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Main Idea Alecton Solution Algorithm Many Applications
We want to analyze SGD for matrix completion. ° tion- : :
: : : Algorithm Alecton: Solve stochastic matrix problem Algorithm descrlptlofl. . Entrywise sampling

> COIIlII}OI.l problem in machine learn}ng | Reauire: 1€ R K €N L € N and a sampline distribution A > “Angular phase” is equivalent to > Each sample is a single entry of A.

> Used 1n industry by Oracle, MADLIib, Twitter, etc quures 7 ’ . ’ _ DNG many algorithms: > Entries are chosen independently and with equal weight.
> Angular component (eigenvector) estimation phase : : : . : :

. s T — stochastic gradient descent > We need to impose an incoherence constraint for rapid con-
Select Y{ uniformly in R s.t. Y§ Yo = 1. . . . . ..
OR c Cl €® m N lib for b — 0to K — 1 do — stochastic power iteration vergence to be possible. (This is standard.)
T — stochastic proximal iteration > We can then bound the second moment of the sample with
Select Ay, independently from A.

> “Radial phase” 1s maximum like-
lihood estimator, given result of
angular phase.

Yie1 < Y +nArYs

This problem appears in a variety of applications: end for -
Y« Yi (YiiYk)

o” < p*(1— i) ||All%

DN —

> Each step very fast: write only mone row of Y.

> matrix completion > PCA , , .. >Both  update  phases  are
: o > Radial component (eigenvalue) estimation phase . : : .
> general data analysis > optimization P LNAL-lyT 4y lightweight, and can be done 1n Trace sampling
> subspace tracking > recommendation systems. I }A/Z_ZQ : constant time if the sample is a > We are given the value of v” Aw for random vectors v and w.
7 . . . *
return ¥ fi single entry of A. > For this sampling scheme, assuming n > 50,

Previous work: great local convergence results

2 2
> fast convergence if we initialize with SVD 0" < 20 || Af[p

> SGD known to converge in practice without initialization Main Contribution: Conve rgence Rate

> gap between theory and practice

Subspace sampling

> A is a projection matrix.

> For a random v in the column space of A, and random diago-
nal sampling matrices () and R with E[Q] = E[R] = I, we
use A = QuuTR.

OF = ijjo |UY, ZH2 /Yy ZHQ , > We can also bound the second moment of the sample here.

. . =< where A denotes the spectral gap of A, and let . .
Matrix Completlon Problem For some ¢ > 0, we say that the algorithm has failed ) 3 ) Noisy sampling
_021Tnop 9mnp on

To measure convergence, we let U be the projection  If we choose any parameter 0 < xy < 1, set our step
matrix onto the column space of the solution X*, and  size

. A 2
use the quantity eX

= Irno?p?(p +€)’

Our contribution: This widely-used algorithm converges
globally, using only random initialization!

> We also develop intuition for how to set the step size.

to converge by time K if p, < 1 —eforallt < 7T'. We T = 710 < 5 ) -0 (—2) > Easy to handle noisy samples in any application.
Goal is to recover a low-rank matrix A using: denote this event F7. Aex 2x"€ Afe > Can handle both additive and multiplicative noise.
. 9 then the probability of failure after 7" steps is
minimize E {HA — X H F} We only require a bound on the second moment of the Takeaway point: For all of the above applications, as long
subject to X € R™" rank (X) < p, X = 0, samples: for any v € R" and w € R", we require that, P (Fr) < x. as the spectrum of A is fixed as n increases, the number of
) for some o, o S . iterations required for convergence is only

where p € Z and A is an unbiased sample of A. We can simplify T T So, Alecton converges in 11qear1thrp1c time with con- »
this with a quadratic substitution X = YY"’ (Burer-Monteiro), E [(v" Aw)”] < o [l lw]]". stant probability. (More details are in the paper.) T =0O(e nlogn).

minimize B |[|4 - YY7||;,
subjectto Y € R"*P |
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These plots show convergence of the angular phase of Alecton on synthetic datasets, varying sampling distribution, step size, problem rank, and problem size.




