
Hardware Acceleration of Database Operations

Jared Casper and Kunle Olukotun
Pervasive Parallelism Laboratory

Stanford University
{jaredc, kunle}@stanford.edu

ABSTRACT
As the amount of memory in database systems grows, en-
tire database tables, or even databases, are able to fit in the
system’s memory, making in-memory database operations
more prevalent. This shift from disk-based to in-memory
database systems has contributed to a move from row-wise
to columnar data storage. Furthermore, common database
workloads have grown beyond online transaction process-
ing (OLTP) to include online analytical processing and data
mining. These workloads analyze huge datasets that are of-
ten irregular and not indexed, making traditional database
operations like joins much more expensive.

In this paper we explore using dedicated hardware to ac-
celerate in-memory database operations. We present hard-
ware to accelerate the selection process of compacting a sin-
gle column into a linear column of selected data, joining two
sorted columns via merging, and sorting a column. Finally,
we put these primitives together to accelerate an entire join
operation. We implement a prototype of this system using
FPGAs and show substantial improvements in both absolute
throughput and utilization of memory bandwidth. Using the
prototype as a guide, we explore how the hardware resources
required by our design change with the desired throughput.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architecture Styles

Keywords
Database; FPGA; Hardware Acceleration; Join; Sort

1. INTRODUCTION
Database systems have historically been largely constrained

by disk performance. Now, with advances of memory tech-
nology, the amount of main memory available in large database
systems has grown enough that many large database tables
now reside entirely in main memory. While Moore’s law
continues to hold and the number of transistors available

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FPGA’14, February 26–28, 2014, Monterey, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2671-1/14/02 ...$15.00.
http://dx.doi.org/10.1145/2554688.2554787.

to chip architects continues to increase, power constraints
limit the number of logic transistors that can be active at
any given time on a chip [3]. It is unlikely that general pur-
pose processing elements will ever be able to fully utilize the
amount of memory bandwidth available to a chip while per-
forming all but the most basic database operations. As an
example, studies have increased join performance into the
100s of million tuples per second [7, 6], with 64-bit tuples
this corresponds to a data bandwidth of one to five gigabytes
per second. Modern chips, conversely, can achieve memory
bandwidth over 100 GB/s [1]. Clearly using general purpose
compute is leaving performance on the table.

To achieve maximum performance for in memory database
operations, it will thus be necessary to move to special pur-
pose processors. The move to heterogeneity is not a new
idea. Researchers at Intel have proposed that architectures
move from optimizing for the 90% case, the traditional 90/10
approach, to spending new transistors on dedicated acceler-
ators for multiple 10% cases, the “10x10” approach. [5, 2].

In this paper we propose hardware designs that acceler-
ate three important primitive database operations: selec-
tion, merge join, and sorting. These three operation can be
combined to perform one of the most fundamental database
operations: the table join. The primary goal in our designs
is to build hardware that fully utilizes any amount of mem-
ory bandwidth available. To that end our designs have as
few limiters to scaling as possible, such that as logic den-
sity increases more hardware can be added to increase the
throughput of the design with very little redesign of the ar-
chitecture. Contribution of this this work include:

• We detail hardware to perform a selection on a column
of data streamed at peak memory bandwidth.

• We describe hardware to merge two sorted data columns.

• We present hardware to sort a data column using a
merge sort algorithm.

• We describe how to combine these hardware blocks to
perform an equi-join entirely in hardware.

• We prototype all three designs on an FPGA platform
and discuss issues faced when building the prototype.

• We analyze the performance of our prototype and iden-
tify key bottlenecks in performance.

• For each hardware design, we explore the hardware
resources necessary and how those resources require-
ments grow with bandwidth requirements.

151

Figure 1: Data and control paths for selection of four

elements.

2. HARDWARE DESIGN

2.1 Selection
In this paper we define the selection operation to take

two inputs, a bit mask of selected elements and a column of
data stored as an array of equal width machine data types.
The inputs can either come from arrays laid out linearly in
memory, or be produced by another operation which may be
looking at a different column of data. In some cases the bit
mask may be RLE compressed and must be decompressed
before being used by the selection unit. A common case
would have the bit mask coming from another operation and
the data column being read from memory. The output of the
operation is values from the input column that correspond
to the true bits in the bit mask, in the same order that they
appear in the original column. Like the input, the output
data can be streamed to another processing unit or written
sequentially into memory.

There are many ways to implement selection in software.
One efficient implementation fills a SIMD register with the
next values from the input column. A portion of the bit
mask is used as an index into a look up table which con-
tains indices for the SIMD shuffle operation to shuffle the
selected data to one end of the SIMD register. The re-
sulting SIMD register is written to the output array and
the output pointer is incremented by the number of valid
data elements that were written. This store is thus an un-
aligned SIMD memory access, which was added in SSE4,
and has little performance impact when writing to the L1
cache. These unaligned stores are used to incrementally fill
the output with compacted data. Parallel algorithms must
first scan through the bit mask counting bits to determine
the proper offset to begin writing each portion of the re-
sult. Once those offsets are calculated, the column can be
partitioned for multiple threads to work on in parallel.

Hardware to perform this selection is presented in Fig-
ure 1. We call the number of elements consumed each pass
through the hardware the “width” of the selection block.
Assuming a fully pipelined implementation, the bandwidth
of the block is fully determined by the width of the block
and the clock speed. A barrel shifter can be efficiently im-
plemented using multiple stages of multiplexors; however,
such large barrel shifters must be pipelined to achieve high
clock frequencies, so the datapath in Figure 1 was care-

Figure 2: Control logic for the selection unit.

fully designed to avoid feedback paths containing large bar-
rel shifters which would necessitate pipeline stalls. As is,
the only feedback path in the design is a very small addition
(with width log2(W)), allowing for a deeply pipelined design
to achieve a high clock rate.

The first step is to produce a word array in which all se-
lected words from the input are shuffled next to each other
at one end of the array (in this case, the right side). A com-
binational logic block takes in a segment of the mask stream
and produces a count of the number of selected elements in
the segment, a bus of valid lines, and an index vector which
specifies which word should be selected for each position in
the shuffled word array.

For small input widths, this combination logic can simply
be implemented as a single ROM. Such a ROM would have
depth 2W . This is clearly not feasible for any realistic input
width. Using pure-combinational logic, such as a cascade
of leading-1-detectors, would also not be feasible for larger
input widths. We thus use smaller sections of the mask as
addresses into multiple smaller ROMs. So for example, in-
stead of using all 16 bits of a mask segment to address a
64k deep ROM, we can use each 4-bit nibble of the mask to
address four 16 element ROMs. It is then necessary to shift
the output of each ROM into the correct position of the final
index vector, based on the accumulated count from the ad-
jacent ROM. Figure 2 shows an implementation of this for
an input width of 16. This datapath has no feedback paths
and can thus be efficiently pipelined to achieve full through-
put. Decreasing the size of the ROMS and including more
of them results in lower total ROM space but higher latency
and more adders, barrel shifters, and pipeline registers.

Once the selected values are shuffled to the right side,
they are rotated left to a position indicated by the current
number of saved values ready to be output. Values in the
input that complete a full output are sent directly to the
output and values that will make up a partial output are
saved in registers. For example, if two values were previously
saved in the registers, and three values are selected in the
input, the input will be rotated right by two, such that the
lowest (furthest right) two values fill the left two positions in
the output, and the third input word is saved in the register
furthest to the right, ready to be added to selected values
from the next input.

2.2 Merge Join
The merge join operation takes two sorted columns of

fixed-width keys as input, each with an associated payload
column, and produces an output column which contains all
the keys that the two columns have in common, together
with the associated payload values. When there are dupli-
cate matching keys, the cross product of all payload values

152

Figure 3: Hardware to perform the merge join opera-

tion. The green lines exiting diagonally from each com-

parator encompass the key, both values, and the result

of the comparison.

are produced. For example, if there are four entries of a
key x in one input column, and six entries of x in the other
input, there will be 24 entries in the output with key x.

This operation can be performed in software by sequen-
tially moving through each input column and advancing the
pointer of the column with the lower value. When two keys
match, an output row is written to the output array and the
output pointer incremented. Care must be taken to handle
the case of multiple matching keys and produce the correct
cross-section output. The resulting code has a large number
of unpredictable branches that result in a very low IPC and
quickly becomes processor bound, not able to keep up with
the memory bandwidth available to even a single core.

Our hardware design to perform this operation is laid out
in Figure 3. The basic design is rather straightforward; all
combinations of a section of keys from each of two inputs
(“left” and “right”) are compared. An array of possible out-
put combinations with a bit mask indicating which should
be used is produced. This output can then be sent into the
selection unit from Section 2.1 to produce the actual output
rows. The highest value from each input is compared, the
input with the lower highest value is advanced, while the
same selection from the other input remains. This ensures
that any combination of input keys that could potentially
match are compared.

Complications arise, however, when the highest value of
each input selection is equal. In this case it is necessary
to buffer the keys from the left input and advance through
the left input until the highest keys no longer match. When
that happens, it is guaranteed that the highest right input
is lower than the highest left input, and the right input can
be advanced. Any values buffered are then replayed and
compared against the new selection from the right. When
the replay buffer is empty, execution continues as normal.

Because the number of comparators grows quadratically
with the width of input, it is difficult to implement hardware
with a wide input array. An optimization to help increase
the throughput of the design looks at a much wider selec-
tion of each input than the actual comparator grid. The in-
put is partitioned into sections that fit into the comparator
grid and the highest and lowest values are compared. Using
those comparisons, only those cross sections with potential
matches are sent into the comparator grid sequentially while
the others are skipped.

4 8 2 1 5 5 7 0

4 8 1 2 5 5 0 7

1 2 4 8 0 5 5 7

0 1 2 4 5 5 7

Figure 4: Sorting using a sort merge tree.

2.3 Sorting
Sorting an array, or column, of numbers has been and

will continue to be a very active area of research and is an
essential primitive operation in many application domains,
including databases. Quicksort based algorithms have tradi-
tionally been considered to have the best average case per-
formance among software sorting algorithms. However, re-
cent advances in both CPU and GPU architectures have
brought merge sort based algorithms, such as bitonic sort
and Batcher odd-even sort, to the forefront of performance
as they are able to exploit new architectures more effectively
and better utilize a limited amount of bandwidth [4, 15, 17,
9]. Satish et.al.[16] provide a comprehensive overview of
state of art sorting algorithms for general purposes CPU
and GPU processors.

We present here a dedicated hardware solution to perform
a merge sort entirely in hardware. The goal of this design
is to sort an in-memory column of values while streaming
the column to and from memory at full memory bandwidth
as few times as possible. Figure 4 depicts the essence of a
merge sort. We call the merge done at the individual node
a “sort merge”, which is distinguished from a “merge join”
presented in Section 2.2. To accomplish this we implement a
merge tree directly in hardware, stream unsorted data from
memory into the merge tree and write out sorted portions
of the column. Those sorted portions then become the in-
put to each input leaf of the merge tree again, generating
much larger sorted portions. This process is repeated until
the entire column is sorted. The number of passes required
through the tree is dependent on the width of the merge
tree. Thus, if the width of the tree is relatively large, the
number of passes required grows extremely slowly with the
size of the input table and very large tables can be sorted in
just two or three passes of the data.

Before we describe the design of the merge tree itself, we
first look at an individual node in the merge tree. The max-
imum throughput of data through the merge tree will be
ultimately limited by the throughput of data through the fi-
nal node at the bottom of the tree. Depending on the data,
other nodes of the tree can also become a bottleneck. For
example, if the far left input on a second pass contains all of
the lowest elements of the full column, then only the far left
branches of the tree will be used until the entire portion is
consumed. It is thus not practical to move only the lowest
single value of the two inputs of a node to the output. This
would result in the throughput of the tree being only one
element per cycle. Multiple values must be merged every
cycle.

Figure 6 gives a logical overview of how multiple values
from the input are merged at a time. Each iteration, the
lowest value of each input are compared and some number
of values, in this case four, are removed from the input queue

153

Figure 5: Sort merge unit. Note that for simplicity, ports to the same memory are separated.

with the lower lowest value. These four values are merged
with the highest four values from the previous iteration. The
four lowest values resulting from that merge are guaranteed
to be lower than any other value yet to be considered since
any values lower than the fourth would already have been
pulled in. The highest four values, however, may be higher
than and must therefore be fed back and merged with the
next set of input values. In this way, four values are pro-
duced and four values are consumed from one of the inputs
each iteration.

It is not necessary, however, to put a merge network like
that in Figure 6 at each node of the tree. Each level of
the tree need only supply values as fast as the level below
it can consume values. Thus, each level need only match
the throughput of the final node of the tree, which need
only match the write memory bandwidth to keep up with
memory. Figure 5 presents the hardware that encompasses
a single level of a merge tree, which we call a “sort merge
unit”. A data memory buffers the input data to the level. It
is only necessary to hold as a single value for each input leaf
to the level. The data memory is partitioned into “left” and
“right” data so that both inputs to a particular node can be
read at once, but each can be written separately. Another
memory holds the feedback data from the previous merge of
values for each node in the level. A valid memory holds a
bit for each input leaf to indicate that the data for that leaf
is valid, and a bit for each entry in the feedback memory.
These valid bits are blocked in chunks, so a single read or
write works on multiple values at once. Finally, a “request
sent” memory, which is blocked like the valid memory, holds
a single bit for each input leaf to indicate that a request has
been sent up the tree to fill the data for that leaf. Note that
there are no output buffers, as the outputs are buffered at
the next level in the tree.

We now describe three operations performed on a sort
merge unit: a push, a request, and a pop. A push, whose
data path is black in Figure 5, is performed when input
data comes from above the unit in the tree. First, the data
is written to the data memory, which is known to be invalid
because it was previously requested, and the valid and re-
quest outstanding blocks are read. The corresponding valid
bit is set and the request outstanding bit is cleared, and the
new blocks are written back. The new block of valid bits is
also sent down to the lower level along with the index. If

Figure 6: Merging multiple values at once.

nothing is being pushed in a particular cycle, a valid block
(determined by an internal counter) is still read and sent
down to the lower level, this is not shown in the figure and
prevents deadlock in some cases.

When the valid block and associated index are sent to
a sort merge unit, it initiates a request operation, which
follows the green data path in Figure 5. First, the level’s
own valid and request outstanding blocks corresponding to
the valid bits received are read. The incoming valid block,
which represent data valid at nodes above, and the local
valid and request outstanding blocks are examined to to find
invalid elements that have two valid parents and have not
been requested. One such element is selected, a bit for it is
set in the request outstanding memory, and the request is
sent up to the parent.

Finally, an incoming request from below results in a pop
operation, which follows the orange data path. Both data
values, the feedback data, and corresponding valid block are
read. The lowest values in each data buffer are compared.
The block with the lowest is sent to the merge network along
with the feedback data (if valid) and the valid bit corre-
sponding to the consumed leaf is cleared while the valid bit
for the feedback data is set. The lower values from the merge
network are sent to the next level to pushed and the higher
values are written back into the feedback memory.

As mentioned previously, the throughput of the entire
merge tree is limited by the throughput of the final node

154

Figure 7: High bandwidth sort merge unit.

in the tree. The design in Figure 5 works well when there
are plenty of inputs and outputs to fill the pipeline; merges
of multiple nodes in the level are happening simultaneously.
However, the final node of the tree has only two inputs.
That means that an entire iteration must complete before
the next merge can begin. It is thus insufficient for use in
the final nodes of the tree.

Figure 7 presents a higher bandwidth sort merge unit
which implements a single node of the tree, not an entire
level with multiple nodes like Figure 5. Instead of consum-
ing and merging a set number of values from one of the
inputs, shift registers are used to consume a variable num-
ber from each input and new values are shifted in as space
becomes available. Let W be the number of values to out-
put each iteration. Let Li and Ri be the values in the left
and right shift registers, respectively, with i ranging from 0
to 2W − 1. To determine the four lowest value from across
both shift registers, each Lx is compared with R(W−1−x) for
x between 0 and W − 1. The lower of the two in each case
is advanced to the sort network while the higher remains in
the shift register. For example, if L0 < R3, then at least
one from the left and no more than three from the right
are among the lowest, so L0 is necessarily one of the low-
est and R3 is necessarily not. Likewise for L1 and R2, L2

and R1, and L3 and R0. The number taken from each side
is counted and the shift register is shifted by that amount.
If there is enough free space in the shift register, an input
section is consumed, shifted, and stored into the correct po-
sition. The four lowest values are then sent into a full sort
network and passed down to the next level. A merge net-
work like that in Figure 6 is insufficient here since the input
is not necessarily split into two equally sized, already sorted
arrays.

The datapath in Figure 7 still has feedback paths which
prevent a pipelined implementation from being fully utilized;
the critical feedback path is a bit count, barrel shifter, and
2:1 multiplexor. This path is much shorter and grows much
less quickly as the width increases than the feedback path
of Figure 5 which include a full merge network.

Finally, Figure 8 shows the datapath for a full merge tree.
A “tree filler” block has the same interface as a sort merge
unit, but fulfills requests by fetching from DRAM. It contin-
ually sends blocks of “valid” bits which indicate that data is
still available for a particular input, turns requests from the
top level of the merge tree into DRAM requests, and turns

replies from DRAM into pushes into the top sort merge unit.
During the initial pass through the memory, the data for an
input can come from anywhere, so the input column is read
linearly and sent through a small initial bootstrap sort net-
work since the sort merge units expect blocks of sorted data
as input. To prevent very wide levels that make routing
more difficult, the top levels of the tree are split into four
sub-trees, which operate independently of each other. The
final two levels of the tree are the high bandwidth merge sort
unit to maintain the total throughput of the tree and merge
the output of the four lower bandwidth trees to produce a
single sorted output.

On passes after the initial pass through data, the tree
filler must obtain data from the particular sorted portion
that matches the tree input of the request. Depending on
the number of portions remaining to be merged, the tree
filler maps some number of inputs of the tree to each of
the remaining portions. For example, if the full tree is 16k
inputs wide and there are four portions remaining to be
merged, the first portion is mapped to the first 4k inputs,
the second to the next 4k, etc. This means that some values
of the portion are re-merged, but also has the effect of using
sections of the tree as an input buffer for each of the portions.
The fewer portions that remain to be merge, the larger the
“input buffer” for each portion is and the larger the requests
to DRAM can be. When the number of portions remaining
to be sorted is equal to the number of inputs to the tree,
only a single chunk of a portion can be requested at a time,
leading to inefficient use of the DRAM bandwidth. We see
the results of this in Section 3.3.

To support using portions of the merge tree as an input
buffer in subsequent passes, the tree filler keeps a bit mask of
tree inputs that it has received a request for. When enough
of the inputs mapped to a particular portion have been re-
quested, a single large request for the next values in that
portion are requested and all of the requests are fulfilled in
bulk.

2.4 Sort Merge Join
A full join operation is the same operation as a merge

join, described in Section 2.2, but does not require the input
columns to be sorted. Two main algorithms are most often
used to perform joins, a hash join and sort merge join [7]. A
hash join builds a hash table of one of the two input columns,
then looks each element of the other column up in the hash
table to find matches. Modern hash join implementation use
sophisticated partitioning schemes to parallelize the opera-
tion and utilize a processors cache hierarchy. A sort merge
join simply sorts both input columns then performs a merge
join on the sorted columns. Implementations leverage the
massive amount of research to improve the performance of
sorting.

Figure 8 shows how each of the three blocks previously de-
scribed can be combined to perform an entire sort merge join
in hardware. Two independent sort trees are used to sort
each of the two input columns. On the final pass through
each column, the sorted data is sent to the merge join block
instead of back to DRAM. The merge join output is sent to
the select block as before and only the result of the join op-
eration is written back into DRAM. The design also include
data paths that allow the sort, merge join, and select blocks
to be used independently of each other.

155

Figure 8: Full system block diagram and data paths.

Figure 9: Block diagram of prototyping platform
from Maxeler Technologies.

3. IMPLEMENTATION AND RESULTS
To prototype the design we used a system from Maxeler

Technologies described in Figure 9. This system features
four large Xilinx Virtex-6 FPGAs (XC6VSX475T). Each
FPGA has 475k logic cells and 1,064 36 Kb RAM blocks
for a total of 4.67 MB of block memory. Each FPGA is
connected to 24 GB of memory via a single 384 bit memory
channel capable of running at 400 MHz DDR, for a line speed
of 307.2 Gbps, or 38.4 GB/s per FPGA. This gives a total
line bandwidth between the FPGAs and memory of 153.6
GB/s, comparable to modern GPUs. The FPGAs are con-
nected in a line with connections capable of 4 GB/s in each
direction. For each design, we clocked the FPGA fabric at
200 MHz. Finally, each FPGA is connected via PCIe x8 to a
host processor which is two 2.67 GHz Xeon 5650s, each con-
taining 6 multi-threaded cores. These processor each have a
line memory bandwidth of 32 GB/s.

Our purpose in prototyping the design was not entirely
to determine the performance of the design, although we do
provide performance numbers. As long as the components
are able to match or exceed the memory bandwidth, the
performance is largely determined by the memory system of
the design, and thus many of the performance results are
as much a test of Maxeler’s memory system as they are of
the acceleration design. Our main purpose in building the
prototype was to drive the design using a real world imple-
mentation instead of what are often inaccurate simulations,
and to be able to determine the challenging issues that arise
as the hardware scales to higher bandwidths. Indeed, the
final designs we have presented are fairly different from the
original designs we came up with based on early simulations.

We chose the Maxeler platform for the large amount of
memory capacity and bandwidth available to the FPGAs;

we wanted to ensure that our prototype handled a sufficient
amount of bandwidth to prevent masking any scalability is-
sues. The largest performance bottleneck we faced using the
platform is the relatively narrow intra-FPGA links, which
prevented us from effectively emulating a single chip with
a full 153.6 GB/s of memory bandwidth. Thus, for all but
Section 3.4, we use a single FPGA, since using the narrow
intra-FPGA links skews the results in terms of the memory
bandwidth utilization.

Since many of the performance numbers are dominated
by the performance of the memory system on the Maxeler
platform, we also present percentage of the maximum mem-
ory throughput (by which we mean the line bandwidth of
the memory interface) as a metric of comparison. Since
our hardware is designed to scale with available bandwidth,
these percentages give an idea of how the design would per-
form with different memory systems. They also provide a
metric of comparison with previous work, as it is difficult to
make a true “apples-to-apples” comparison when the hard-
ware is so vastly different. We also give some intuition as to
how the resource requirements of each design will scale to
platforms with different memory bandwidths.

3.1 Selection
We implemented the software algorithm described in Sec-

tion 2.1 and optimized at the assembly language level. On
our system’s host processor, this implementation is able to
achieve a maximum throughput using 8 threads, with an
average throughput of 7.4 GB/s and 6.0 GB/s as the se-
lection cardinality moves from 0% to 100%. This corre-
sponds to 23.1% to 18.8% of the 32 GB/s maximum memory
throughput of the Xeon 5650. For reference, the STREAM
benchmark[10] also achieves the maximum bandwidth with
8 threads and is able to copy memory at a maximum speed of
11.8 GB/s1, about 36.8% of the line rate memory bandwidth
of the Xeon 5650. Results reported on the STREAM bench-
mark website [10] indicate that this utilization of maximum
memory bandwidth is typical for modern processors.

Our implementation uses three SIMD registers, one to
hold the data to be shuffled, one to hold the bit mask, and
one to hold the shuffle indices loaded from memory. Thus,
the lack of available SIMD registers accounts for the inabil-
ity of the processor to fully pipeline the selection process
and achieve the throughput of STREAM. The Xeon’s in our

1The STREAM benchmark reported 23.6 GB/s, but counts
bytes both read and written, or the “STREAM” method;
the number here is for the “bcopy” method, which counts
total bytes moved, which is more aligned with our use of
bandwidth in this work.

156

0 10 20 30 40 50 60 70 80 90 100

Cardinality (%)

0

5

10

15

20

25

T
h
ro

u
g
h
p
u
t

(G
B

/s
)

0

8

16

24

32

40

48

56

64

%
 o

f
L
in

e
 B

a
n
d
w

id
th

Figure 10: Measured throughput of the select block
prototype.

test system support 16 byte wide SIMD instructions; using
the 32 byte wide AVX2 integer instructions in the Haswell
processors we would expect better performance and a highly
tuned software selection algorithm to match the throughput
of STREAM.

The design in Section 2.1 maps almost directly to the
FPGA platform and we built a block that processes 72 64-
bit values per clock cycle, for a maximum throughput of 14.4
billion values per second, or 115.2 GB/s. This is much more
than the memory bandwidth available to a single chip; we
will see in Section 3.2 why we made it that wide.

Figure 10 shows the measured throughput of the proto-
type. Throughout Section 3, bandwidth numbers are mea-
sured as the number of input bytes processed per second 2.
We could alternatively use total number of bytes read and
written. This is pertinent here because a selection with car-
dinality of 0% transfers half the amount data as one with
cardinality of 100%. With a constant amount of memory
bandwidth that can be used for either reading or writing
data, the 100% case will take longer to execute, but would
have higher throughput if bytes both read and written were
counted. Counting only bytes read, the cardinality of 100%
case shows lower bandwidth since it takes longer to process
the same amount of input data. This explains the nearly
linear drop from 24.7 GB/s down to 17.8 GB/s as the cardi-
nality moves from 40% to 100%. Below 40% the limits of a
single port of the DRAM controller are reached and the full
line rate of the memory interface is not realized. At 100%
cardinality, the memory controller is more efficient with two
streams of data (in and out) and is able to utilize 93% of
the 38.4 GB/s of line bandwidth. This high utilization is
achieved because of the very linear nature of the data access
pattern and by putting the source and destination columns
in different ranks of the DRAM, preventing them from in-
terfering with one another.

At low cardinalities, the 24.7 GB/s achieved is 64.3% of
the 38.4 GB/s maximum memory throughput of the FPGA.
This represents a 2.8x increase in the memory bandwidth
utilization over the 23.1% utilization of the software, and
a 1.7x increase over the STREAM benchmark, which is as
high as any software implementation could possibly achieve.

We now look at the number of resources required to scale
the design. Figure 11 shows the resources used by the imple-
mentation as the width, and thus bandwidth, of the block

2Also note that “GB” is here is really gigabyte, not gibibyte,
making percentage of line bandwidth, which is also in GB,
not GiB, make sense

112 208 304 400 496 592 688 784 880 976 1072

Throughput (bytes/clock)

26 52 78 104 130 156 182 208 234 260

Throughput (GB/s @ 400 MHz)

0

5

10

15

20

25

C
o
u
n
t

(t
h
o
u
s
a
n
d
s
)

0

12

24

36

48

60

72

84

96

R
e
g
is

te
r

c
o
u
n
t

(t
h
o
u
s
a
n
d
s
)

ROM bits

16:1 mux

4:1 mux

registers

Figure 11: Amount of resources needed as the de-
sired throughput of the select block increases.

increases (note the different scale for registers and the other
components). We present throughput as bytes per clock
to decouple the results from any particular frequency, but
also present GB/s at 400 MHz for reference. The range in
throughput represents the range in width from 8 to 144 64-
bit words. In choosing the number of stages used in the
initial shuffle control (see Section 2.1), we experimentally
found a good number of stages to use is W/4, where W is
the width in words of the selection block.

Note that the numbers in Figure 11 present resources at
the bit level. So a multiplexor that select between 4 64-
bit words requires 64 4:1 multiplexors. For convenience, we
lump 2:1 multiplexors in with 4:1 multiplexors and 8:1 mul-
tiplexors in with 16:1 multiplexors. Any multiplexor wider
than 16 inputs is split into multiple stages to ease routing
congestion and maintain clock speed. The swap that occurs
at 496 bytes/block (or 62 to 68 words) results from the sec-
ond stage of an 68:1 multiplexor requiring 16:1 multiplexors
instead of the 4:1 second stage of smaller widths (W/16 > 4
when W > 64).

The most dramatic increase in resources as throughput
increases comes from the number of registers. This results
from the additional pipeline stages needed as the width in-
creases. In addition to addition stages in the shuffle mul-
tiplexor and barrel shifter, we added duplicate registers to
reduce fanout for each 16 inputs to help with the routing on
the FPGA.

3.2 Merge Join
The prototype of the design presented in Section 2.2 is de-

signed to merge two streams of elements composed of 32-bit
keys and 16-bit values. Because of the high demand for rout-
ing resources, the structure did not map well to the FPGA
fabric and we were able to achieve a block with a width of
eight words for each input. The output combinations, which
are a 32-bit key and two 16-bit values, and equality bit vec-
tor are sent into a selection block, which is wide enough to
accept all 64 64-bit inputs.

The throughput of the prototype for varying amounts of
output vs the input table size is presented in Figure 12.
The line labeled “m=1” is the raw comparison grid without
the optimization of not examining unnecessary cross sec-
tions. The other line, “m=8” shows the throughput for look-
ing at 8 chunks of each input and only actually comparing

157

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3

Output ratio

0

2

4

6

8

10

12

T
h
ro

u
g
h
p
u
t

(G
B

/s
)

0

4

8

12

16

20

24

28

%
 T

o
ta

l
L
in

e
 T

h
ro

u
g
h
p
u
t

m=1

m=8

Figure 12: Throughput of the merge join prototype.

chunks with potential matches. The output ratio is the size
of the output compared to the input table size (which is two
equally sized tables). The keys are uniformly distributed
within a range that is changed to vary the output ratio.

At low output ratios, the throughput is contrained by the
throughput of the hardware block itself (eight six byte values
at 200 MHz is 9.6 GB/s). As the output ratio increases, it is
necessary to “replay” portions of the input more often (see
Section 2.2) and the throughput decreases. Above a ratio of
1.5 (i.e. the output is 1.5 times the size of the input), the
throughput is entirely limited by the write memory band-
width. We looked at non-uniform distributions, but saw no
variance in the throughput for any given output ratio. Most
skewed data, such as data with a Zipf distribution used in
the literature, produced a very large amount of output and
were all limited by the write memory bandwidth.

We do not plot the required resources for the merge join
block because it is dominated entirely by the comparators
and routing resources and is simply a quadratic function of
the bandwidth required. To consume N values from either
input every cycle required N2 comparisons. Higher band-
width could be obtained by replicating the merge block and
partitioning the data, but doing so is left for future work.

3.3 Sorting
Section 2.3’s implementation handles 12 64-bit values ev-

ery other 200 MHz cycle, providing a maximum throughput
of 19.2 GB/s, which is able to keep up with the memory
bandwidth of an individual FPGA (assuming a column is
being read and written). One of the major challenges faced
in implementing the low bandwidth merge sort unit was the
number of memory ports needed. In particular, it was nec-
essary to access five different addresses of the valid memory
in any given cycle. The local memories on the FPGA have
two full RW ports. To solve the issue we duplicated each
valid memory and time multiplexed the ports, alternating
between reading and writing (thus handling a new input ev-
ery other cycle). Table 1 details how each port was used to
achieve a virtual 5-port memory. Note that each copy must
perform the same operation on the write cycle to maintain
coherent duplication.

All the other structures mapped directly to the FPGA
logic. To maintain 19.2 GB/s through the entire tree, the
three high bandwidth sort merge units at the bottom of the
tree were built to accept 24 values every four cycles to ac-
commodate the feedback path. The most challenging aspect
was getting the control for the fine grained communication

Memory Port Read Cycle Write Cycle

valid copy 1
A Read for push Write for push
B Read for pop Write for pop

valid copy 2
A Read for request Write for push
B Idle Write for pop

request
outstanding

A Read for push Write for push
B Read for request Write for request

Table 1: Memory port usage in sort merge unit.

3
7

5
K

7
5

0
K

1
.5

M

3
M

6
M

1
2

.5
M

2
5

M

5
0

M

1
0

0
M

2
0

0
M

4
0

0
M

8
0

0
M

1
.6

B

3
.2

B

6
.4

B

1
2

.5
B

2
5

B

5
0

B

Size of Input

0

200

400

600

800

1000

1200

M
il
li
o
n
 v

a
lu

e
s
 p

e
r

s
e
c
o
n
d

0

1

2

3

4

5

6

7

8

9

10

T
h
ro

u
g
h
p
u
t

(G
B

/s
)

0

2

4

6

8

10

12

14

16

18

20

22

24

%
 o

f
L
in

e
 B

a
n
d
w

id
th

2 passes

3 passes

3 passes (projected)

Figure 13: Throughput of the sort tree prototype.

between levels correct. As an example, the pop operation
is pipelined to take six cycles: 1) start the read of data
and valid blocks; 2) decode the index; 3) start the read
of the feedback data; 4) the reads complete, compare the
data; 5) multiplex the data based on the comparison result;
6) merge decoded index with read valid blocks, update the
valid block, and send the feedback data and selected data
to the merge network. At every other pipeline stage the in-
dex being pushed is compared with the incoming index and
if the two fall within the same block, the decoded index,
which indicates the valid bit to set, is updated and the in-
coming push is considered complete. The pipelines for the
request and push operations are similar.

The memories on the FPGA provided enough space for
12 levels in the merge tree, with a top level 8k inputs wide.
The data buffering alone for the merge tree (including the
feedback data) occupied 18.6 Mbits, or 50%, of the 37.4
Mbits of block ram available on the device.

Figure 13 shows the throughput of the prototype as the
size of the input column grows. Note that when performing
two passes over the entire data set, the theoretical maxi-
mum throughput is one quarter of the maximum memory
throughput (each value needs to be both read and written
twice), or 9.7 GB/s in our case. At small input sizes, we
achieve 8.7 GB/s, which is 22.7% of the maximum memory
bandwidth, or 89% of the theoretical maximum with two
passes. This high utilization is possible because there are
fewer partially sorted portions to merge in the second pass
and as a result each portion has a large virtual input buffer
and the requests to memory can be large (see Section 2.3).
For reference, recent work on sorting values on both CPUs
and GPUs achieved rates as high as 268 million 32-bit values
per second [16]. This corresponds to 1 GB/s of throughput,
which is 3.9% of the 25.6 GB/s available to the Core i7 used
(GPU performance was worse). We thus see a 5.7x improve-
ment in terms of memory bandwidth utilization.

158

17 19 21 23 25 27 29 31 33 35

Input Size in bytes (log2)

16

18

20

22

24

26

28

30

M
e
m

o
ry

 b
it

s
 (

lo
g
2
)

Figure 14: Memory bits required to achieve optimal
throughput for a given input size. Note the log/log
scale.

As the size of the input increases, the number of portions
that must be merged on the second pass increases and the
size of the requests to memory decrease. At an input size
of 25M values, the memory requests are too small to fully
utilize the memory bandwidth and performance begins to
degrade. When the input size reaches 400M values, there are
enough portions in the second pass that it is advantageous
to perform a third pass. In this case, the portions from
the first pass are partitioned into groups small enough that
large memory requests can be used. Above 800M values,
there was insufficient memory to hold both the input and
output columns, we therefore projected the performance for
larger columns using predictions based on the throughput
seen on the second pass of smaller columns.

Unlike the previous sections, the interesting resource met-
ric is not how the resource usage grows with desired band-
width, but how the resource usage grows with input size,
keeping bandwidth constant. A very small merge tree could
maximize bandwidth for small inputs, but performance would
rapidly decrease as input size grows. For example, our pro-
totype was able to use the maximum amount of memory
bandwidth until the input was over 12.5 million values. To
see where this limit comes from, let N be the size of the
input, in bytes, and let W be the width of the top level of
the tree in bytes (in our prototype W = 8k ∗ 12 records ∗
8 bytes/record = 786432 bytes). The number of portions
left after the first pass through the data is L = N/W and
the maximum size of each read on the second pass is W/L,
or W 2/N . If the minimum read size for optimal memory
throughput is M , the maximum input size that achieves
optimal memory performance is W 2/M . For the Maxeler
platform, M is measured to be 6144 bytes, which gives a
maximum size of 100 MB, or 12.5M 64-bit values. Likewise,
W must be

√
M ∗N for a table of size N to fully utilize the

memory bandwidth on the second pass. Figure 14 provides
the number of memory bits needed to achieve maximum
memory bandwidth efficiency for given input sizes, provided
a minimum read size of 6144 bytes.

To obtain the highest throughput possible using our plat-
form, we tested a prototype where one quarter of the input
column was split onto FPGAs 0 and 2, while the remaining
three quarters were put on FPGA 1. With this configura-
tion, the two smaller portions were individually sorted then
streamed to the FPGA with the bulk of the data, and we
achieved a throughput of 1.4 billion values per second, or
11.2 GB/s. With the narrow intra-FPGA links in play, this
is a much lower percentage of the memory bandwidth avail-
able to the three chips used (9.7%).

System Clock Throughput/ % of BW
Freq Mem BW (GB/s)

Multi FPGA 200 MHz 6.45 / 115.2 5.6%
Single FPGA 200 MHz 6.25 / 38.4 16.3%
Kim [7] (CPU) 3.2 GHz 1 / 25.6 3.8%
Kaldewey [6] (GPU) 1.5 GHz 4.6 / 192.4 2.3%

Table 2: Summary of sort merge join results.

Figure 15: Full multi-FPGA join process. Each table
is first sorted separately on the respective FPGA.
Finally, both tables are sent to the FPGA containing
the merge join block to be merged.

3.4 Sort Merge Join
Finally, we combine the selection, merge join, and sort-

ing blocks to prototype the full design in Figure 8. The
resources of a single FPGA were too constrained to fit all
three blocks on a single FPGA, so we put the merge join
and selection blocks on one FPGA and sort trees on the
two adjacent FPGAs. Figure 15 outlines the process used
to perform a full join. Each of the columns to be joined is
held entirely on a seperate FPGA. Each table is individually
sorted, except the output of the sort tree on the final pass
is sent across the intra-FPGA links to the merge join block
described in Section 3.2. These blocks are sufficiently wide
to keep up with the bandwidth of the intra-FPGA links.
Since the first sorting pass through the table has a constant
throughput limited by the memory bandwidth, and the sec-
ond and final pass through the data is limited by the intra-
FPGA link, the end-to-end throughput of the whole design
is a consistent 6.45 GB/s across all table sizes and output
cardinality, or just over 800 million key/value pairs a second.
This is slightly under the aggregate intra-FPGA bandwidth
of 8 GB/s due to the initial pass through the data for sort-
ing. The achieved 6.45 GB/s is 5.6% of the 115.2 GB/s of
memory bandwidth available to the three chips. This lower
utilization is due to the narrow intra-FPGA links.

If all three blocks were able to fit on a single chip, the
second pass through the data would be constrained by the
throughput of the merge-join block. In this case, the end-
to-end throughput would be 6.25 GB/s, which is lower abso-
lute throughput than the multi-FPGA design due to using
only one FPGA’s memory bandwidth, but is 16.3% of that
FPGA’s maximum memory throughput.

Table 2 summarizes our results and compares with other
recent work on join processing. In Kim et. al.’s work [7],
they used a Core i7 965 with 25.6 GB/s to achieve a join
throughput of 128 million 64-bit tuples per second, or 1
GB/s and 3.9% of memory bandwidth. Our multi-FPGA
design achieved a 40% increase over this utilization, and
a single-chip design would provide a 4.1x increase in uti-
lization. More recent work by Kaldewey et. al. [6] uses a
GTX 580 GPU with 192.4 GB/s of memory bandwidth to
achieve 4.6 GB/s of aggregate throughput. These results

159

used UVA memory access over a PCIe link since their ex-
periments showed that the computational throughput of the
GPU was less then the PCIe data transfer throughput. This,
even if the tables were contained in device memory, the join
throughput would remain at 4.6 GB/s, or 2.3% of memory
bandwidth of the device.

4. RELATED WORK
There has been a growing interest in using dedicated accel-

eration logic to accelerate database operations, specifically
using FPGAs as an excellent platform to explore custom
hardware options. Mueller et.al. proposed an FPGA co-
processor that performs a streaming median operator which
utilizes a sorting network [12]. This work performs a dif-
ferent operation and is directed at much smaller data sets
and lower bandwidths than our work. In their design, it was
only necessary to have single merge unit that data flowed
through, sorting small eight word blocks in a sliding win-
dow independent of each other. Our design incorporates
a full sorting tree that has many merge units coordinating
the sorting of the entire memory stream. This same team
has also proposed Glacier, a system which compiles queries
directly to a hardware description [11, 13]. This is com-
plimentary to our work as it looks at ways to incorporate
accelerators into an overall database system.

Koch and Torrenson also propose an architecture for sort-
ing numbers using FPGAs [8]. The design in this work has
similarities to the sorting implementation presented here;
however, they were constrained to a system with much lower
memory bandwidth and capacity and thus achieve results on
the order of 1 to 2 GB/s of throughput. They do not discuss
scaling their results to higher bandwidths, which requires
fundamental design changes as illustrated in our work. Our
work builds on top of this work by presenting new designs
that make use of a modern prototyping system with a large
amount of memory capacity and bandwidth.

Researchers at IBM proposed an architecture to accelerate
database operations in analytical queries using FPGAs [18].
Their work focuses on row decompression and predicate eval-
uation and concentrates on row based storage. Netezza, now
part of IBM, provides systems that use FPGA based query
evaluators that sit between disks and the processor [14]. Like
Glacier, this work is complimentary and shows the possibil-
ities of incorporating accelerators like those presented here
into real database systems.

5. CONCLUSION
In this work we have presented three new hardware de-

signs to perform important primitive database operations:
selection, merge join, and sorting. We have shown how
these hardware primitives can be combined to perform an
equi-join of two database tables entirely in hardware. We
described an FPGA based prototype of the designs and dis-
cussed challenges faced. We showed that our hardware de-
signs were able to obtain close to ideal utilization of avail-
able memory bandwidth, resulting in a 2.8x, 5.7x, and 1.4x
improvement in utilization over software for selection, sort-
ing, and joining, respectively. We also present the hardware
resources necessary to implement each hardware block and
how those hardware resources grow with bandwidth.

6. ACKNOWLEDGEMENTS
This research is supported by DARPA Contract, SEEC:

Specialized Extremely Efficient Computing, Contract # HR0011-
11-C-0007; Army contract AHPCRC W911NF-07-2-0027-1;
NSF grant, SHF: Large: Domain Specific Language Infras-
tructure for Biological Simulation Software, CCF-1111943;
Stanford PPL affiliates program, Pervasive Parallelism Lab:
Oracle, AMD, Intel, NVIDIA, and Huawei. Authors also ac-
knowledge additional support from Oracle and the Maxeler
University Program.

7. REFERENCES
[1] M. Bauer, H. Cook, and B. Khailany. CudaDMA:

optimizing GPU memory bandwidth via warp
specialization. In High Performance Computing,
Networking, Storage and Analysis, SC ’11.

[2] S. Borkar and A. A. Chien. The future of microprocessors.
Commun. ACM, 54(5):67–77, May 2011.

[3] S. Borkar, T. Karnik, S. Narendra, J. Tschanz,
A. Keshavarzi, and V. De. Parameter variations and impact
on circuits and microarchitecture. In Design Automation
Conference, June 2003.

[4] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy,
M. Hagog, Y.-K. Chen, A. Baransi, S. Kumar, and
P. Dubey. Efficient implementation of sorting on multi-core
SIMD CPU architecture. Proc. VLDB Endow., August
2008.

[5] A. A. Chien, A. Snavely, and M. Gahagan. 10x10: A
general-purpose architectural approach to heterogeneity
and energy efficiency. Procedia Computer Science,
4(0):1987 – 1996, 2011.

[6] T. Kaldewey, G. Lohman, R. Mueller, and P. Volk. GPU
join processing revisited. In Workshop on Data
Management on New Hardware, DaMoN ’12.

[7] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen,
N. Satish, J. Chhugani, A. Di Blas, and P. Dubey. Sort vs.
hash revisited: fast join implementation on modern
multi-core CPUs. Proc. VLDB Endow., August 2009.

[8] D. Koch and J. Torresen. FPGASort: a high performance
sorting architecture exploiting run-time reconfiguration on
fpgas for large problem sorting. In Field Programmable
Gate Arrays, FPGA ’11.

[9] N. Leischner, V. Osipov, and P. Sanders. GPU sample sort.
In Parallel Distributed Processing, IPDPS ’10.

[10] J. D. McCalpin. STREAM: Sustainable memory bandwidth
in high performance computers.
http://www.cs.virginia.edu/stream/.

[11] R. Mueller, J. Teubner, and G. Alonso. Glacier: a
query-to-hardware compiler. In Conference on Management
of data, SIGMOD ’10.

[12] R. Mueller, J. Teubner, and G. Alonso. Data processing on
FPGAs. Proc. VLDB Endow., August 2009.

[13] R. Mueller, J. Teubner, and G. Alonso. Streams on wires: a
query compiler for FPGAs. Proc. VLDB Endow., August
2009.

[14] Netezza. The Netezza FAST engines framework.
[15] N. Satish, M. Harris, and M. Garland. Designing efficient

sorting algorithms for manycore GPUs. In Parallel
Distributed Processing, IPDPS ’09.

[16] N. Satish, C. Kim, J. Chhugani, A. D. Nguyen, V. W. Lee,
D. Kim, and P. Dubey. Fast sort on CPUs and GPUs: a
case for bandwidth oblivious SIMD sort. In Conference on
Management of data, SIGMOD ’10.

[17] E. Sintorn and U. Assarsson. Fast parallel GPU-sorting
using a hybrid algorithm. Journal of Parallel and
Distributed Computing, 68(10), 2008.

[18] B. Sukhwani, H. Min, M. Thoennes, P. Dube, B. Iyer,
B. Brezzo, D. Dillenberger, and S. Asaad. Database
analytics acceleration using FPGAs. In Parallel
Architectures and Compilation Techniques, PACT ’12.

160

