
Hardware Acceleration of Database
Operations

Jared Casper and Kunle Olukotun

Pervasive Parallelism Laboratory
Stanford University

Database machines

n  Database machines from late 1970s
n  Put some compute on the disk track/head/unit
n  Processors got faster, I/O performance did not
n  Processor could keep up with disk

n  No performance left on the table

n  Today's database machines
n  Made up of general purpose components
n  Massive amounts of memory
n  Very high speed interconnect
n  Tables, even databases, fit entirely within memory

2

Database Operation
Acceleration

n  Processors can not keep up with memory
n  Join performance is at 100s of million tuples per

second
n  64-bit tuples → 2-3 GB/s
n  Chips can get over 100 GB/s
n  Performance is being left on the table

n  Follow 10x10 rule, build accelerators
n  Three acceleration blocks

n  Selection, merge join, sort
n  Combine these to do a sort merge join
n  Goal is to “keep up with memory”

3

Select

n  Software implementation uses SIMD
n  Read data into SIMD register
n  Use SIMD shuffle operation to move selected data to

one end of the register
n  Mask used as index into table for shuffle values

n  Unaligned write to append to output
n  Limited by SIMD width, number of SIMD registers

4

1 0 1 1 1 0 0 1

C F E B E

C A F E B A B E

Select

5

1011
7 6 5 4

Merge Join

n  Scan two sorted columns, output matching
values
n  Can have associated values or record IDs
n  Output cross product when multiple values
n  Generally viewed as the “free” thing after sorting

n  More an indication of how slow sorting is

n  Software implementations have bad branching
behaviour
n  Limits the IPC → hard to keep up with memory

6

Merge Join

7

¨  Output is bitmask of equal keys with corresponding values
¤ Ready for input into the select block

Merge Sort

8

4 8 2 1 5 5 7 0

4 8 1 2 5 5 0 7

1 2 4 8 0 5 5 7

0 1 2 4 5 5 7

1st
Pass

2nd
Pass

Merge Sort Level

9

High Bandwidth Sort
Merge Node

10

Sort Merge Join

11

¨  Sort, merge join, and select blocks are combined to
perform an full sort merge join in hardware

Prototyping Platform -
Maxeler

12

Select Throughput

n  Software achieved 7 GB/s (33%)
n  STREAM achieved 12 GB/s (57%)

13

0 10 20 30 40 50 60 70 80 90 100
Cardinality (%)

16

17

18

19

20

21

22

23

24

Th
ro

ug
hp

ut
 (G

B/
s)

42
44
46
48
50
52
54
56
58
60
62
64

%
 o

f L
in

e
Ba

nd
w

id
th

Memory System
Saturated!

Select Resources

14

64 88 112 136 160 184 208 232 256 280 304 328 352 376

Throughput (bytes/clock)

24 36 48 60 72 84 96 108 120 132
Throughput (GB/s @ 400 MHz)

0

2

4

6

8

10

Co
un

t (
th

ou
sa

nd
s)

ROM bits
16:1 mux
4:1 mux
registers

Merge Join Throughput

15

¨  Resources required is a quadratic function of desired bandwidth
¤  All in comparison logic, routing was the limiting factor

¨  Above 1.5x output, write bandwidth dominates
¤  Throughput above is input consumed

0 0.15 0.3 0.45 0.6 0.75 0.9 1.05 1.2 1.35 1.5
Output ratio

8

10

12

14

16
Th

ro
ug

hp
ut

 (G
B/

s)

18
20
22
24
26
28
30
32
34
36

%
 To

ta
l L

in
e

Th
ro

ug
hp

ut

m=1
m=2
m=3
m=8

Sort throughput

16

¨  Resources required is a linear function of desired input size
¤  Dominated by the memory required to hold working sets

¨  Recent CPU/GPU numbers ~300M 32-bit values per second

37
5K

75
0K

1.
5M 3M 6M

12
.5

M

25
M

50
M

10
0M

20
0M

40
0M

80
0M 1.
6B

3.
2B

6.
4B

12
.5

B

25
B

50
B

Size of Input

400

600

800

1000

1200

1400

1600

M
ill

io
n

va
lu

es
 p

er
 s

ec
on

d 2 passes
3 passes
3 passes (projected)

Sort Merge Join

17

n  Performance limited by intra-FPGA link
n  Total throughput is 800 million tuples/second

n  ~6.5 GB/s
n  8x previous work on software joins

Conclusions

n  FPGAs can be used to saturate memory
bandwidth in ways that processors can not
n  Make the most of every byte read
n  In some cases, address bandwidth is just as important

as raw data bandwidth

n  Scaling your design to high bandwidths can
greatly influence the architecture
n  Think streaming

n  Next step is to interact with the rest of the
system

18

Questions?

