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Abstract
Domain-specific languages provide a promising path to automati-
cally compile high-level code to parallel, heterogeneous, and dis-
tributed hardware. However, in practice high performance DSLs
still require considerable software expertise to develop and force
users into tool-chains that hinder prototyping and debugging. To
address these problems, we present Forge, a new meta DSL for
declaratively specifying high performance embedded DSLs. Forge
provides DSL authors with high-level abstractions (e.g., data struc-
tures, parallel patterns, effects) for specifying their DSL in a way
that permits high performance. From this high-level specification,
Forge automatically generates both a naïve Scala library implemen-
tation of the DSL and a high performance version using the Delite
DSL framework. Users of a Forge-generated DSL can prototype
their application using the library version, and then switch to the
Delite version to run on multicore CPUs, GPUs, and clusters with-
out changing the application code. Forge-generated Delite DSLs
perform within 2x of hand-optimized C++ and up to 40x better
than Spark, an alternative high-level distributed programming envi-
ronment. Compared to a manually implemented Delite DSL, Forge
provides a factor of 3-6x reduction in lines of code and does not
sacrifice any performance. Furthermore, Forge specifications can
be generated from existing Scala libraries, are easy to maintain,
shield DSL developers from changes in the Delite framework, and
enable DSLs to be retargeted to other frameworks transparently.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Concurrent, distributed and
parallel languages, Extensible languages; D.3.4 [Programming
Languages]: Processors—Code generation, Optimization, Run-
time environments

Keywords Code Generation; Multi-Stage Programming; Domain-
Specific Languages; Parallel Programming
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1. Introduction
In order to achieve high performance on modern hardware, soft-
ware must be parallel, heterogeneous, and distributed [36]. Unfor-
tunately, developing software that meets these goals is complex,
and high performance applications are often cobbled together in a
piecemeal fashion. For example, an expert application developer
may rewrite a performance-critical portion of her application in
CUDA [29] in order to leverage a GPU, and rewrite a different
portion in Hadoop [1] to scale out to a large number of cores. Each
of these tasks requires expertise both in the idiosyncracies of the
programming model and in the characteristics of the underlying
hardware. Worse, rewriting parts of the application for performance
obscures the high-level algorithm and intent, making code harder to
read and maintain and increasing the complexity of the overall sys-
tem.

General-purpose languages have so far been unable to main-
tain a high level of abstraction and still provide efficient automatic
compilation to parallel and heterogeneous hardware. State-of-the-
art solutions like OpenCL [38] are relatively close in abstraction
layer to C and still require careful programming to achieve good
performance on a particular device. On the other hand, dynamic
languages like Python and Ruby provide succint, high-level ab-
stractions that lead to great productivity benefits, but compile (in
a standard installation) only to sequential processors and are much
slower than their low-level counterparts.

Domain-specific languages (DSLs) are a promising means of
maintaining high-level abstractions while automatically compiling
to parallel, heterogeneous, and distributed hardware [10]. The key
advantage that DSLs have over general-purpose languages is the
ability to reason about data structures and operations at the level of
domain abstractions (e.g. Matrix or Graph vs. Array). By exploiting
this high-level structure, it has been shown that DSL applications
can be compiled from a single source to multicore CPUs, GPUs,
and even clusters [5, 14, 21]. However, DSLs have two substantial
drawbacks: they are usually more difficult to construct than a high-
level library, and because they use specialized tool-chains, DSL
applications are harder to prototype and debug.

In our previous work, we proposed the Delite framework [4] to
mitigate these problems. Delite is a library for developing com-
piled, embedded DSLs inside the general-purpose programming
language Scala. We showed that using a common host language
and compilation framework enables reuse of the Scala tool-chain
and important infrastructure like optimizations and code genera-
tors, thereby substantially reducing the effort to create a new DSL.
Furthermore, we demonstrated that Delite DSLs can generate code
for different devices and are competitive with or exceed the per-



formance of alternate systems in different domains [35]. While we
believe Delite to be the state-of-the-art in high performance embed-
ded DSL development, there are still two main issues:

1. DSL authors must have considerable expertise with Scala and
Delite in order to implement expressive, safe, and efficient
DSLs. Delite is a highly flexible architecture for heterogeneous
code generation, but this expressiveness adds boilerplate and
complexity to the common case. As a result, developing com-
piled embedded DSLs with Delite, while easier than external
DSLs, requires more programming language and software en-
gineering expertise than the average domain expert has.

2. DSL users must have at least some knowledge of the Delite
stack. Even though DSLs are embedded in Scala, only parts of
the Scala tool-chain can be used when executing user programs:
generating code at runtime that is executed on heterogeneous
devices makes prototyping and debugging difficult. For exam-
ple, it is no longer possible to step through the program or set a
breakpoint in an interactive IDE debugger.

In this paper, we present Forge, a new meta DSL for high per-
formance embedded DSL development that addresses these issues
by capturing recurring patterns in high performance DSL develop-
ment. Forge provides a high-level, declarative API for specifying
DSL data structures and operations in a manner similar to an an-
notated high-level library. Unlike a high-level library, Forge builds
an IR of the DSL specification itself, which enables it to generate
different concrete implementations of the DSL. We generate both
a high productivity implementation (a pure Scala library version),
and a high performance implementation (a Delite version). In the
future, if a different backend is desired, it is straightforward to gen-
erate a new implementation without modifying the DSL specifica-
tion. From a DSL user’s point of view, the Forge-generated library
can be used very similarly to any other Scala library. DSL applica-
tions can be prototyped interactively in a REPL or developed in any
IDE that supports Scala (e.g. Eclipse) using standard debugging
techniques like breakpoints. When an application has been tested
on a small dataset, the DSL user can then “flip the switch” and run
the exact same source code in Delite on multicore CPUs, GPUs, or
clusters. Therefore, by raising the level of abstraction and adding a
level of code generation, Forge both simplifies the development of
high performance embedded DSLs and makes them more accessi-
ble to end users.

Languages and frameworks for declaratively specifying DSLs
are not new [16, 17, 24, 26]. Forge follows in the footsteps of these
efforts by focusing on abstractions and code generation for high
performance, heterogeneous computing. To our knowledge, Forge
is also the first embedded meta DSL. It is implemented using stag-
ing, and therefore shares the same infrastructure as existing Delite
DSLs. Staging also provides additional benefits: Forge specifica-
tions are Scala programs, and any Scala modularity feature (ob-
jects, classes, traits) can be used to compose specifications. We can
also make use of staging to perform computation inside the specifi-
cation itself. For example, the DSL specification can be parameter-
ized over configuration flags, implemented as regular Scala values.
This enables generating multiple variants of a DSL–essentially im-
plementing a product line approach to DSL development. Further-
more, since Forge is staged, its IR can be constructed by invok-
ing methods in the Forge API. This enables us to develop external
parsers that call Forge methods to build the Forge IR. A key use
case is to use reflection to parse existing Scala classes. Forge can
then be used as an identity transformer, generating a Forge specifi-
cation from the IR that can be further modified by a DSL developer.
This scaffolding ability allows DSL developers to start with an ex-
isting library implementation and automatically generate a skeleton
Forge specification as a starting point for a Forge DSL.
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Figure 1. An overview of the Delite compilation pipeline. Appli-
cations are written in one or more DSLs. Each DSL can perform
analyses and optimizations at the domain level. Delite then per-
forms its own set of generic analyses and transformations before fi-
nally generating code for various low-level hardware programming
models.

The rest of this paper is structured as follows. In Section 2, we
provide essential background on Delite required to understand how
the Forge-generated compiled version works. In Section 3 we pro-
vide an overview of the Forge language and show how DSLs are
written in Forge. Section 4 describes how Forge is implemented
internally and describes the artifacts that Forge generates in more
detail. Section 5 presents case studies on three DSLs we have im-
plemented in Forge (including two that were first implemented
as stand-alone Delite DSLs and one that was implemented from
scratch). Finally, Section 6 summarizes the related work and Sec-
tion 7 concludes.

Forge is open-source. The source code, including examples
presented in this paper, is available at:

http://github.com/stanford-ppl/Forge/

2. Background
Delite is a compilation framework for high performance DSLs
embedded in Scala, built on top of Lightweight Modular Staging
(LMS) [31]. Figure 1 depicts the Delite compilation pipeline.

Applications are written in a DSL embedded in Scala. For
example, consider a toy application using a SimpleVector DSL:

trait MyApp extends SimpleVectorDSLInterface {
def main() {
val v: Rep[Vector[Int]] = Vector[Int](10)
val y = v+2
print(y(1))

}
}

The DSL syntax (e.g. val,+) is legal Scala, although implicit
conversions and curried functions can be used to emulate external
DSL syntax [9]. However, unlike normal Scala library code, we use
staged metaprogramming (staging) to defer key computations to a
later time. The main idea behind LMS is that future-stage compu-
tation is encoded by wrapping types in an abstract type constructor
Rep[T]. DSLs internally define Rep[T] to be Exp[T], an expression
in an intermediate representation (IR). The IR is built during Scala
run-time (also known as staging time), by implementing methods
on the abstract Rep[T] types to construct IR nodes rather than imme-



// abstract interface exposed to DSL users
trait Base {
type Rep[+T]
implicit def unit[T](x: T): Rep[T]

}

// using staging to build an IR
trait BaseExp extends Base {
abstract class Exp[+T:Manifest]
abstract class Def[+T]
type Rep[T] = Exp[T]

case class Const[+T:Manifest](x: T) extends Exp[T]
case class Sym[+T:Manifest](id: Int) extends Exp[T]

implicit def unit[T](x: T) = Const(x)
implicit def toAtom(d: Def[T]): Exp[T] =
findOrCreateDefinition(d) // elided

// a Delite IR node representing a parallel operation
abstract class DeliteOpMap[Col](in: Exp[Col]) extends Def[Col]

}

// defines how to generate target (low-level) Scala code
trait ScalaCodegen {
val IR: BaseExp; import IR._

// constructs a program schedule of the IR by traversing
// dependencies backwards, and calls emitNode in order
def emitBlock(b: Exp[T]): Unit

// implements code generation for individual IR nodes
def emitNode(sym: Sym[T], rhs: Def[T]): Unit = rhs match {
case _: DeliteOpMap => // emit parallel code

}
}

Listing 1. Simplified core of LMS/Delite

diately evaluate a result. Note that while LMS uses Exp[T] to repre-
sent staged computation, the representation of the abstract types is
polymorphic and DSLs can in principle be implemented in multiple
ways using different implementations of Rep[T] (a fact that Forge
relies heavily on, as discussed later). This technique is known as
polymorphic embedding [7, 20]. After the IR is constructed, Delite
traverses it to perform optimizations and generate code. The user
then invokes the Delite runtime to run the generated code. Com-
pared to running a pure Scala library, the generated code is effi-
cient (abstractions have been programmatically removed by stag-
ing), heterogeneous, and parallel, which can lead to orders of mag-
nitude improvement in performance [35]. Key optimizations per-
formed by LMS and Delite include code motion, fusion, struct un-
wrapping, and array of struct to struct of array (AoS to SoA) con-
version. Unlike general-purpose compilers, these optimizations are
performed at the granularity of domain operations and data struc-
tures.

In order to demonstrate what this looks like under the covers,
we show a bare-bones core of LMS and Delite in Listing 1, and
the SimpleVector DSL implemented with this core in Listing 2. The
core LMS traits define IR building blocks, such as expressions, def-
initions, and particular types of leaf expressions (e.g. constants and
symbols). Delite adds on top of these to provide specialized classes
of IR nodes that represent parallel patterns (e.g. DeliteOpMap). Al-
though not shown here, LMS and Delite also provide facilities to
construct structs. Structs are simple aggregate data types consist-
ing of high performance primitives (e.g. scalars, arrays, and other
structs) that Delite automatically optimizes and generates code for.

trait SimpleVectorDSLInterface extends Base {
trait Vector[T] // an abstract DSL data type
object Vector {
// SourceContext has debugging info (e.g. line # of call-site)
def apply[T:Manifest](n: Rep[Int])(implicit ctx: SourceContext)
= vector_new[T](n)

}

// indirection required for abstract static method
def vector_new[T:Manifest](n: Rep[Int])
(implicit ctx: SourceContext): Rep[Vector[T]]

// sugar for infix operators in Scala-Virtualized
def infix_+[T:Manifest:Numeric](x: Rep[Vector[T]],

y: Rep[T]): Rep[Vector[T]]
// an overloaded version. due to type erasure, we need to use
// an implicit to statically disambiguate the method signature
def infix_+[T:Manifest:Numeric](x: Rep[Vector[T]],
y: Rep[Vector[T])(implicit o: Overloaded1): Rep[Vector[T]]

def print(x: Rep[Any]): Rep[Unit]
// infix_apply (element access) elided for space

}

trait SimpleVectorDSLImpl extends SimpleVectorDSLInterface
with BaseExp {
// parallel domain-specific IR nodes
case class VPlusS[T:Manifest:Numeric](x: Exp[Vector[T], y: Exp[T])
extends DeliteOpMap[Vector[T]] { def func = a => a+y }

// sequential domain-specific IR nodes
case class Print(x: Exp[Any]) extends Def[Unit]

// construct IR node when method is called
// vector_new, overloaded infix_+ elided
def infix_+[T:Manifest:Numeric](x: Exp[Vector[T]], y: Exp[T])
= VPlusS(x,y)

def print(x: Rep[Any]) = reflectEffect(Print(x))

// constructs transformed IR nodes
override def mirror[A:Manifest](e: Def[A], f: Transformer) =
e match {
case VPlusS(x,y) => infix_+(f(x),f(y))
// ...
case _ => super.mirror(e,f)

}
}

trait SimpleVectorDSLCodegen extends ScalaCodegen {
val IR: SimpleVectorDSLImpl; import IR._

override def emitNode(s: Sym[Any], r: Def[Any]) = r match {
case Print(x) => emitValDef(s, "println("+quote(x)+")")
case _ => super.emitNode(s,r)

}
}

Listing 2. SimpleVector DSL implementation using core

The DSL implementation traits extend the core traits to actually
construct IR nodes when a method is called, to define helper meth-
ods required by LMS and Delite (such as mirror, which defines how
to construct a transformed node), and to provide code generators
for any node that is not a predefined pattern. A real implementation
would use much more sophisticated versions of these IR building
blocks provided by LMS and Delite, but the basic principle is the
same.

Listing 2, although simplified, still demonstrates key productiv-
ity pitfalls. First, there is a significant amount of boilerplate (e.g.
mirror), which makes the DSL implementation verbose and hin-
ders readability. The boilerplate is required to perform functions
that Delite cannot easily infer; for example, in the mirror case,



Delite does not know the name or arguments of the smart construc-
tor that it needs to invoke to clone a node while still triggering any
domain-specific rewrites that may be defined (which can be defined
as overrides of the smart constructor). Second, DSL authors must
be experts in Scala library development. They are exposed to im-
plicit conversions, case classes, Manifest and SourceContext (which
are Scala compiler-constructed types that carry around metadata),
and even must know how to handle overloaded static method reso-
lution in the presence of type erasure.

These issues arise because of the details of implementing a
compiled embedded DSL in Scala. In other languages, there are
different issues; for example, developing an external DSL requires
DSL authors to actually deal with the entire process of lexing,
parsing and type-checking. The key observation that we exploit
with Forge is that by raising the level of abstraction, we can shield
DSL developers from these implementation details.

3. Language Specification
Forge, as a meta DSL, provides methods to directly declare DSL
constructs like types and operations that we saw in the previous
section. Forge abstracts over the key concerns of high performance
DSL development: front-end syntax, data structures, operation se-
mantics, and parallel implementation. Forge aims to simplify DSL
development by narrowing the gap between a DSL specification,
which may be written as a text document, and the DSL implementa-
tion, which depends on the language and frameworks that the DSL
compiler is implemented in. In the next section, we describe the
implementation internals of Forge. In this section, we introduce its
surface syntax and key abstractions.

To introduce Forge, we show how we can write the SimpleVector
DSL example from Section 2 (including the struct definitions that
were previously elided):

trait SimpleVectorDSL extends ForgeApplication {
def dslName = "SimpleVector"

def specification() {
val T = tpePar("T")
val Vector = tpe("Vector", T)
data(Vector, ("_length", MInt), ("_data", MArray(T)))
static (Vector) ("apply", T, MInt :: Vector(T), effect = mutable)
implements allocates(Vector, ${$0}, ${ Array[T]($0) })

direct (Vector) ("print", Nil, MString :: MUnit, effect = simple)
implements codegen(scala, ${ println($0) })

withTpe(Vector) {
compiler ("vector_raw_data") (Nil :: MArray(T))
implements getter(0, "_data")

infix ("apply") (("n",MInt) :: T)
implements composite ${ vector_raw_data($self)($n) }

infix ("+") (("y",T) :: Vector(T), TNumeric(T))
implements map((T,T), 0, ${ a => a+$y })

infix ("+") (Vector(T) :: Vector(T), TNumeric(T))
implements zip((T,T,T), (0,1), ${ (a,b) => a+b })

}
}

}

Every Forge specification must implement two methods: dslName
is simply the DSL name, and specification is a method that con-
tains all the DSL declarations (which could be spread across multi-
ple files and dynamically invoked). In this example, we first declare
a named type parameter, T, and a generic type Vector[T]. The data
statement says that Vector is a struct containing two fields, _length
and _data. The static method apply constructs a new Vector; static

specifies that the user syntax for this method will be of the form
Vector(args), where args are the arguments to the op that are spec-
ified by the signature MInt :: Vector(T). This signature says that
the op takes a single argument of type Int (the length of the Vector),
and returns a value of type Vector[T]. The effect = mutable anno-
tation specifies that this op has the semantics of allocating a muta-
ble data structure. Finally, allocates is an implementation pattern
that constructs a new instance of Vector by initializing each field
in the struct to an appropriate value. The ${..} syntax is a marker
for the Forge preprocessor, which quotes the argument as a format-
ted string, replacing argument names (specified with a preceding
“$”) with their synthetic names. Although these formatted strings
are not type-checked when compiling or running Forge, the code
in them is type-checked when compiling the generated DSL. The
preprocessor handles tricky string escape issues while enabling
users to benefit from syntax highlighting in an IDE. The last in-
teresting construct in this example is withTpe, which introduces a
Forge syntactic scope. Inside this scope, shorter versions of the op
declaration methods are injected into the current lexical environ-
ment. The shorter versions implicitly take the enclosing tpe as the
first argument (as well as its corresponding tpePars), which mim-
ics the declaration style of instance methods in OO programming
languages.

The other ops in the SimpleVector specification are defined in a
similar fashion to apply, using other Forge method styles and im-
plementation patterns. Listing 3 presents an overview of the Forge
language constructs. The two most important groups abstract over
computation and data structures, respectively, and correspond to
concise versions of the Delite abstractions of Delite ops and Delite
structs. Note that implements is an infix method that simply invokes
the Forge construct impl on the result of the op invocation. In this
way, Forge separates DSL interface from DSL implementation. Im-
plementations may be defined in a completely different file, and
DSL specifications can extend other DSL specifications and over-
ride behavior by defining new implementations.

DSL metaprogramming at this level also enables opportunities
for programmatically-controlled reuse. Delite DSLs are typically
statically dispatched, as this is most efficient and not all target
platforms support dynamic dispatch (although tagged unions can
be used as an alternative). Code generation provides an alternate
mechanism for code reuse in this context. We can define a common
Vector interface as follows:

def addVectorCommonOps(v: Rep[DSLType], T: Rep[DSLType]) {
val VectorCommonOps = withTpe(v)
VectorCommonOps {
infix ("first") (Nil :: T) implements single ${ $self(0) }
for (rhs <- List(DenseVector(T),DenseVectorView(T))) {
infix ("+") (rhs :: DenseVector(T))
implements zip((T,T,T), (0,1), ${ (a,b) => a+b })

// ..
}
// other common ops

}
}

The for statement in this example is statically evaluated during
staging, so we can call addVectorCommonOps for different types of
Vectors and replicate the common interface on each type. This
enables each method to be invoked efficiently by end users on
different types of Vectors without requiring implicit conversions,
dynamic dispatch, or type classes. The trade-off, of course, is the
potential for code explosion, which can negatively impact DSL
compile time. This method is also insufficient for DSL users to
write generic methods over Vectors. However, in DSLs with limited
class hierarchies, this can be a sufficient, and concise, replacement
for full-blown polymorphism.



Types: Methods:
ftpe(args, ret, freq) arg(name,tpe,default)

define a new function type (args) => ret define a new op argument
tpePar(name) static | infix | direct | compiler | fimplicit

define new type parameter (grp, name, tpePars, signature, effect, aliasHint)
tpe(name, tpePars, stage) defines a new op with the specified syntax style and parameters

define new type (args :: retTpe)
tpeClass(name, tpePars) defines a new method signature

define new type class impl(op, codegen | single | composite | map | filter |
tpeClassInst(name, tpePars, tpeClass) groupby | reduce | zip | foreach)

define new type class instance defines the implementation for an op based on a predefined pattern

Data structures: Miscellaneous:
data(tpe, (fieldName,fieldTpe)*) grp(name)

associate tpe with the given struct declares a group of ops that do not belong to a type
impl(op, allocates(tpe)) extern(name)

implementation pattern to allocate a struct declares an op group implemented in external code
impl(op, getter(tpe,field)) lift(grp)(tpe)

implementation pattern to read a field declares a conversion from the given tpe to a Rep[.]
impl(op, setter(tpe,field)) lookupOp | lookupGrp | lookupTpe (name)

implementation pattern to write a field returns a previously declared DSL construct
withTpe(tpe)

Annotations: construct a new syntactic scope
effect ::= simple | mutable | write | error

declare an op has the corresponding effect semantic Parallel Collections:
freq ::= hot | cold | normal parallelize(tpe) as ParallelCollection | ParallelCollectionBuffer (ops)

code motion hints declares that the provided type implements a ParallelCollection
stage ::= now | future interface with the given ops

declare whether a generated type should be T or Rep[T]
aliasHint ::= nohint | contains(arg) | copies(arg)

declares relationships between operations and inputs

Listing 3. Forge Language Overview

While Forge tries to make declaring DSL semantics simple and
concise, it is important to remember that Forge is meant for high
performance embedded DSL compilers. It is not a goal of ours to
reproduce exactly a sequential library interface. Instead, the Forge
abstractions are intended to capture the critical semantics required
to implement parallel DSLs on multiple hardware devices. Unsur-
prisingly, since Forge is based on our experience with developing
DSLs in Delite, the Forge abstractions are a high-level version of
concepts in Delite (like parallel patterns, effects, and alias / code
motion hints). By designing Forge as a new language, we gain the
flexibility to easily add and refine these abstractions over time.

4. Compilation Pipeline
Forge is implemented as an embedded LMS DSL. Implementing it
as an external DSL (or within an alternative DSL definition envi-
ronment like Spoofax [26]) could make its syntax cleaner (e.g., we
would not need to wrap names in strings), but would require more
development effort compared to simply reusing the existing LMS
infrastructure. One interesting aspect of Forge’s implementation
that mitigates the need for an external grammar is its unique use
of Scala-Virtualized scopes. Scala-Virtualized is an experimental
branch of the Scala compiler with additional support for DSL em-
bedding [32]. A scope is a Scala-Virtualized construct that desug-
ars a lexical block of code to an instantiation of a pre-defined Scala
class, wrapping the block’s contents inside a method of the class
and then invoking the class constructor. We previously used this
technique to implement coarse-grained DSL interoperability; the
scope isolated the DSL interface inside the block, allowing DSL
code to be invoked from within ordinary Scala programs [35]. In
Forge, we use scopes to implement the withTpe construct from the
previous section, injecting new method signatures into a lexical
scope while maintaining type safety. This is an example of using

Scala-Virtualized to enable expressive embedded syntax in a way
that would not normally be possible in a statically typed language.
As described in Section 1, using staging also provides Forge with
other benefits (such as the use of Scala composition, uniformity
with the generated DSLs, and the ability to use staging time com-
putations to statically manipulate DSL fragments). Like other LMS
DSLs, Forge specifications are legal Scala, except for the blocks
denoted with ${..} which are preprocessed before compilation as
described in Section 3. The preprocessor is implemented as a pre-
compile hook in SBT (Simple Build Tool) [40], the predominant
build tool for Scala. It is small (around 300 lines of code) and per-
forms a simple forward pass to quote next-stage code in DSL meth-
ods using Scala string interpolation.

Figure 2 illustrates the Forge compilation pipeline. When run,
Forge constructs an IR of the DSL consisting of types, operations,
data structures, etc. Whereas Delite DSLs traverse the IR and use
different code generators to generate code for different platforms,
Forge traverses the IR and uses different code generators to gener-
ate different DSL implementations. Since the information required
to generate a sequential Scala library is a subset of that needed to
generate the Delite DSL, it is simple to generate the library version.
It is also relatively straightforward to add a new code generator to
Forge to retarget a DSL to a new back-end (for example, an alter-
native runtime) without changing the DSL specification or Forge
internals.

Along with an input Forge specification, Forge also allows ex-
ternal Scala code that should be added to the DSL implementa-
tions. This code is placed in a configurable directory, and copied
by Forge automatically to the generated directory. External code
provides an escape hatch for any situation that Forge does not sup-
port. Domain-specific optimizations, such as pattern rewrites and
transformations, are defined as external code using Delite APIs di-
rectly, and made visible to the generated DSL using Forge’s extern
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Figure 2. An overview of the Forge compilation pipeline. Forge takes as an input a DSL specification, as described in Section 3, and
optional external DSL code. Forge generates two DSL implementations from these components: a high-productivity pure Scala version and
a high-performance Delite version.

command. We chose this method because Delite’s APIs for pattern
rewriting and transformers [33] are already high-level and declar-
ative; it is not obvious how we could abstract over these APIs in a
useful way. Furthermore, these sorts of optimizations are impossi-
ble to implement in the Scala library version, so are only relevant
to the Delite version.

Once the DSL implementations are generated, there is no fur-
ther dependency on Forge, and DSL users can use either one. An
important aspect of Forge’s code generation is that it leverages
polymorphic embedding not only for the Delite implementation,
but also for the library implementation. In the Delite version, Rep[T]
= Exp[T] as in normal Delite DSLs, but in the library version, Rep[T]
= T, and Forge generates concrete classes and methods on those
classes for DSL types. The key point is that DSL users now use
exactly the same interface when writing their application, and need
only run a different Scala object to switch between versions:

object MyAppInterpreter extends SimpleVectorApplicationInterpreter
with MyApp

object MyAppCompiler extends SimpleVectorApplicationCompiler
with MyApp

trait MyApp extends SimpleVectorApplication {
def main() = {
val v = Vector.rand(10)
println("v.sum: " + sum(v))

}
}

Running scala on MyAppInterpreter after compiling will run
the Scala application, while running MyAppCompiler will run the
Delite version to stage it and generate code for different devices.
When Forge generates a DSL, it also generates the SBT project
file for the DSL. A DSL user simply has to run sbt; console,
and they will be dropped into a Scala REPL with all interpreter
DSL dependencies pre-loaded. This provides DSL users a way to
prototype their application in the Scala REPL (they can even copy
and paste app code as normal) and debug their applications inside
Scala IDEs in the ordinary way. In the development cycle, this also
means that DSL users can also avoid expensive compilation and

staging time until they actually require high performance. When
a user has finished debugging, he can switch to a larger dataset
and invoke the Delite DSL. Therefore, although we have added an
additional compilation step in the multi-stage compilation pipeline
for DSL authors, the development cycle for DSL users can be
considerably shortened. Since there are far more users than authors,
this is normally a good trade-off. In order to maintain incremental
compilation across the multiple stages while developing the DSL,
Forge uses rsync to copy files to the generated directory.

In addition to supporting DSL construction from scratch, Forge
includes a scaffolding code generator that allows DSL developers
to bootstrap off of regular Scala classes. This generator serializes
the Forge IR to re-emit a Forge specification (i.e., from an existing
Forge specification, it acts like an identity generator). In order to
generate a skeleton Forge specification using reflection, we use
staging to build the Forge IR by simply calling the appropriate
Forge methods while traversing the class. After the specification
is generated, a DSL author can then fill in the gaps by adding
semantic annotations (e.g. effects) and alternate code generators.
As an example, if we reflect the standard String class using:

importAuto[java.lang.String]

Forge will generate a skeleton specification like the following:

val String = tpe ("java.lang.String")
val StringOps = grp ("String")

infix (StringOps)("trim", Nil,
((String) :: String), effect = simple) implements
(codegen(scala, ${ $0.trim }))

infix (StringOps)("toLowerCase", Nil,
((String) :: String), effect = simple) implements
(codegen(scala, ${ $0.toLowerCase }))

infix (StringOps)("replaceAll", Nil,
((String,String) :: String), effect = simple) implements
(codegen(scala, ${ $0.replaceAll($1) }))

...



The implementation of importAuto is straightforward. It uses
Scala reflection to traverse the methods of the given class and stages
the corresponding Forge commands on the fly:

def importAuto[T:TypeTag] = {
val scalaType = typeTag[T].tpe
val forgeType = toForgeType(scalaType)
val forgeClass = grp(scalaType.toString)
lift (forgeClass) (forgeType)

for (m <- scalaType.members if m.isMethod) {
val methType = method.asTerm.typeSignature
val args = toForgeArgs(methType.params)
val ret = toForgeType(methType.resultType)

infix (forgeClass) (m.name.toString, Nil,
((forgeType :: args)) :: ret, Nil, simple) implements
(codegen(scala, quotedArg(0) + "." + m.name + argList(args)))

}
}

This approach could easily be extended to read other Forge
constructs from Scala or Java method annotations. With a sizable
coverage of the Forge language, such annotations could provide a
lightweight alternative front-end, at least for classes for which the
developer is in control of the source code.

In the future, we plan to add additional code generators to
Forge to generate additional artifacts. For example, if we allow
users to specify Scaladoc annotations in the spec, we can generate
the Scaladoc annotations in the Scala library implementation and
leverage Scaladoc to generate the HTML API docs. In contrast,
with ordinary Delite, there are no concrete classes in the DSL
implementation and no place to put the Scaladoc annotations. We
also plan to explore generating versions of the DSL that are less
human readable, but are faster to compile (for example, by passing
all implicits and specifying all types explicitly).

5. Evaluation
We have implemented three DSLs with Forge: OptiML (machine
learning) [34], OptiQL (data querying) [35], and OptiWrangler
(data transformation). Two of these (OptiML and OptiQL) were
based on existing Delite DSLs, and we show that Forge signifi-
cantly simplified their implementation without sacrificing perfor-
mance. Furthermore, the new Forge implementations automatically
produce library versions as we have discussed, so for the first time,
OptiML and OptiQL can be used in a lightweight interactive way.
OptiWrangler is a new implementation of Wrangler [25], and was
implemented directly in Forge instead of ported from an existing
Delite DSL.

For each DSL, we show that Forge lives up to the promise of
DSL authors being able to write their DSL once, DSL users being
able to write their application once, and being able to run efficiently
on heterogeneous, parallel devices. We compare the performance of
the Forge-generated DSL implementations to hand-optimized C++,
to Spark [41], a Scala library for multicore and cluster computing,
and to the previous Delite implementation (when available). In
general, the hand-optimized C++ code is low-level and complex
while the Spark version is high-level Scala that is much easier to
read and to use. These two data points provide a strong measure
of where the embedded DSL implementations stand in terms of
productivity and performance for end users. The DSL application
code is single-source and high-level, but Delite uses staging and
also performs key optimizations like fusion and struct unwrapping
to generate kernels that are low-level and first-order (either Scala or
CUDA). In most cases, the generated Delite code closely resembles
the hand-optimized C++.

DSL Forge speci-
fication

Delite (man-
ual)

Forge gener-
ated

OptiML 1322 7416 11743

OptiQL 301 862 1287

OptiWrangler 343 n/a 1814

Table 1. LOC for Forge implementations of each DSL vs. existing
Delite implementations.
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Figure 3. Speedup of Delite versions and manually-written C++
over Spark with LR on a 500k x 100 element dataset (multicore)
and 10M x 100 (cluster).

Experimental Methodology We ran Forge on each DSL to gen-
erate a Scala library version and the Delite version. For each DSL
application, Delite generated parallel Scala code for the CPU and
CUDA code for the GPU (when possible). We ran the generated
Scala code over a cluster using the Delite runtime’s support for dis-
tributed computing [5], which uses Apache Mesos [19] and Google
Protocol Buffers [18] as the underlying communication layer. The
Spark experiments were run with Spark 0.7.0.

Multicore CPU and GPU experiments were performed on a Dell
Precision T7500n with two quad-core Xeon 2.67 GHz processors,
96GB of RAM, and an NVidia Tesla C2050. The Scala code was
executed on Oracle’s Java SE Runtime Environment 1.7.0 and the
HotSpot 64-bit server VM with a maximum heap size of 40GB.
The generated CUDA code was executed with CUDA v3.2. The
C++ implementations were compiled using g++ 4.4.7 with -O3.
The cluster CPU experiments were performed on Amazon EC2
using 20 m1.xlarge instances. Each machine contained 4 virtual
cores, 15GB of memory, and 1Gb Ethernet connections between
the 20 machines. We used the default JVM available on Amazon
Linux, Java 1.6.0b24 with default options, for all three systems.
We ran each application ten times (to warm up the JIT) and report
the average of the last 5 runs.

When counting lines of code (LOC) to compare Forge specifi-
cations of OptiML and OptiQL to the previous Delite versions, we
used CLOC [13], and counted only the subset of features of the
original DSLs that we re-implemented in the Forge spec.

5.1 OptiML
OptiML is a DSL for machine learning built around a linear algebra
core, which we call OptiLA. OptiML provides implicitly parallel
vectors, matrices, and graphs that support bulk collection opera-
tors (e.g. map, filter) as well as standard math operators when used
with numeric types. OptiML also supports control structures for
iterative algorithms (such as untilconverged and gradient descent)
that are common in machine learning. The Forge implementation of
OptiML includes the dense data types (DenseVector, DenseMatrix),



most OptiML mathematical functions, and the control structures.
Row 1 of Table 1 shows the LOC count of the OptiML specifica-
tion vs. the corresponding subset of the original implementation, as
well as the LOC generated by Forge. Forge provides nearly a 6x
reduction in LOC over the original implementation, while generat-
ing roughly 50% more LOC because it also generates the library
version, which was not a part of the original OptiML. The savings
comes mainly from reducing boilerplate and automatically gener-
ating the embedded DSL structure and appropriate calls into the
Delite API (as discussed in Section 2). We also gain some savings
by using staging and code generation to implement common Vector
operations on different kinds of Vectors, whereas the previous im-
plementation used a verbose packaging of type classes to achieve
(almost) the same functionality. Qualitatively, the OptiML specifi-
cation is also simpler to read and modify than the previous version,
primarily because there is much less clutter than in the original em-
bedding implementation.

To evaluate performance, we ran Logistic Regression (LR), a
simple classification algorithm for predicting the discrete value of
a data sample (for example, whether a particular email is spam
or not). Figure 3 shows the results running on multicore CPUs,
a GPU, and across the 20 node EC2 cluster. The Delite version
of Forge-generated OptiML achieves the same performance as the
original OptiML implementation because we are able to generate
the same code from the Forge specification. The Delite versions
are about 2x slower than the low-level C++, but 2.5x faster than the
high-level Spark. This C++ implementation is optimized to manu-
ally fuse all loops; it allocates an output buffer per thread in order
to parallelize, but otherwise contains no intermediate allocations.
Furthermore, the C++ code is byte-padded to prevent false sharing,
which initially caused a 3x slow-down when naïvely parallelized
using OpenMP. The Delite versions fail to reach this level of per-
formance because the fusion algorithm misses one opportunity be-
tween different parts of a reduction kernel; we believe in the future
we can extend the algorithm to cover this case, which will result in
the generated Delite CUDA code outperforming the manual C++
even when starting from the high-level DSL code.

In the distirbuted setting, Delite is also able to run more effi-
ciently across nodes than Spark for the same reasons it performs
better in the multicore case: fusion eliminates intermediate alloca-
tions and staging generates more efficient code than Spark, which
uses high-level Scala abstractions. It is important to note that Spark,
in general, is extremely efficient; it has been shown to achieve order
of magnitude speedups over equivalent Hadoop implementations
by intelligently keeping data in memory across multiple iterations.
Delite also keeps data in memory, but at this time does not provide
the same fault-tolerance guarantees as Spark.

Finally, note that the Forge-generated library version did not
finish on either dataset. This version uses identical code to the pre-
staged Delite version (by construction), but since it is not staged
or optimized, it suffers heavily from boxing and uses far more
memory. In particular, the use of polymorphic embedding in its
interface imposes more dispatch and boxing overhead than the
Spark version, and since it is sequential, it cannot run on multiple
processors. This demonstrates that the library version is suited
for interactive prototyping with small datasets, but not for high
performance or large-scale execution.

5.2 OptiQL
OptiQL is a LINQ-like [27] DSL for data querying. Its primary
data type is a Table, and it provides query operators (e.g. Select,
Where, Sum) over them. Like OptiML, we started from an existing
Delite implementation of OptiQL, and ported it to Forge. The
Forge version contains all of the supported features of OptiQL,
but rewrite optimizations were implemented as external DSL code
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Figure 4. Speedup of Delite versions and manually-written C++
over Spark on TPC-H Q1 on a 1 GB table (multicore) and 5 GB
(cluster).

directly using Delite. The rewrites performed by OptiQL perform
additional fusion of query operators that go beyond the generic
fusion provided by Delite.

Row 2 of Table 1 shows that the Forge OptiQL specification is
about 3x shorter than the original Delite implementation. The dif-
ference is less dramatic than OptiML because OptiQL is a smaller
DSL and a significant portion of its code is for the rewriting opti-
mizations. Figure 4 shows the results of running the TPC-H bench-
mark suite query 1 (Q1) on multicore CPUs and on the cluster.
TPC-H is a well-known database benchmark suite and Q1 con-
sists of a single query containing Select, Where, GroupBy, and aggre-
gate (e.g. Sum) statements. In the Delite version, the programmer-
friendly array-of-struct representation is automatically converted to
a more efficient struct-of-array representation, and then all of the
operators are fused into a single, compact loop. Furthermore, fields
that are part of the input dataset that are not used in the query are au-
tomatically eliminated from the generated code via dead field elim-
ination. As a result, the Delite versions perform roughly the same as
hand-optimized C++ and outperform Spark by 30x. In this case the
speedup is magnified because the Delite optimizations have multi-
plicative effects; AoS to SoA enables fusion and struct unwrapping,
which in turn enable dead-field elimination and the stack allocation
of primitives. The same optimizations help Delite scale efficiently
on the cluster, achieving 43x speedup over Spark. The increase is
due to the fact that although the overall dataset is larger, the data
per node is less in this experiment, and efficiency matters more.
Similarly to OptiML, the Forge-generated Delite OptiQL version
performs as well as the manual Delite version, while the Forge-
generated library version is unable to finish for the same reasons
as before (the lack of optimizations combined with polymorphic
embedding and boxing overheads).

5.3 OptiWrangler
OptiWrangler is a DSL for structured string transformations and
cleansing operations based on the interactive Wrangler system [25].
OptiWrangler exposes a single data element, Wrangler, and of-
fers high level primitives (e.g. cut, split) that act over rows and
columns of tabular data. In addition to managing a single table, Op-
tiWrangler abstracts gracefully over multiple tables, allowing users
to partition and merge tables without restructuring an application
designed for a single table. We implemented OptiWrangler as both
a Forge DSL and as a library with Spark. Unlike the other DSLs,
OptiWrangler has not been previously implemented in Delite, so
we use Spark as a comparison for productivity (note that in Subsec-
tions 5.1 and 5.2 the Spark implementations were for the applica-
tion only, while for OptiWrangler, we implemented the entire DSL
in Spark). Row 3 of Table 1 shows the code generated expansion of
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Figure 5. Speedup of Delite versions and manually-written C++
over Spark on the gene processing application with 3M sequences
(multicore) and 25M (cluster).

the Forge implementation into a Delite DSL. OptiWrangler falls in
between OptiML and OptiQL in terms of generated code size with
a roughly 5x expansion. The Spark implementation of OptiWran-
gler (not shown in the table) is 253 LOC. Even though Spark is a
pure Scala library, the Forge implementation is only 1.36x larger,
and the difference is magnified because Forge specifications have a
slightly higher fixed cost in LOC than Spark. For larger DSLs, this
initial overhead would be amortized.

We evaluate performance on an application provided by a ge-
neticist common in his workflow. Geneticists perform many types
of structured-to-structured string operations, such as removing
“barcodes” from gene sequences, separating genes by type, and
extracting interesting subsequences. This application tests one kind
of these structured transformations. Figure 5 shows the applica-
tion performance with Forge-generated Delite vs. Spark and C++
(no manual Delite implementation exists). The generated Delite
version unwraps all structs, leaving only a tight loop over arrays
of strings. It performs approximately 2x slower than the C++ ver-
sion, which heavily uses mutation to avoid allocating, for example,
even new strings when constructing substrings. This requires us-
ing only a careful subset of C++ stdlib functions and makes the
program harder to reason about. Like the C++ implementation of
LR, this version also required byte padding to scale. On the other
hand, Delite outperforms the Spark implementation by nearly an
order of magnitude, which in this application is driven mostly by
expensive object allocations. These benefits again translate to the
cluster, resulting in a 7x speedup. This application falls somewhere
in between the OptiML and OptiQL examples, since it is relatively
simple (so there are not many optimizations to apply), but also not
computationally heavy (so efficiency is important).

6. Related Work
The need for infrastructure to define DSLs has long been recog-
nized and several languages and frameworks for declaratively spec-
ifying DSLs exist. The Kermeta workbench [28] is a metapro-
gramming environment based on metamodel engineering, which
applies meta-languages to the problem of model transformations.
Kermeta leverages DSLs for transforming models and the authors
present common language constructs for model manipulation. The
Eclipse Modeling Frameworks (EMF) [17] provide tools to gen-
erate code from a structured data model, specified in various lan-
guages (e.g. Java, XML). JetBrains MPS [24] and Spoofax [26]
are language workbenches that enable developers to specify DSL
grammars, static analyses and transformations (via rewrite rules,
e.g. with Stratego [3]), and code generators. XText [16], JetBrains
MPS and Spoofax all support automatically generating sophisti-

cated tool-chain support for custom languages, such as IDE plug-
ins, without relying on a host language. SugarJ [15], on the other
hand, does utilize a host language by enabling language developers
to translate grammar extensions to the host grammar (Java), as well
as apply rewrite rules and transformations. Forge follows the spirit
of these efforts but focuses on code generation to make high perfor-
mance, heterogeneous computing more accessible, based on our ex-
periences with the Delite framework. Since our effort has been in-
vested on the back-ends of optimizing DSL compilers, there is sig-
nificant potential in combining Forge with a declarative framework
for front-end grammars and compile-time (as opposed to staging-
time) static analyses. This would enable DSL developers to have
even more flexibility to define both highly expressive and high per-
formance DSLs.

Forge is unique as a meta DSL in that it is a staged, embedded
DSL, that generates other staged, embedded DSLs with special-
ized implementations that share a common interface using poly-
morphic embedding. The embedding of DSLs in a host language
was first described by Hudak [22]. Tobin-Hochstadt et. al. extend
Racket, a Scheme dialect, with constructs to enhance the embed-
dability of other languages [39]. We also use an enhanced version
of the Scala compiler (Scala-Virtualized [32]) to allow for a deeper
embedding of DSLs. Feldspar [2] is an instance of an embedded
DSL that combines shallow and deep embedding of domain opera-
tions to generate high performance code. Taha et. al. pioneered the
field of multi-stage programming with MetaML [37] and MetaO-
Caml [6], extensions of ML and OCaml with staging annotations
to demarcate future stage code. Forge, through LMS, uses type-
directed staging instead of explicit annotations.

Forge was designed to target the Delite framework as a high per-
formance back-end. In the field of parallel and heterogeneous com-
puting, there have been numerous programming language and com-
pilation approaches that have explored similar issues as, and con-
tributed ideas to, Delite. Many of these systems are also good candi-
dates for Forge-generated implementations, with different usability
and performance trade-offs for end users of the DSL. For example,
it is straightforward to generate an OpenMP [12] parallel C++ li-
brary implementation from Forge, which may integrate better with
existing code bases, but would also miss out on the substantial op-
timizations implemented in the Delite framework (which can also
generate C++ code, but at the application kernel, rather than DSL,
level). OpenCL [38] is an industry-led standard for a relatively low-
level, but uniform, programming model for heterogeneous devices.
Forge DSLs (via Delite) can generate OpenCL from applications,
allowing them to leverage the OpenCL compiler to target supported
devices instead of performing low-level code generation manually.
FlumeJava [11] and Dryad [23] have similar, data-flow based exe-
cution models as Delite, and also perform sophisticated optimiza-
tions on data parallel pipelines. Copperhead [8] and FirePile [30]
perform run-time compilation for GPUs from Python and Scala,
respectively. Forge DSLs share some of the embedding aspects of
these approaches, but use staging for static whole-program analy-
ses and generation rather than dynamic compilation, and can run in
distributed environments as well as on multicore CPUs and GPUs.

7. Conclusion
We presented Forge, a meta DSL for high performance embedded
DSL development. Forge is unlike previous language construction
approaches in that it is embedded, staged, and generates multiple
DSL implementations oriented towards simplifying heterogeneous
parallel processing. Forge improves on the previous state of the
art of compiled embedded DSLs by generating two versions of a
DSL, a Scala library implementation that can be used for prototyp-
ing and debugging, and a Delite framework implementation that
outperforms alternative systems and can run on multicore CPUs,



GPUs, and clusters from a single application. Forge can also gener-
ate itself, so it can be used with an external parser, or reflection, to
generate a skeleton specification from existing libraries. We have
demonstrated that Forge simplifies the process of developing and
using Delite DSLs, achieving up to 6x reduction in LOC compared
to existing Delite DSLs while still providing order of magnitude
speedups compared to library-based approaches. We believe that
a declarative specification enables new opportunities for compiled
embedded DSLs, such as the ability to transparently modify the
underlying high performance framework or retarget the DSLs to
alternate backends.
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