PERVASIVE
PARALLELISH
LABORATORY [

Hardware Acceleration of Database
Operations

lared Casper and Kunle Olukotun

Pervasive Parallelism Laboratory

Stanford University

g . mﬁﬁfﬁ’?ﬁsﬁzﬁl_
ww Database machines BORATR =

m Database machines from late 1970s
m Put some compute on the disk track/head/unit
m Processors got faster, |/O performance did not

m Processor could keep up with disk

= No performance left on the table
m Today's database machines
= Made up of general purpose components
= Massive amounts of memory
= Very high speed interconnect

m Tables, even databases, fit entirely within memory

m Database Ope ration PERVASE
(%j PIRALELSH m_

©) Acceleration ABORATORY

m Processors can not keep up with memory

= Join performance is at 100s of million tuples per
second

m 64-bit tuples — 2-3 GB/s
= Chips can get over 100 GB/s
m Performance is being left on the table

m Follow 10x10 rule, build accelerators

m Three acceleration blocks
= Selection, merge join, sort
= Combine these to do a sort merge join
m Goal is to “keep up with memory”

@ PERVASIVE
; 3 PARALLELISM
e Select LABORATORY i

1Ol I 1 00|
> CFEBE
CAFEBABE
m Software implementation uses SIMD

m Read data into SIMD register

m Use SIMD shuffle operation to move selected data to
one end of the register

= Mask used as index into table for shuffle values
= Unaligned write to append to output
= Limited by SIMD width, number of SIMD registers

PERVASIVE
PARALLELISH .
LABORATORY [

mask in

overflow

data out data valid

((? mgﬁfﬁ’?ﬁsﬁzﬁf_
< Me rge J oin ABRATER =

m Scan two sorted columns, output matching
values

= Can have associated values or record IDs
m Output cross product when multiple values

m Generally viewed as the “free” thing after sorting

= More an indication of how slow sorting is

m Software implementations have bad branching
behaviour

m Limits the IPC — hard to keep up with memory

% - ..
v Merge JOI n ABRATORY L

right
next R3 R2 R1 RO

T e —

1'/’1'5
l'/(' 1'/4' 4 T oAy
1|'/<|'/4|'/<|'/4

dll'.dll'.dll'.lll'

left next

o Output is bitmask of equal keys with corresponding values
O Ready for input into the select block

7

6 mEﬁﬂ'?ﬁ's‘ﬁB‘E[_
o) Merge Sort Je | =

SV VY
NS N

2nd | —
Pass \ /

01 2 4 5 5 7

Merge Sort Level

PERVASIVE
PARALLELIS
LABORATORY

o

reqs sent
read addr a

valid index in dout a

valid block in

valid ram

read addr a
read addr b
read addr ¢

i
—

dout a
dout b
dout ¢

pop index

push index in

hdata | mmm Write address
push data in

datain gata out left
read address .
data out right

feedback data

read addr

data out

request regs sent
data in a
control write address a

datain b

write address b

l m— read addrb doutb f

set & clear

bits

valid ram

write address a

e\
t

datain a

write address b
datain b

bi

feedback data

merge data in

network

r write address

request index

valid index out
valid block out

pop data

pop index

A ngh Bandwidth Sort PRASHE
B Morge Node HPPL

(%_‘3 . PAEEEE’[AS'S"&BﬁL
«J Sort Merge Join BRI L

Bootstrap
SQ rt

Sort Tree 2
Tree Filler J™{Sort MergeSort MergeSort Merge High BW
Tree Filler J{Sort Merge{Sort Merge}{Sort MergedSort Merge| |[High BW

Sort
Tree Filler J{Sort Merge}{Sort Merge){(Sort Mergeﬂ High BW || Merge

Tree Filler J{Sort Merge{Sort Merge){Sort Merge){Sort Merge

Sort Tree

0 Sort, merge join, and select blocks are combined to
perform an full sort merge join in hardware

% Prototyping Platform -
o

PERVASIVE
PARALLELSN - B
LABORATORY Lo

Maxeler
4GB 4GB
DRAM DRAM
I 38.4 GB/s I 38.4 GB/s
Xilinx RSByl Xilinx
SX475T SX475T

FPGA

2.67 GHz
Intel
Xeon 5650

24GB 24GB
DRAM DRAM
I 38.4 GB/s I 38.4 GB/s
Xilinx Xilinx
SX475T SX475T

Xeon 5650

PCle x8 Gen 2 (8 GB/s)

® mgﬁfﬁ’?ﬁ[svnﬁpﬁ(_
«J Select Th roughput BIRATR =

64
23 62
B e
=2 60 S
?\3 58 g
21 —
S/ 56 O
+ - ©
2 200 Memory System >4 m
L y y 52 Q
2 191 Saturated! ~50
| -
c - (@]
= 18 48 <
46
17 — L
44
16 I I I I I I I I I _42
0 10 20 30 40 50 60 70 80 90 100

Cardinality (%)

m Software achieved 7 GB/s (33%)
= STREAM achieved 12 GB/s (57%)

@%‘3 mgiﬂlﬁﬁ's"hﬁz‘ﬁ[_
«J Select Resources BIRATR =

Throughput (GB/s @ 400 MHz)

24 36 48 60 72 84 96 108 120 132
10 ob—L U

|

8 - g ROM bits
e] 6:1 MuXx
e 4:] MUX

—— registers

Count (thousands)

T T | | | | | | | | | | |
64 88 112 136 160 184 208 232 256 280 304 328 352 376
Throughput (bytes/clock)

(! PERVASVE /
5 Merge Join Throughput P&RBA[WE E =

16

s @ m=3 [34 3
m -
) 30 O
5 12 28

o L
c 26 8
S g
5 10- 5
- 22 5
= . F
20 |,
8- g

I I I I I I I I

I
0 0.15 0.3 045 06 0.75 09 1.05 1.2 1.35 1.5
Output ratio

o Resources required is a quadratic function of desired bandwidth
o All in comparison logic, routing was the limiting factor
o Above |.5x output, write bandwidth dominates

O Throughput above is input consumed 15

PERVASIVE)
PARMLLELISH
Sort th roughput LAB[JRMDRYE l'i i

1600
) DASSES
el 3 passes

1400 e+ @+ 3 passes (projected)

©

c

®)

v

)

n

« 1200

)

o

n -

g1000

r_U 0...-..'

> 800 T

c .'.‘

Q2 :

= 600 .

= 'w

400 r— 11 1 T T T T T T T T T T T T 1

¥ ¥ 3 ¥ = = £ = X £ = =z @ o o o oD
L mm o n n o 9 o9 o o @ N & 1 W
m ~ ™ gnggggﬁmog

Size of Input

o Resources required is a linear function of desired input size
O Dominated by the memory required to hold working sets

7 Recent CPU/GPU numbers ~300M 32-bit values per second
16

% | ..
o Sort Me rge J oin AIRATR L

Table B Result Table A

24GB 24GB 24GB 24GB
DRAM DRAM DRAM DRAM
FPGA FPGA FPGA FPGA
Merge Merge Merge

Sort Join Sort Unused

Tree | HEJ» | Block | @M | Tree

m Performance limited by intra-FPGA link

m Total throughput is 800 million tuples/second
m ~6.5 GB/s

= 8x previous work on software joins

6 Pﬁﬁﬁﬁvﬁ%ﬁzﬁf\
@ Conc|usions LABORATORY Lo

m FPGAs can be used to saturate memory
bandwidth in ways that processors can not

m Make the most of every byte read

= In some cases, address bandwidth is just as important
as raw data bandwidth

m Scaling your design to high bandwidths can
greatly influence the architecture
» Think streaming

m Next step is to interact with the rest of the
system

PERVASIVE
PARALLELIS
LABORATORY

pPL

Questions?

