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ABSTRACT

Restricted Boltzmann Machines (RBMs) — the building
block for newly popular Deep Belief Networks (DBNs) —
are a promising new tool for machine learning practition-
ers. However, future research in applications of DBNs is
hampered by the considerable computation that training re-
quires. In this paper, we describe a novel architecture and
FPGA implementation that accelerates the training of gen-
eral RBMs in a scalable manner, with the goal of producing
a system that machine learning researchers can use to inves-
tigate ever-larger networks.

Our design uses a highly efficient, fully-pipelined ar-
chitecture based on 16-bit arithmetic for performing RBM
training on an FPGA. We show that only 16-bit arithmetic
precision is necessary, and we consequently use embedded
hardware multiply-and-add (MADD) units. We present per-
formance results to show that a speedup of 25-30X can be
achieved over an optimized software implementation on a
high-end CPU.

1. INTRODUCTION

A Deep Belief Network (DBN) [1] is a multilayer generative
model where each layer encodes statistical dependencies be-
tween the units in the layer below it; it is trained to (approx-
imately) maximize the likelihood of its training data. DBNs
have been successfully used to learn high level structure in
a wide variety of domains, including handwritten digits [1]
and human motion capture data [2].

Although the use of DBNs to solve difficult AI problems
looks promising, it is limited by the high computational cost
of training the network on conventional processors. In this
paper we address the problem of accelerating the training of
DBNs using FPGAs.

Modern FPGAs contain a large amount of configurable
logic elements, which allow custom designs for complicated
algorithms to be built. Abundant logic resources and the
customizable nature of FPGAs allow us to fully exploit the
fine-grain parallelism in the DBN training algorithm. We
describe an FPGA-based system that accelerates the training

of DBN networks. Our implementation uses a single FPGA,
but we have produced an architecture that we believe will
be able to scale to many FPGAs, and thus will allow the
training of larger DBNs. The size (number of neurons) of a
DBN that can be trained is limited by the computational and
memory resources on an FPGA board, so this scalability is
important for future developments.

2. RELATED WORK

There has been considerable interest in accelerating the train-
ing of neural networks using FPGAs. In 1992, Cox and
Blanz [3] demonstrated an FPGA implementation of a lay-
ered neural network for performing classification tasks. In
1994, Lysaght et al. [4] showed that dynamic reconfigu-
ration of FPGAs could be used to train larger layered net-
works. Zhu and Sutton [5] provide a survey of FPGA im-
plementations of neural networks, trained using backpropa-
gation.

Since the introduction in 2006 of Hinton et al.’s fast
learning algorithm [1] for DBNs (Deep Belief Nets), there
has been renewed interest in neural networks. Ly and Chow
[6] recently introduced an FPGA architecture for training
DBNs. Our work improves on theirs in three significant
ways. First, our approach generalizes the data represen-
tation of the network from binary numbers to fixed-point
numbers. Modern FPGAs contain abundant multiplier re-
sources, whether they are used or not — we exploit these
resources so that a wider range of experiments can be con-
ducted on the RBM accelerator. Second, major learning
parameters such as the number of visible/hidden neurons
are configurable at runtime — flexibility expands the explo-
ration space for AI research even further. Third, instead of
the deterministic threshold approach used in [6], our imple-
mentation operates as a true stochastic RBM which makes
use of the sigmoid function and random number generators,
which are explained in Section 4. Also, biases and momen-
tum are included in the weight update phase for even faster
convergence.



Fig. 1. Illustration of RBM Network.

3. DEEP BELIEF NETWORK AND RESTRICTED
BOLTZMANN MACHINE

RBMs, introduced in [1], are probabilistic generative mod-
els that are able to automatically extract features of their
input data using a completely unsupervised learning algo-
rithm. RBMs consist of a layer of hidden and a layer of
visible neurons with connection strengths between hidden
and visible neurons represented by an array of weights (see
Fig. 1). To train an RBM, samples from a training set are
used as input to the RBM through the visible neurons, and
then the network alternatively samples back and forth be-
tween the visible and hidden neurons. The goal of training
is to learn visible-hidden connection weights and neuron ac-
tivation biases such that the RBM learns to reconstruct the
input data during the phase where it samples the visible neu-
rons from the hidden neurons.

Fig. 2 shows the pseudo-code for the RBM training algo-
rithm. The sampling between the hidden and visible layers
is followed by a slight modification in the parameters (con-
trolled by the learning rateα) and repeated for each data
batch in the training set, and for as many epochs as is neces-
sary to reach convergence.

The motivation for using RBMs is that when stacked to-
gether in a hierarchical fashion, with the hidden units of one
RBM used as the visible inputs to the next higher RBM —
which describes the architecture of a DBN [1] — one can
automatically learn “patterns-of-patterns” of the training set.
Ideally, given enough layers, the user can learn very abstract
features of the training set, with the intention of modeling
the hierarchical learning structure of the brain. Some re-
cent work using DBNs includes an application to classifying
handwritten digits [1] and comparison of sparse DBN output
to the V2 area of the visual cortex [7].

4. IMPLENTATION DETAILS OF AN RBM ON AN
FPGA

It is clear from Fig. 2 that the RBM training algorithm is
dominated by matrix multiplication. In a software imple-
mentation of an RBM running on a Sun UltraSparc T2 pro-
cessor, the percentage of runtime consumed in matrix mul-

-Visible neurons initially set to a batch of training examples, denoted vis_batch_0

-Repeat until convergence {

1) Sample hid_batch_0 from P(h|vis_batch_0)

a) tmp_matrix_1 = vis_batch_0 * weights

b) tmp_matrix_2 = tmp_matrix_1 + hid_biases

c) tmp_matrix_3 = sigmoid(tmp_matrix_2)

d) hid_batch_0 = tmp_matrix_3 > rand()

2) Sample vis_batch_1 from P(v|hid_batch_0)

3) Sample hid_batch_1 from P(h|vis_batch_1)3) Sample hid_batch_1 from P(h|vis_batch_1)

4) Update parameters:

a) weights += α(vis_batch_0T*hid_batch_0 - vis_batch_1T*hid_batch_1)

b) vis_biases += α(vis_batch_0T*1 – vis_batch_1T*1)

c) hid_biases += α(hid_batch_0T*1 – hid_batch_1T*1)

}

Fig. 2. RBM Training Algorithm Pseudo-code.

tiplication is between 90% for a small (512x512) network
and 98% for a larger (2500x2500) network, Hence, the algo-
rithm can run considerably faster by accelerating the matrix
multiplication.

FPGAs are a promising technology with which to accel-
erate DBN training; the presence of fine-grain parallelism
that can be exploited in the matrix multiplications is a prom-
ising attribute. Furthermore, we have found the use of fixed
point arithmetic with just 18, or even fewer bits, does not ad-
versely affect the results, which is explained in Section 4.1.
This is fortuitous, since the built-in hardware multiplication
units in modern FPGAs now support very similar precision
calculations.

We have implemented a Restricted Boltzmann Machine
on a development board that features an Altera Stratix III
FPGA with a DDR2 SDRAM SODIMM interface. The
Stratix III EP3SL340 has 135,000 ALMs (Adaptive Logic
Modules)1, 16,272 kbits of embedded RAM and 288 em-
bedded 18x18 multipliers. With this number of multipliers,
we are capable of processing approximately 256 neurons per
clock cycle. The FPGA board can also be connected to up
to 19 other boards in a stack via a high speed interface – this
will be used in future work to scale up the size of the DBNs
that can be processed. Although the current implementation
of our system only supports a single board, the system was
designed to be highly scalable as described in Section 6.

4.1. Overall System Architecture

Fig. 3 summarizes the structure of our FPGA implemen-
tation. The system consists of a soft processor, a DDR2
SDRAM controller, and an RBM module. The soft proces-
sor used in our design is the Altera Nios II operating at a
clock frequency of 100 MHz. The processor functions as the
interface between the user and the RBM module via JTAG-
UART2. The CPU also initializes the weights, reads in the

1ALMs are essentially two 6-input ALUTs combined
2Future implementations will support faster interfaces fordata transfer

such as USB 2.0



AVALON MMAVALON MM

DDR2 

Controller
NiosII

32256

32256

Main 

Controller

256

Memory 

Stream
RBM Module

ISP1761

32

USBUSB
DDR2DDR2 JTAG

UART

Weight 

Array

Multiply 

Array

Adder 

Array

Sigmoid 

Array

RNG /

Compare

Array

Neuron Neuron 

Array
Update 

Logic

Fig. 3. Overall architecture.

visible neurons to SDRAM, initiates the algorithm, and re-
turns the results to the user.

The RBM module, operating at 200MHz, is the key com-
ponent that executes the algorithm with configurations cho-
sen by the user. At a high level, the RBM module has an
array of weights and neurons that are fed into an array of
multipliers, and then into adders to perform the matrix mul-
tiplication. After that, the RBM computes the sigmoid to
obtain the probability of firing a neuron and fires the neuron
using a comparator and random number generator. After the
positive and negative phases, the module continues to iter-
ate until it meets the stopping condition given by the user.
Every step is pipelined, which results in a throughput of ap-
proximately 256 multiply-and-add (MADD) per cycle.

The choice of the arithmetic precision to use in our de-
sign was a critical one, since the logic and multiplier re-
source utilization depends directly on the data width and
format3. Neural networks exhibit soft computing [8] charac-
teristics, which refers to a collection of software techniques
that exploit the tolerance to noise for better performance and
decision making. To determine the optimal precision, we
simulated the DBN using the Fixed-Point MATLAB Tool-
box for several fixed-point formats. From the simulation
results, 16-bit fixed-point numbers were chosen to represent
the weights and the training data set. Previous studies [9]
also demonstrate that 16-bit precision is sufficient for a large
range of neural network benchmarks.

As shown in Fig. 4, the RBM module is segmented into
several groups, each consisting of an array of multipliers,
adders, embedded RAM, and logic components. Weights
and neuron data are distributed across the groups. Each
group processes a different portion of the network. Nearly
all computations take place in these groups. The rationale
for such partitioning is that wire delay increases as semi-
conductor technology scales, so the wire delay becomes the
performance bottleneck if the placement and routing is not
performed efficiently. Localization of communication is an

364-bit versus 16-bit, floating-point versus fixed-point
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Fig. 4. RBM Module Detail.

efficient way, and possibly the only way, to fully exploit all
the parallelism in modern FPGAs. Signals that must com-
municate with other groups are appropriately buffered.

Partitioning the design into multiple groups also makes
the design scalable. Since most of the algorithm is per-
formed within each group, the design can be migrated to
a future device easily by instantiating more of these groups
without having to worry about wire delays or routing. This
is because most of the wiring is localized and the global sig-
nals are buffered. This also applies when extending the sys-
tem to multiple boards. Each group was sized to match the
DDR2 bus width of 256 bits, allowing for 16 multipliers per
group with 16 bits of data precision.

A significant goal of this project is to facilitate AI re-
search on large DBNs. To provide sufficient speedup, flexi-
bility — relative to a software implementation — had to be
sacrificed. Nonetheless, our system provides configurable
parameters to allow wide-ranging experiments without the
need to modify the FPGA design. The most significant pa-
rameter is one that allows the user to specify the number of
neurons for each layer. This is in contrast to the implemen-
tation reported in ref. [6], which requires the network to be
symmetric. However, for maximum performance, the num-
ber of neurons should either be a multiple of the number of
multipliers, or vastly larger than the number of multipliers4.

The system allows the user to specify the learning rate.
The representation of neurons as either fixed-point numbers
or binary numbers is also configurable. This widens the
exploration space to non-binary numbers; non-binary num-
bers can already be found in the software RBM implemen-
tations for handwritten digits [1]. This generalization re-
quires a multiplier as opposed to AND gates, which was

4This is only possible for our future multi-board implementation due to
memory constraints.
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demonstrated in [6]. Currently, the visible neurons are hard-
coded to use fixed-point representation, while hidden neu-
rons make use of both. However, we can easily modify the
design to make them configurable using multiplexers.

Due to the pipeline structure of our implementation, mul-
tipliers are only fully utilized when the number of neurons
is a multiple of 256. Although this is not a significant lim-
itation when our objective is to accelerate large DBNs, this
considerably restricts the range of experiments for the cur-
rent single board implementation since the on-chip memory
only supports a weight matrix of size up to 512x512. How-
ever, as mentioned in Section 6, future implementations will
be capable of accepting more nodes per board since the size
of the network will no longer depend on the on-chip memory
capacity.

4.2. Core Components

Matrix multiplication occurs in all three phases: the hid-
den and visible neuron sampling phases and the weight up-
date phase. Thus, the input for the multiplication operations,
which are the weights and the neurons, should reside in the
embedded memories distributed across the FPGA. Although
locating the inputs close to the multipliers is desirable, dis-
tribution of the weights is non-trivial due to a transpose op-
eration that occurs during the visible neuron sampling phase.

The design in ref. [6] avoids the transpose problem by
distributing the data such that no embedded RAM will si-
multaneously read out two or more elements from the same
row with the same address, and no embedded RAM will
contain two or more elements of the same column. Then,
by using a carefully designed addressing scheme, a column
or row of the matrix is read out from the memory each cycle
and no communication is required for the transpose.

Although this approach eliminates communication for
the transpose operation, it has two major drawbacks. One
is that the weight and data matrices have to be shifted be-
fore being written into the on-chip memories, requiring a
sophisticated routing scheme from each RAM to the ap-
propriate multiplier since no row or column vector of the
weight matrix contains the same index number. A more crit-
ical problem is that this approach assumes that the weight
matrix fits on-chip and the number of RAM blocks for the
weight matrix is equal to the number of neurons, or at least
O(n). However, if the network size scales to a point that the
weight matrix no longer fits on-chip, then the weight matrix
has to stream in from off-chip memory. Since the embedded
RAMs can no longer be equal to the number of neurons, a
different weight matrix routing logic is required each time
a portion of the weight matrix is streamed in, severely lim-
iting the scalability. Although our current RBM implemen-
tation also assumes that the weight matrix fits on-chip, our
approach solves the transpose problem in a way that scales
to large networks where the weight matrix is stored on off-
chip DRAM. Fig. 5 briefly illustrates our approach.

To understand how our module works, the key observa-
tion required is that matrix multiplication can be viewed in
several different ways; a matrix multiplicationC = A · B

(A ∈ R
m×k, B ∈ R

k×n) can be considered as multiple lin-
ear combinations of vectors (1), multiple vector inner prod-
ucts (2), or as a sum of vector outer products (3).
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If the reconstruction phase (HW⊤) is viewed as vec-
tor inner products, then each row ofH and each column of
W⊤ is multiplied element-wise, followed by a sum reduc-
tion. This suggests that each row ofW⊤ and each row of
H should be placed in separate on-chip RAMs so that all
of these elements can be read simultaneously, as shown in
Fig. 5b. For the hidden computation phase (V W ), consider
the transposed matrix operation (W⊤V ⊤), and view the op-
eration as a linear summation of vectors. This requires that
the jth column vector ofW⊤ is multiplied by thejth ele-
ment in a column vector ofV ⊤. This gives the structure of



Table 1. Resource utilization.
Resource ALUT Registers Block Memory 18x18 DSP

Combinational Memory

RBM Segment 3893 (1.44%) 2205 (1.63%) 9552 (3.54%) 589824 (3.54%) 18 (6.25)

Global 1564 (0.58%) 0 (0.00%) 2238 (0.83%) 0 (0.00%) 0 (0.00%)

SOPC 6670 (2.47%) 320 (0.24%) 5740 (2.13%) 123104 (0.74%) 0 (0.00%)

System Total 71494 (26.48%) 35600 (26.37%) 160996 (59.63%) 9560288 (57.38%) 288 (100.00%)

Fig. 5a, which computes multiple hidden neurons in parallel.
Since at each cycle we only need to read a column vector of
W⊤ for both cases, the memory layout for the weights can
remain the same, and it requires no communication for a
transpose as shown in Fig. 5.

Our approach requires more adders, since the adder re-
quirements for each phase is different. The reconstruction
phase uses an adder tree to compute reconstructed visible
neurons each cycle5. The hidden neuron computation phase
requires accumulators instead, holding 256 partial sums; this
also computes (on average) one hidden neuron each cycle,
assuming that the number of hidden units is equal to the
number of multipliers. Using redundant hardware is accept-
able since modern FPGAs have abundant logic resources.
This approach provides a scalable method to perform ma-
trix multiply operations without any movement of data in a
transpose, at the cost of using additional hardware.

The update phase involves multiplying the transpose of
the visible neuron matrix and the hidden neuron matrix,
which is essentially the sum of outer products (3) between
the visible and hidden neurons. Since the visible data al-
ready has a datapath that broadcasts as in Fig. 5a, and a large
number of hidden neurons can be read into the multipliers as
in Fig. 5b, the update phase multiplication can fit easily into
the structure in Fig. 5a, where hidden neuron values take the
place of weights.

The matrix multiplication results are provided to an ac-
tivation function, which in our case is the widely used sig-
moid function. Since the sigmoid function in hardware is
an expensive operation — requiring exponentiation and di-
vision — we instead implemented an approximate sigmoid
function design called PLAN (Piecewise Linear Approxima-
tion of Nonlinear function) [10] since it uses only a minimal
number of addition and shift operations. In software sim-
ulations we found that the convergence properties were not
degraded by the use of this approximate sigmoid function
instead of the exact sigmoid function.

The stochastic characteristics of an RBM are also greatly
influenced by the quality of the random number generator
(RNG). We used the RNG described in ref. [11], which is

5This is true if the number of hidden neurons is equal to 256. Larger
networks can take several cycles to compute a visible neuron.

a combination of an LFSR (Linear Feedback Shift Register)
of 43 bits and a CASR (Cellular Automata Shift Register)
of 37 bits, providing good statistical properties, along with
a cycle length of280, which is sufficient for our application.

5. EXPERIMENTAL RESULTS

Table 1 summarizes the resource utilization of the RBM
computation engine in our single FPGA design and for the
entire system. It should be noted that partitioning the design
may increase the total logic count. Thus, partitioning can
be seen as a trade off of scalability and performance against
silicon area.

5.1. Evaluation

The FPGA implementation was verified by comparing the
results with the reference MATLAB implementation from
Hinton et al. [1]. The MATLAB RBM code was modi-
fied to use fixed-point representation; the FPGA version of
the RBM was only determined as correct when the results
matched the MATLAB output stream, given the same input.

Performance measurement was done in comparison
against an Intel Core 2 processor clocked at 2.4GHz running
a single-threaded version of the RBM application. MAT-
LAB was used for the comparison since MATLAB is highly
optimized for matrix operations, which usually performs at
least comparably to C implementations, if not better. For a
fair comparison, both single and double precision versions
of the MATLAB RBM were used. We did not consider a
fixed-point version, since this would be very inefficient in
MATLAB.

Three network sizes — 256x256, 512x512 and 256x1024
— were tested and compared to see how our system per-
forms on small, large, and asymmetric networks. Perfor-
mance measurement was done only on the execution of the
algorithm itself; the time for data transfer between the host
and the onboard DRAM was not taken into account. The
current implementation uses a JTAG-UART interface to trans-
fer the data. However, future implementations will have
USB 2.0, which provides sufficient bandwidth that data trans-
fer time will be negligible compared to the computation time.
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Fig. 6 shows the speedup achieved by our implementa-
tion. Our RBM system runs 25 times as fast as the single
precision software implementation, and 30 times as fast as
the double precision implementation. Based on these re-
sults, if we extend this single board RBM implementation
to a system of 20 FPGA boards, we can get up to 600X
speedup compared to the software implementations running
on a modern processor.

6. FUTURE WORK

The current RBM system already provides the flexibility to
adjust the network architecture and learning rates. Addi-
tional flexibility, such as sparse DBN computation or lateral
connections within layers, may be included according to the
requirements from a group of AI test users. In addition, our
system will be extended to multiple boards and handle large
networks. The weight matrix will no longer fit in on-chip
memory since it scales asO(n2) with the number of neu-
rons. Thus, weights will need to be streamed in from exter-
nal storage such as DRAM. To tackle bandwidth issues, a
batch size of at least 16 will be used. This enables weights
to be reused for multiple data vectors within the batch to
reduce bandwidth, at the cost of slightly increased number
of iterations to converge. Our calculations show that for a
batch size of 16, only 256 bits of weight data are needed
every cycle, which is feasible with a DDR2 interface.

7. CONCLUSION

Deep Belief Nets are an emerging machine learning tool,
which are based on Restricted Boltzmann Machines. FP-
GAs can effectively exploit the inherent fine-grained paral-
lelism in RBMs to reduce the computational bottleneck for
large scale DBN research. As a prototype of building a fast
DBN research machine, we implented a high-speed, con-
figurable RBM on a single FPGA. We have demonstrated
a 25X speedup of the RBM implementation on the FPGA
compared to a single precision software implementation run-
ning on a Intel Core 2 processor. Our future implementation
using multiple FPGA boards is expected to provide enough

speedup to attack large machine learning problems.
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