
A Case of System-level HW/SW

Co-design and Co-verification of a Commodity

Multi-Processor System with Custom Hardware

Sungpack Hong*, Tayo Oguntebi, Jared Casper,

Nathan Bronson*, Christos Kozyrakis, Kunle Olukotun

Pervasive Parallelism Lab

Stanford University

* This work was done while the authors were at Stanford.

Trends in hardware design

 Moore‟s Law still in effect

 But no more free lunch…performance is no longer free

 Parallelism

 Due to limited clock frequency

 Many CPUs rather than a single super-fast one.

 Heterogeneity

 Due to limited power budget

 Specialized HW for a specific task

Questions Raised…

 This trend leads us to a system with …

 Multiple CPUs

 Custom HW units

 All working concurrently for a single program

 More than simple time-sharing

 Questions

 What does such a system look like?

 Do we have proper design/verification methodology
for such a system?

 If not, what are the issues?

 This is a case-study presentation to explore these
questions rather than to answer them.

Our system as a case study

 External hardware acceleration of software
transactional memory on commodity CPUs

 … wait, what?

 Several x86 CPUs

 Two sockets, each AMD quad core

 All running a single multi-threaded application

 Plus a custom HW

 A FPGA, attached coherently to CPUs

 Accelerating a special software library, called Software
Transactional Memory (STM)

 All working in parallel

 Okay then, what is STM?

Backgrounds: Transactional Memory

 Parallel programming is hard

 data races..

 Related issues: dead-lock, live-lock, …

 Transactional Memory (TM)

 A proposal to simplify parallel programming

 The programmer simply declares critical regions in the
program as transactions and puts all shared
reads/writes inside

 The runtime system (a.k.a. transactional memory)
detects all the runtime data races

 The runtime roll-backs conflicting transactions and thus
guarantees serialize-ability of the program execution.

TM Example: Programming

void money_transfer(int account[], int from,

 int to, int amount) {

 BEGIN_TX();

 int from_before = READ(account[from]);

 int to_before = READ(account[to]);

 int from_after = from_before – amount;

 int to_after = to_before + amount;

 WRITE (account[from], from_after);

 WRITE (account[to], to_after);

 END_TX();

}

Begin
transaction

Read shared
variables

Local
computation

Write shared
variable
computation

End
transaction Each transaction is guaranteed

to be “atomic”

TM Example: Runtime

Thread 1 Thread 2 Thread 3

TM
Runtime

(A C)

 Read A;
 Read C;
 ..
 Write A;
 Write C;

(B C)

 Read B;
 Read C;
 ..
 Write A;
 Write C;

(G F)

 Read G;
 Read F;
 ..
 Write G;
 Write F;

Each thread
runs its own
transaction

TM Runtime
detects data
race

TM Runtime
rolls back
conflicted TX

Back to our case

 Approaches in TM runtime implementation

 STM: all in SW  lots of overhead, slow

 HTM: all in HW  Requires CPU core modification

 … but you‟d rather avoid changing a commodity
core‟s RTL

 Our approach

 Part in HW, rest in SW (a hybrid approach)

 External custom HW

 Sits outside cores (on FPGA) via memory bus

 No core modification required

 External communication takes some time but we
know how to mitigate this!

Our idea in a nutshell

Core 1 Core 2 FPGA

1:Read A

1:Read C

1:Write A

1:Write C

2:Read C

Each core sends a
message to FPGA,
for each read/write.

1:Ok To
Commit?

1:OK

2:Rollback

AC CB

FPGA detects
violation and
sends
notification

“Wow, this is
so cool. Let’s
build this thing
already!”

+ Some ideas for
latency hiding on
the SW-side

+ Some ideas for
fast violation
detection on the
HW-side

Our initial co-design

 How to design a closely-coupled system?

 New HW

 New software library (STM) that uses the new HW

 Let‟s simulate it!

 Design HW/SW interface (i.e. communication protocol)

 with a cycle-based x86 ISS (Instruction-Set simulator)

 Custom HW  pure virtual model

 Develop the SW on top of simulation

 What about HW design?

 Do RTL design separately

 Find RTL bugs with unit test

 High-level protocol is already validated with simulation

And there we go …

 Our simulation was successful

 Our protocol works and is faster than
conventional STM

 We obtained a HW framework

 Two sockets, each with AMD quad-core

 An FPGA connected via HyperTransport®

 We implemented a coherent cache on FPGA*

 It was a (re-usable) part of our design

 We implemented the custom HW as we
designed

 All the unit tests are passed

 So we ran the whole system ….

 … And it didn‟t work

 Transactions were not atomic at all

* Another long story

What happened..? (In retrospect)

Core 1 Core 2 FPGA

1:Write C

2:Read C

1:Ok To
Commit?

2:Rollback

What we designed What actually happened

1:OK

Core 1 Core 2 FPGA

1:Write C

2:Read C

1:Ok To
Commit?

1:OK

Read happens here

The message delivery
has been delayed
(out of order)

FPGA can’t detect the
conflict (thinks it’s a
valid read-after-write)

How could we have missed that?

 Problems with our simulator

 We used a detailed x86 ISS

 All instructions included and some cache protocols.

 But the simulated interconnect was far from that of real
HW system…

 HyperTransport + external pin-out + FPGA …

 The simulation was in-order and deterministic

 no latency variance

 Problems with unit testing

 Cannot generate the complicated error sequence!

 Requires a lot of interaction with software

A Futile Resistance

 “Hey, we already have the FPGA implementation. Let‟s just
debug it (with a logic analyzer).”

 Problem

 The „time span‟ of a typical error is very long

 It is not clear when and how the problem happens

 i.e. Error not detectable by a simple trigger

 Logic analyzer gives a limited scope in time

Timeline

CPU1

CPU N

……

100s ~ 100,000s of transactions (ms ~ secs of time)

Each TX contains R
reads and W writes

Error, if fails to detect
a conflict between any
two TXs

The error is observed
much later at time;
without knowing when
the error has happened

Limited logic analyze
scope (order of us)

What do we need?

 Verification of a concurrent system

 Interleaving of parallel executions

 Out-of-order message delivery

 Many different interleaving in a short time (i.e. fast
execution)

 Resemblance to the actual system

 Actual HW (RTL) + Actual SW debugging preferred

 Minimum modification for verification

 Crucial features for verification

 Deterministic replay – the exact same interleaving
should be generated at will

 A better mechanism for bug finding than waveform view

 Easier log analysis, at least

Comparisons of Available Tools

Method Pros Cons

Prototyping • Target HW + SW
• Fast execution

• Limited visibility
• No deterministic replay

Full RTL sim.
(CPU + interconnection +
Custom HW)

• Target HW + SW
• Deterministic replay

• All RTL not available
• Too slow
• No variation of interleaving

Binary instrumentation
(i.e. PIN-based simulation)

• Target SW
• Fast execution

• No HW debugging
• No deterministic replay

Instruction-set sim.
+ RTL sim (or virtual HW)

• Target SW
• Deterministic replay

• No variation of interleaving

SW Model
+ network sim.
(Bus Functional Model)
+ RTL sim. (or virtual HW)

• Faster than ISS

• SW modification
• Variation of interleaving?
• Deterministic replay?

[Option 1] Modify x86 ISS
• Connect ISS with network sim (BFM) +
RTL sim
• Add various interleavings?

[Option 2] Modify Target SW
• Connect SW with BFM + RTL sim
• Add various interleavings
• Add deterministic replay

• Easier to do
(you know a lot more
about SW than simulator)
• Faster to run

ISS-based approach (illustration)
void foo(…){

 BEGIN_TX();

 int … = READ(…);

 local_compute();

 WRITE (…);

 END_TX();

}

User Program

Binary

void READ(…){

 HW_check_status();

 …

 some_processing();

 HW_send_msg(); … }

TM library

Compile

inline

int HW_check_status(…)

 return

 *FPGA_ADDR & bitmask;

}

HAL (HW Abstraction Layer)

ISS
Simulator
(CPU)

(cycle-based)

Network
Simulator
(HyperTransport)

(cycle-based)

RTL
Simulator
(Custom HW)

(event-based)

• Where / How do we add various interleavings,
i.e. which simulator do we want to modify?

• A lot of simulation overhead

Do we
need CPU
simulation
at all?

BFM-based approach (illustration)
void foo(…){

 BEGIN_TX();

 int … = READ(…);

 local_compute();

 WRITE (…);

 END_TX();

}

User Program

void READ(…){

 HW_check_status();

 …

 some_processing();

 HW_send_msg(); … }

TM library

inline

int HW_check_status(…)

 return

 BFM_SIM_Read(…) &

 bitmask;

}

NEW HAL

Network
Simulator
(HyperTransport)

(cycle-based)

RTL
Simulator
(Custom HW)

(event-based)

int BFM_SIM_Read(…){

 ……

 Network_Inject_packet(READ_REQ, …);

 ……

}

Bus Functional Model (BFM)
Simulator

• HAL is re-written to
invoke BFM
methods instead

BFM directly interacts with
the Network simulator

SW + BFM + Network simulator
linked together

Our BFM Simulator

 Deterministic Concurrency Control

 BFM itself is single-threaded

 BFM uses light-weight threads (i.e. fibers) to implement
user threads in the applications

 Contexts switch happens at network packet injection

int BFM_SIM_Read(…){

 ……

 Network_Inject_packet(…);

 Context_Switch(SIM);

 ……

}

void clock(){

 for (i = 1 .. N) {

 if (thread[i].isReady()) {

 Context_Switch(thread[i]);

 …

 }

}

Network
Simulator
(cycle-based)

Our BFM Simulator

 Fast execution

 All the local computations are natively executed

 No CPU simulation at all

 We only need software interacting with HW
simulation

 Do not waste simulation cycles for computation

…

x = READ(…)

Y =

 local_compute(Y);

WRITE (Y);

User Program

void WRITE(…){

 Some_processing();

 …

 HW_send_msg(…);

}

TM library

inline

int HW_send_msg(…)

 return

 BFM_SIM_WRITE_NC(…)

}

NEW HAL

All this local computation is executed natively,
without consuming a simulation cycle

Our BFM Simulator

 Variable interleaving of concurrent executions

 + Deterministic replay

 All the local computation happens at a cycle

 Actual packet delivery time is deterministic

 Insert random idle cycles before packet injection

 Not meant to compensate for computation time

 But inserts deterministic variation in concurrent executions

 Interleaving is dependent solely on random seed

 Deterministic re-play  use the same random seed

 int BFM_SIM_Read(…){

 BFM_Idle_Cycles(get_random());

 Context_Switch(SIM);

 …

 Network_Inject_packet(READ_REQ, …);

 Context_Switch(SIM);

}

Thread1

Thread N

Zero-cycle
computation

Random Idle
Cycles

Deterministic
Packet Delivery

Our BFM Simulator

 Convenient error analysis

 Logging at high-level

 at packet level, or

 at HAL level

 Automatic error detection

 Simulation = shared-memory, single threaded,
deterministic execution

 Each user thread can see what other threads are
doing

 Further modify STM

 Maintain a shadow data-structure that checks
conflicts on-line (only works for simulation)

Worked well for our case

 Fast simulation enabled many different interleaving of
concurrent executions in short time

 With this environment, we actually designed and debugged

 The Custom HW (RTL)

 The new SW (STM library)

 And the new communication protocol (system)

 All together

Environment Execution Time

Prototype HW
(1.8Ghz x86 + FPGA)

~ 10 ms

BFM + RTL sim ~ 15 mins

BFM + Virtual HW ~ 100 ms

ISS + Virtual HW ~ 100 mins

Small test-bench execution time
What we actually
used

•For comparisons.
•BFM uses much
less simulation
cycle

Generalization and Pitfalls

 Key insights

 SW modification is easier than simulator modification

 Local computation can be natively executed

 Only global communication is simulated via Network
simulation

 Caveat: Ease of SW modification

 Assumes that you can identify HW interface easily

 Assumes that you can distinguish local computation and
global communication (i.e. shared data access)

 Usually true

 Parallel SW designed with HAL and critical sections

 But you should check your SW…

 Not suitable for performance estimation

Requests for CAD Researchers

 Our approach was still ad hoc …

 Is there a more systematic solution?

 Part-wise selection of details of simulation

(e.g) Native SW execution (for local computation)

 + Detailed HW simulation (for custom HW design)

 + Detailed network simulation

 Randomizing variance of concurrent executions

 Should be deterministically re-playable

Summary

 Co-design and Co-verification for post Moore‟s
law era

 Parallelism and Heterogeneity

 Potential concurrency issues at design time

 Required Features

 Variable interleaving of concurrent executions

 Deterministic Replay

 Fast execution time + sufficient of visibility

 In our case study

 We used SW Model + BFM (interconnection) + RTL sim

 SW modification was easier than ISS improvement

 Hope there can be a generalized solution

Questions?

