMC if mixing time is small



Mixing Time

* How long do we need to run until the samples
are independent of initial conditions?

* Mixing time of a Markov chain is the first time
at which the distribution of the sample is close
to the stationary distribution.

—in terms of total variation distance

— feasible to run MCMC if mixing time is small

“Folklore”: asynchronous Gibbs has the same mixing
time as sequential Gibbs...also not necessarily true!




estimation of P (1'Y > 0)

Mixing Time Example

Mixing of Sequential vs HOGWILD! Gibbs

true distribution ------

02 | seque_ntlal —_
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Hocwnp!—7 =1.0 ——
0 NT =20 ——
@) 50 100 150 200 250 300
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dependent read
staleness parameter



Mixing Time Example

o O
(@) (000]

estimation of P (1'Y > 0)
o

\t

Mixing of Sequential vs HOGWILD! Gibbs

Sequential Gibbs
achieves correct
marginal quickly.

Hocwip!—7 = 1.0

N
Asynchronous Gibbs

takes much longer.

true distribution ------
sequential
_1T=05

N7 = 2.0

mix = O(nlog n)/é

150

mber (thousands)

200 250 300

7 1s hardware-
dependent read
staleness parameter
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Bounding the Mixing Time

Suppose that our target distribution satisfies
Dobrushin’s condition (total influence o < 1).

* Mixing time of sequential Gibbs (known result)
n . A

tmix—seq<€) é 1 — o 108 (E) y

* Mixing time of asynchronous Gibbs 1s

n -+ ort n
tmix— o) < lo (_) .
hog (€) < 1—a °\e

7 1s hardware-
dependent read
staleness parameter



Bounding the Mixing Time

Suppose that our target distribution satisfies
Dobrushin’s condition (total influence a < 1).

Takeaway message: can compare the two

mixing time bounds with

tmix—hog(e) ~ (1 aTn_l) tmix—seq(e)

Tis hardware- | ...t iffer by a negligible factor!
dependent read
staleness parameter
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Theory Matches Experiment

mixing time

19000

18500

18000

17500

17000

16500

Estimated ¢,,;, of HOGWILD! Gibbs on Large Ising Model

estimated —m—

thleory

50 100 150

expected staleness parameter (7))

200
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Conclusion

* Analyzed and modeled asynchronous Gibbs
sampling, and identified two success metrics

— sample bias = how close to target distribution?
— mixing time =2 how long do we need to run?

* Showed that asynchronicity can cause problems

* Proved bounds on the effect of asynchronicity
— using the new sparse variation distance, together with
— the classical condition of total influence



Thank you!

. cdesa(@stanford.edu
Conclusion stanford.edu/~cdesa

* Analyzed and modeled asynchronous Gibbs
sampling, and identified two success metrics

— sample bias = how close to target distribution?
— mixing time =2 how long do we need to run?

* Showed that asynchronicity can cause problems

* Proved bounds on the effect of asynchronicity
— using the new sparse variation distance, together with
— the classical condition of total influence
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