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m Database machines from late 1970s
m Put some compute on the disk track/head/unit
m Processors got faster, |/O performance did not

m Processor could keep up with disk

= No performance left on the table
m Today's database machines
= Made up of general purpose components
= Massive amounts of memory
= Very high speed interconnect

m Tables, even databases, fit entirely within memory
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m Processors can not keep up with memory

= Join performance is at 100s of million tuples per
second

m 64-bit tuples — 2-3 GB/s
= Chips can get over 100 GB/s
m Performance is being left on the table

m Follow 10x10 rule, build accelerators

m Three acceleration blocks
= Selection, merge join, sort
= Combine these to do a sort merge join
m Goal is to “keep up with memory”



@ PERVASIVE
; 3 PARALLELISM
e Select LABORATORY i

1Ol I 1 00|
> CFEBE
CAFEBABE
m Software implementation uses SIMD

m Read data into SIMD register

m Use SIMD shuffle operation to move selected data to
one end of the register

= Mask used as index into table for shuffle values
= Unaligned write to append to output
= Limited by SIMD width, number of SIMD registers
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m Scan two sorted columns, output matching
values

= Can have associated values or record IDs
m Output cross product when multiple values

m Generally viewed as the “free” thing after sorting

= More an indication of how slow sorting is

m Software implementations have bad branching
behaviour

m Limits the IPC — hard to keep up with memory
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o Output is bitmask of equal keys with corresponding values
O Ready for input into the select block
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0 Sort, merge join, and select blocks are combined to
perform an full sort merge join in hardware
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Maxeler
4GB 4GB
DRAM DRAM
I 38.4 GB/s I 38.4 GB/s
Xilinx RSByl Xilinx
SX475T SX475T

FPGA

2.67 GHz
Intel
Xeon 5650

24GB 24GB
DRAM DRAM
I 38.4 GB/s I 38.4 GB/s
Xilinx Xilinx
SX475T SX475T

Xeon 5650

PCle x8 Gen 2 (8 GB/s)
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m Software achieved 7 GB/s (33%)
= STREAM achieved 12 GB/s (57%)
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Throughput (GB/s @ 400 MHz)
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o Resources required is a quadratic function of desired bandwidth
o All in comparison logic, routing was the limiting factor
o Above |.5x output, write bandwidth dominates

O Throughput above is input consumed 15
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Size of Input

o Resources required is a linear function of desired input size
O Dominated by the memory required to hold working sets

7 Recent CPU/GPU numbers ~300M 32-bit values per second
16
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Table B Result Table A

24GB 24GB 24GB 24GB
DRAM DRAM DRAM DRAM
FPGA FPGA FPGA FPGA
Merge Merge Merge

Sort Join Sort Unused

Tree | HEJ» | Block | @M | Tree

m Performance limited by intra-FPGA link

m Total throughput is 800 million tuples/second
m ~6.5 GB/s

= 8x previous work on software joins
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m FPGAs can be used to saturate memory
bandwidth in ways that processors can not

m Make the most of every byte read

= In some cases, address bandwidth is just as important
as raw data bandwidth

m Scaling your design to high bandwidths can
greatly influence the architecture
» Think streaming

m Next step is to interact with the rest of the
system
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