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Main Idea
We want to analyze SGD for matrix completion.
. Common problem in machine learning
. Used in industry by Oracle, MADLib, Twitter, etc

This problem appears in a variety of applications:
. matrix completion
. general data analysis
. subspace tracking

. PCA

. optimization

. recommendation systems.

Previous work: great local convergence results
. fast convergence if we initialize with SVD
. SGD known to converge in practice without initialization
. gap between theory and practice

Our contribution: This widely-used algorithm converges
globally, using only random initialization!
. We also develop intuition for how to set the step size.

Matrix Completion Problem

Goal is to recover a low-rank matrix A using:

minimize E
[∥∥Ã−X∥∥2

F

]
subject to X ∈ Rn×n, rank (X) ≤ p,X � 0,

where p ∈ Z and Ã is an unbiased sample of A. We can simplify
this with a quadratic substitution X = Y Y T (Burer-Monteiro),

minimize E
[∥∥Ã− Y Y T

∥∥2
F

]
subject to Y ∈ Rn×p

.

This leaves us with an unconstrained non-convex problem.

Algorithm Derivation

Stochastic gradient descent on quadratic decomposition:

Yk+1 = Yk + αk
(
Ãk − YkY T

k

)
Yk.

By choosing an appropriate Riemannian manifold, we can get

Yk+1 =
(
I + ηkÃk

)
Yk
(
1 + ηkY

T
k Yk

)−1
.

and if we ignore the radial component, we get the simple rule

Yk+1 =
(
I + ηkÃk

)
Yk.

Alecton Solution Algorithm

Algorithm Alecton: Solve stochastic matrix problem
Require: η ∈ R, K ∈ N, L ∈ N, and a sampling distribution A
. Angular component (eigenvector) estimation phase
Select Y0 uniformly in Rn×m s.t. Y T

0 Y0 = I .
for k = 0 to K − 1 do

Select Ãk independently from A.
Yk+1 ← Yk + ηÃkYk

end for
Ŷ ← YK

(
Y T
KYK

)−1
2

. Radial component (eigenvalue) estimation phase
R̄← 1

L

∑L−1
l=0 Ŷ

T ÃlŶ

return Ŷ R̄
1
2

Algorithm description:
. “Angular phase” is equivalent to

many algorithms:
– stochastic gradient descent
– stochastic power iteration
– stochastic proximal iteration

. “Radial phase” is maximum like-
lihood estimator, given result of
angular phase.

. Both update phases are
lightweight, and can be done in
constant time if the sample is a
single entry of A.

Main Contribution: Convergence Rate

To measure convergence, we let U be the projection
matrix onto the column space of the solution X∗, and
use the quantity

ρk = min
z∈Rp
‖UYkz‖2 /‖Ykz‖2 .

For some ε > 0, we say that the algorithm has failed
to converge by time K if ρt ≤ 1− ε for all t ≤ T . We
denote this event FT .

We only require a bound on the second moment of the
samples: for any v ∈ Rn and w ∈ Rn, we require that,
for some σ,

E
[
(vT Ãw)2

]
≤ σ2 ‖v‖2 ‖w‖2 .

If we choose any parameter 0 ≤ χ ≤ 1, set our step
size

η =
∆εχ2

9πnσ2p2(p + ε)
,

where ∆ denotes the spectral gap of A, and let

T =
52πnσ2p3

∆2εχ3
log

(
9πnp

2χ2ε

)
= Õ

(
σ2n

∆2ε

)
then the probability of failure after T steps is

P (FT ) ≤ χ.

So, Alecton converges in linearithmic time with con-
stant probability. (More details are in the paper.)

Many Applications

Entrywise sampling
. Each sample is a single entry of A.
. Entries are chosen independently and with equal weight.
. We need to impose an incoherence constraint for rapid con-

vergence to be possible. (This is standard.)
. We can then bound the second moment of the sample with

σ2 ≤ µ2(1− µ2) ‖A‖2F .

. Each step very fast: write only mone row of Y .

Trace sampling
. We are given the value of vTAw for random vectors v and w.
. For this sampling scheme, assuming n > 50,

σ2 ≤ 20 ‖A‖2F .

Subspace sampling
. A is a projection matrix.
. For a random v in the column space of A, and random diago-

nal sampling matrices Q and R with E [Q] = E [R] = I , we
use Ã = QvvTR.

. We can also bound the second moment of the sample here.

Noisy sampling
. Easy to handle noisy samples in any application.
. Can handle both additive and multiplicative noise.

Takeaway point: For all of the above applications, as long
as the spectrum of A is fixed as n increases, the number of
iterations required for convergence is only

T = O(ε−1n log n).

Experiments
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These plots show convergence of the angular phase of Alecton on synthetic datasets, varying sampling distribution, step size, problem rank, and problem size.


