PERIASE |]
PIRALELEH
LIBRATRY

Building-Blocks for
Performance Oriented DSLs

Tiark Rompf, Martin Odersky
EPFL

Arvind Sujeeth, HyoukJoong Lee, Kevin Brown,

Hassan Chafi, Kunle Olukotun
Stanford University

DSL Benefits

Make programmers more productive

s Raise the level of abstraction
= Easier to reason about programs

= Maintenance, verification, etc

Performance Oriented DSLs

Make compiler more productive, too!

s Generate better code
= Optimize using domain knowledge

= Target heterogeneous + parallel hardware

DSLs under Development

m Liszt (mesh based PDE solvers)

= DeVito et al.: Liszt: A Domain-Specific Language for Building Portable
Mesh-based PDE solvers. Supercomputing (SC) 2011

= OptiML (machine learning)

= Sujeeth et al.: OptiML: An Implicitly Parallel Domain-Specific Language
for Machine Learning. International Conference for Machine Learning
(ICML) 2011

= OptiQL (data query)

= all embedded in Scala
m heterogeneous compilation (multi core cpu/GPU)
m good absolute performance and speedups

Common DSL Infrastructure

m Don't start from scratch for each new DSL
= [t's just too hard ...

m Delite Framework + Runtime

= See also Brown et al.: A Heterogeneous Parallel Framework for
Domain-Specific Languages. PACT'11

= This Talk/Paper: Building blocks |
that work together in new or
interesting ways

Focus on 2 things:

m #1: DeliteOps

= high-level view of common execution
patterns (i.e. loops)

narallelism and heterogeneous targets

m #2: Staging
= DSL programs are program generators
= move (costly) abstraction to generating stage

m Case study: SPADE app in OptiML

#1: DeliteOps

Heterogeneous Parallel
Programming

Today:

Performance
= heterogeneous
+ parallel

“fl Nvidia
Fermi

MPI
Cray
' Jaguar

Heterogeneous Parallel
Programming

Compilers
have not
kept pace!

Your favourite Java,
Haskell, Scala, C++
compiler will not
generate code for
these platforms.

Nvidia
Fermi

Cray
Jaguar

Programmability Chasm

Applications

Scientific
Engineering
Virtual
Worlds
Personal
Robotics
Data
informatics

Pthreads
OpenMP

Too many different programming models

Cray
Jaguar

DeliteOps

m Capture common parallel execution
patterns
= map, filter, reduce, ... join, bfs, ...

= Map them efficiently to a variety of
target platforms
= Multi core CPU, GPU

m Express your DSL as DeliteOps

= => Parallelism for free!

Delite DSL Compiler

Liszt OptiML
program program

v

Scala Embedding Delite Parallelism
Framework Framework

Intermediate Representation (IR)

Base IR Delite IR
\wi

\w/l
Generic Domain
Analysis & Opt. Analysis & Opt.

Code Generation

Delite Kernels Data Structures

Execution SR, €, (arrays, trees,

Cuda, MPI
Graph Verilog, ...) graphs, ...)

Delite Op Fusion

m Operates on all loop-based ops

= Reduces op overhead and improves locality
= Elimination of temporary data structures
= Merging loop bodies may enable further optimizations

= Fuse both dependent and side-by-side operations
= Fused ops can have multiple inputs + outputs

m Algorithm: fuse two loops if
= Size(loopl) == size(loop2)
= No mutual dependencies (which aren’t removed by fusing)

Delite Op Fusion

// begin reduce x47,x51,x11
var x47 = 0
var x51 = 0
var x11 = 0
while (x11 < x0) {

. val x44 = 2.0*x11
variance(xs: Rep[Array[Double]]) = val x45 = 1.0+x44

xs.map(square) / xs.length - square(me val x50 = x45%x45

X47 += X45

x51 += x50

val arrayl = Array.fill(n) { 1 => 1} x11 += 1

val array2 = Array.fill(n) { i => 2*i } }

val array3 = Array.fill(n) { i => arrayl(i) +|// end reduce

val x48 = x47/x0

val m = mean(array3) val x49 = println(x48)

val v = variance(array3) Vai ng = Xigixgg
val X = X X

val x54 = x52-x53
val x55 = println(x54)

def square(x: Rep[Double]) = x*x

def mean(xs: Rep[Array[Double]]) =
xs.sum / xs.length

println(m)
println(v)

3+1+(1+1) = 6 traversals, 4 arrays 1 traversal, 0 arrays

#2: Staging

How do we go from DSL source
to DeliteOps?

2 Challenges:

m #1: generate intermediate
representation (IR) from DSL code
embedded in Scala

m #2: do it in such a way that the IR is
free from unnecessary abstraction

= Avoid abstraction penalty!

DSL val v = Vector.rand(100)

Example rogram

printin("today’s lucky number is: ")
printin(v.sum)

DSL
interface

abstract class Vector[T]

def vector_rand(n: Repl[Int]): Rep[Vector[Double]]

DSL

imipl def infix_sum[T:Numeric](v: Rep[Vector[T]]): Rep[T]

case class VectorRand(n: Exp[Int]) extends Def[Vector[Double]

case class VectorSum[T:Numeric](in: Exp[Vector[T]])
extends DeliteOpReduce[Exp[T]] {
def func = (a,b) =>a+b
}
def vector_rand(n: Exp[Int]) = new VectorRand(n)
def infix_sum[T:Numeric](v: Exp[Vector[T]]) = new VectorSum(v)

= "Finally Tagless” / Polymorphic
embedding

= Carette, Kiselyov, Shan: Finally Tagless, Partially Evaluated: Tagless
Staged Interpreters for Simpler Typed Languages. APLAS’07/]. Funct.
Prog. 2009.

= Hofer, Ostermann, Rendel, Moors: Polymorphic Embeddings of DSLs.
GPCE’08.

= Lightweight Modular Staging (LMS)

= Rompf, Odersky: Lightweight Modular Staging: A Pragmatic
Approach to Runtime Code Generation and Compiled DSLs.
GPCE’10.

m Can use the full host language to
compose DSL program fragments!

= Move (costly) abstraction to the
generating stage

Example

= Use higher order functions in DSL
programs

= While keeping the DSL first order!

Higher-Order functions

val xs: Rep[Vector[Int]] = ...
printin(xs.count(x => x > 7))

def infix_foreach[A](v: Rep[Vector[A]])(f:
var i. Rep[int] =0
while (i < v.length) {
f(v(i))
|+=1
}
}

def infix_count[A](v: Rep[Vector[A]])(f: R
var c: Rep[int] =0

val v: Array[Int] = ...
varc=0
vari=0
while (i < v.length) {
val x = v(i)
if (x>7)
c+=1
|+=1
}
printin(c)

v foreach { x =>if (f(x)) c+=1}
C

}

Continuations

val u,v,w: Rep[Vector[Int]] = ...
nondet {
val a = amb(u)
val b = amb(v) .
while (...
val ¢ = amb(w) whilef()§{
require(a*a + b*b == c*c) i (){
pr?ntln("found:") pr.i.r;tln("found:")
Sl EN o) printin(a,b,c)
}
}

while (...) {

def amb[T](xs: Rep[Vector[T]]): Rep[T] @cps[R }
xs foreach k }
}

def require(x: Rep[Boolean]): Rep[Unit] @cps[Rep[Unit]] = shift { k =>
if (X) k() else ()
}

Result

m Function values and continuations
translated away by staging

m Control flow strictly first order

= Much simpler analysis for other
optimizations

Regular Compiler optimizations

= Common subexpression and dead
code elimination

m Global code motion

= Symbolic execution / pattern rewrites

Coarse-grained: optimizations can happen on
vectors, matrices or whole loops

In the Paper-:

= Removing data structure abstraction

m Partial evaluation/symbolic execution
of staged IR

m Effect abstractions

= Extending the framework/modularity

Case Study:
OptiML

A DSL For Machine Learning

OptiML: A DSL For Machine Learning

= Provides a familiar (MATLAB-like) language and
API for writing ML applications

= Ex. valc=a* b (a, bare Matrix[Double])

= Implicitly parallel data structures
= General data types: Vector[T], Matrix[T], Graph[V,E]
=« Independent from the underlying implementation

= Specialized data types: Stream, TrainingSet, TestSet,
IndexVector, Image, Video ..

=« Encode semantic information & structured, synchronized
communication

= Implicitly parallel control structures

= sum{...}, (0::end) {...}, gradient { ... }, untilconverged { ... }

= Allow anonymous functions with restricted semantics to be
passed as arguments of the control structures

Putting it all together: SPADE

Downsample:

L1 distances
between all 10°
events in 13D

space... reduce to
50,000 events

kernelWidth

val distances = Stream[Double](data.numRows, data.numRows){
(i,j) => dist(data(i),data(j))
}

for (row <- distances.rows) {
if(densities(row.index) == 0) {
val neighbors = row find { _ < apprxWidth }
densities(neighbors) = row count { _ < kernelWidth }
}
}

7|

SPADE transformations

val distances = Stream[Double](data.numRows, data.numRows){
(i,j) => dist(data(i),data(j))

for (row <- distances.rows) {
row.init // expensive! part of the stream foreach operation

if(densities(row.index) == 0) {

val neighbors = row find { _ < apprxWidth }
densities(neighpors)—=-+row—count—{——<+kernelWidth }

}

row is 235,000 elements
In one typical dataset —
fusing is a big win!

SPADE generated code

// FOR EACH ELEMENT IN ROW
while (x155 < x61) {

b

val x168 = x155 * x64
var x180 =0

// INITIALIZE STREAM VALUE (dist(i,j))
while (x180 < x64) {

val x248 = x164 + x180

// ...
b

// VECTOR FIND
if (x245) x201.insert(x201.length, x155)

// VECTOR COUNT

if (x246) {
val x207 = x208 + 1
x208 = x207

by
x155 +=1

From a ~5 line
algorithm
description in
OptiML

...to an efficient,
fused, imperative
version that
closely resembles
a hand-optimized
C++ baseline!

Impact of Op Fusion

)
E
-

c
2
o)

-

o

)

X
L
o

()]
N
©

£

=
®)
<

=
Ul

O
o w

|

mC++

m OptiML Fusing mOptiML No Fusing

™M
o

2
Processors

4

Experiments on larger apps

mOptiML ®C++

Normalized Execution Time

LBP

(2}

—
o
I v:

1CPU 2CPU 4CPU 8CPU 1CPU 2CPU 4CPU

o ®
‘ﬁ'H
<t ™M
Mm ™M
0 ©
I I
. . .l

1 CPU

2CPU 4CPU 8CPU

Experiments on ML kernels

m OptiML m Parallelized MATLAB ®mMATLAB + Jacket

1 CPU 2 CPU4 CPU 8 CPU CPU +
GPU

Normalized Execution Time

110.0 |
100.0

10.0
8.0
6.0
4.0
2.0
0.0

Naive Bayes

1 CPU 2CPU 4 CPU 8 CPU CPU +
GPU

K-means

s
o

1CPU 2CPU 4 CPU 8CPU CPU +
GPU

SVM

15.0
7.0
2.0

1.5
1.0
0.5
0.0

1 CPU 2 CPU 4 CPU 8 CPU CPU +
GPU

4.0
3.0
2.0
1.0
0.0

Linear
Regression

1CPU 2CPU 4 CPU 8CPU CPU +
GPU

RBM

1CPU 2CPU 4 CPU 8 CPU CPU +
GPU

Summary

= Performance oriented DSLs are a promising
parallel programming platform

= Capable of achieving portability, productivity, and
high performance

= Delite can simplify the task of implementing
DSLs

= OptiML outperforms MATLAB and C++ on a
set of well known machine learning
applications, with expressive code

Programming Language
Design Space

Performance

Productivity

Generality

Programming Language
Design Space

Performance

A

Productivity

Generality

General Purpose Languages

Performance

Performance
oriented
DSLs

Productivity

@ python %

Generality

DSLs Present New Problem

We need to develop all these DSLs

Current DSL methods are unsatisfactory

Current DSL Development Approaches

= Stand-alone DSLs
= Can include extensive optimizations
= Enormous effort to develop to a sufficient degree of maturity
=« Actual Compiler/Optimizations
= Tooling (IDE, Debuggers,...)
= Interoperation between multiple DSLs is very difficult

= Purely embedded DSLs = “just a library”
Easy to develop (can reuse full host language)
Easier to learn DSL
Can Combine multiple DSLs in one program
Can Share DSL infrastructure among several DSLs
Hard to optimize using domain knowledge
Target same architecture as host language

Need to do better

m DSLs: trade off generality for
productivity and performance

= DSL embedding:

= Combine benefits of pure embedding with
analyzability of external dsls

