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Database machines 

n  Database machines from late 1970s 
n  Put some compute on the disk track/head/unit 
n  Processors got faster, I/O performance did not 
n  Processor could keep up with disk 

n  No performance left on the table 

n  Today's database machines 
n  Made up of general purpose components 
n  Massive amounts of memory 
n  Very high speed interconnect 
n  Tables, even databases, fit entirely within memory 
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Database Operation 
Acceleration 

n  Processors can not keep up with memory 
n  Join performance is at 100s of million tuples per 

second 
n  64-bit tuples → 2-3 GB/s 
n  Chips can get over 100 GB/s 
n  Performance is being left on the table 

n  Follow 10x10 rule, build accelerators 
n  Three acceleration blocks 

n  Selection, merge join, sort 
n  Combine these to do a sort merge join 
n  Goal is to “keep up with memory” 
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Select 

n  Software implementation uses SIMD 
n  Read data into SIMD register 
n  Use SIMD shuffle operation to move selected data to 

one end of the register 
n  Mask used as index into table for shuffle values 

n  Unaligned write to append to output 
n  Limited by SIMD width, number of SIMD registers 
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Select 
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Merge Join 

n  Scan two sorted columns, output matching 
values 
n  Can have associated values or record IDs 
n  Output cross product when multiple values 
n  Generally viewed as the “free” thing after sorting 

n  More an indication of how slow sorting is 

n  Software implementations have bad branching 
behaviour 
n  Limits the IPC → hard to keep up with memory 
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Merge Join 
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¨  Output is bitmask of equal keys with corresponding values 
¤ Ready for input into the select block 



Merge Sort 
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Merge Sort Level 
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High Bandwidth Sort 
Merge Node 
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Sort Merge Join 

11 

¨  Sort, merge join, and select blocks are combined to 
perform an full sort merge join in hardware 



Prototyping Platform - 
Maxeler 
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Select Throughput 

n  Software achieved 7 GB/s (33%) 
n  STREAM achieved 12 GB/s (57%) 
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Select Resources 
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Merge Join Throughput 

15 

¨  Resources required is a quadratic function of desired bandwidth 
¤  All in comparison logic, routing was the limiting factor 

¨  Above 1.5x output, write bandwidth dominates 
¤  Throughput above is input consumed   
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Sort throughput 
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¨  Resources required is a linear function of desired input size  
¤  Dominated by the memory required to hold working sets 

¨  Recent CPU/GPU numbers ~300M 32-bit values per second 
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Sort Merge Join 
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n  Performance limited by intra-FPGA link 
n  Total throughput is 800 million tuples/second 

n   ~6.5 GB/s 
n  8x previous work on software joins 



Conclusions 

n  FPGAs can be used to saturate memory 
bandwidth in ways that processors can not 
n  Make the most of every byte read 
n  In some cases, address bandwidth is just as important 

as raw data bandwidth 

n  Scaling your design to high bandwidths can 
greatly influence the architecture 
n  Think streaming 

n  Next step is to interact with the rest of the 
system 
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Questions? 


