A Case of System-level HW/SW
Co-design and Co-verification of a Commodity
Multi-Processor System with Custom Hardware

Sungpack Hong*, Tayo Oguntebi, Jared Casper,
Nathan Bronson®, Christos Kozyrakis, Kunle Olukotun

Pervasive Parallelism Lab
Stanford University

*This work was done while the authors were at Stanford.

Trends in hardware design

m Moore’s Law still in effect
= But no more free lunch...performance is no longer free

m Parallelism
= Due to limited clock frequency
= Many CPUs rather than a single super-fast one.

= Heterogeneity
= Due to limited power budget
= Specialized HW for a specific task

Questions Raised...

= This trend leads us to a system with ... /=
= Multiple CPUs
s Custom HW units
= All working concurrently for a single program
=« More than simple time-sharing
m Questions
= What does such a system look like?

= Do we have proper design/verification methodology
for such a system?

= If not, what are the issues?

m This is a case-study presentation to explore these
questions rather than to answer them.

Our system as a case study

m External hardware acceleration of software
transactional memory on commodity CPUs

= ... wait, what?

Several x86 CPUs

= Two sockets, each AMD quad core
= All running a single multi-threaded application

Plus a custom HW
= A FPGA, attached coherently to CPUs

= Accelerating a special software library, called Software
Transactional Memory (STM)

All working in parallel
Okay then, what is STM?

Backgrounds: Transactional Memory

= Parallel programming is hard
= data races..
= Related issues: dead-lock, live-lock, ...

m Transactional Memory (TM)

= A proposal to simplify parallel programming

= The programmer simply declares critical regions in the
program as transactions and puts all shared
reads/writes inside

= The runtime system (a.k.a. transactional memory)
detects all the runtime data races

= The runtime roll-backs conflicting transactions and thus
guarantees serialize-ability of the program execution.

TM Example: Programming

void money transfer (int account[], int from,
int to, int amount) {

Begin
BEGIN_TX() ; ~ transaction

int from before = READ(account[from]) ; Read shared
int to before READ (account [to]); variables

int from after = from before - amount; Local
int to after to_before + amount; computation

Y~ : ~
WRITE (account[from], from after); — Write shared

WRITE (account[to], to after); variable
computation
END TX () ;

} Vs End

- Each transaction is guaranteed transaction
Uo be “atomic”

TM Example: Runtime

{Each thread \\ [Thread 1 J [Thread 2] [Thread 3 J

runs its own
transaction

(GDF))

(A>C))

Read G;
Read F;

detects data Read A:
race Read C: /(B-) C) I

{TM Runtime

. | Write G;
wr!te é Read B; Write F;
rite C; ; |
. Read C;)
Sy Write A;
T Write C;

rolls back
conflicted TX

{TM Runtime

Back to our case

m Approaches in TM runtime implementation
= STM: all in SW = |lots of overhead, slow
= HTM: all in HW =» Requires CPU core modification

= ... but you’d rather avoid changing a commodity
core’s RTL

= Our approach
= Partin HW, rest in SW (a hybrid approach)
= External custom HW
= Sits outside cores (on FPGA) via memory bus
= No core modification required

= External communication takes some time but we
know how to mitigate this!

OUF |dea |n a ﬂUtShe” (Each core sends a

message to FPGA,
for each read/write.

+ Some ideas for

[Core 1] [Core 2] latency hiding on
the SW-side

[FPGA

~—

— A->C C->B

1:Read A
/

FPGAdetects) 1-Read ©

violation and
sends 1:Write A “Wow, this is

notification 1-Write C so cool. Let’s
- build this thing

| ftReadC

i}

1:0k To
Commit?

I

+ Some ideas for
fast violation 1:0K
detection on the
HW-side

|

\[Z:Rollback L

Our initial co-design

m How to design a closely-coupled system?
= New HW
= New software library (STM) that uses the new HW

m Let's simulate it!
= Design HW/SW interface (i.e. communication protocol)
with a cycle-based x86 ISS (Instruction-Set simulator)
s Custom HW =>» pure virtual model
= Develop the SW on top of simulation

= What about HW design?

= Do RTL design separately
= Find RTL bugs with unit test
= High-level protocol is already validated with simulation

And there we go ...

m Our simulation was successful

= Our protocol works and is faster than
conventional STM

We obtained a HW framework

= Two sockets, each with AMD quad-core

= An FPGA connected via HyperTransport®

We implemented a coherent cache on FPGA*
= It was a (re-usable) part of our design

We implemented the custom HW as we
designed

= All the unit tests are passed
So we ran the whole system

= ... And it didn't work
s Transactions were not atomic at all

* Another long story

What happened..? (In retrospect)

‘FPGA \ ‘Corel \ [COI‘GZ J

1:Write C

1:0k To
Commit?

1:0K

FPGA can’t detect the
conflict (thinks it's a
valid read-after-write)

\[Z:Rollback

What we designed

| Read happens here

‘FPGA \

|2:Read C | K

1:Write C

1:0k To
Commit?

1:0K

1

The message delivery

has been delayed
(out of order)

What actually happened

How could we have missed that’>

]
m Problems with our simulator “” i “*3_ -

= We used a detailed x86 ISS { . e
« All instructions included and some cache protocols.

s But the simulated interconnect was far from that of real
HW system...

« HyperTransport + external pin-out + FPGA ...
= The simulation was in-order and deterministic
= No latency variance

= Problems with unit testing

= Cannot generate the complicated error sequence!
= Requires a lot of interaction with software

A Futile Resistance

m "Hey, we already have the FPGA implementation. Let’s just
debug it (with a logic analyzer).”
m Problem
= The ‘time span’ of a typical error is very long
= It is not clear when and how the problem happens
= i.e. Error not detectable by a simple trigger

= Logic analyzer gives a limited scope in time

Th i)
: A\ e error is observed
Each TX contains R Error, if fails to detect } o much later at t|me’

reads and W writes | 5 conflict between any without knowing when
two TXs the error has happened

)

Limited logic analyze
scope (order of us)

]
1
! S
T
1
1

Timeline

100s ~ 100,000s of transactions (ms ~ secs of time)

What do we need? 902@

<>

N

m Verification of a concurrent system
= Interleaving of parallel executions
= Out-of-order message delivery

= Many different interleaving in a short time (i.e. fast
execution)

m Resemblance to the actual system
= Actual HW (RTL) + Actual SW debugging preferred
= Minimum modification for verification

m Crucial features for verification

= Deterministic replay - the exact same interleaving
should be generated at will

= A better mechanism for bug finding than waveform view
=« Easier log analysis, at least

Prototyping

Full RTL sim.
(CPU + interconnection +
Custom HW)

Binary instrumentation
(i.e. PIN-based simulation)

Instruction-set sim.
+ RTL sim (or virtual HW)

SW Model

+ network sim.

(Bus Functional Model)

+ RTL sim. (or virtual HW)

» Target HW + SW
* Fast execution

» Target HW + SW
« Deterministic replay

» Target SW
* Fast execution

» Target SW
» Deterministic replay

» Faster than ISS

* Limited visibility
* No deterministic replay
» All RTL not available

» Too slow
* No variation of interleaving

* No HW debugging
* No deterministic replay

—

« No variation of interleaving

* SW modification
« Variation of interleaving?
» Deterministic replay?

[Option 1] Modify x86 ISS

» Connect ISS with network sim (BFM) +
RTL sim

 Add various interleavings?

[Option 2] Modify Target SW

* Connect SW with BFM + RTL sim
» Add various interleavings

* Add deterministic replay

+ Easier to do
(you know a lot more

e Faster to run

about SW than simulator)

|1SS-based approach (illustration)

void foo (...) { void READ (..) { inline
BEGIN TX () ; HW check status(); int HW check status(..)
int .. = READ(..); return
local compute () ; some processing() ; *FPGA ADDR & bitmask;
WRITE (..); }
END_TX () ; HW_send msg(); .. }
} 4 4 4
User Progy’m TM library HAL (HW Abstraction Laye[)
= Y
Do we
. need CPU 4 -)
simulation * Where / How do we add various interleavings,
> atall? AN I.e. which simulator do we want to modify?
Binar : _
ary * A lot of simulation overhead

[l =]

Y4

ISS Network RTL -
Simulator Simulator DE: Simulator

(CPU) (HyperTransport) </‘—’\>(Custom HW)

10
J

(cycle-based) (cycle-based) (event-based)

) — invoke BFM
void foo (..) { void READ (..) { inline

) methods instead
BEGIN TX () ; HW check status() ;O int HW_check_ status(..) N
int .. = READ(..);C return

b
local compute () ; some processing(); BFM_SIM Read(..) &

WRITE (..); - bitmask;
END TX() ; HW send msg(); .. }

) 7 7 /4

User Program TM library NEW HAL

bcine BFM_SIM Read (..) { <IJ

\LBFM directly interacts with
t

he Network simulator

\
\
1
1
]
1
1
1
1
1
1
1
\
1
1
1
\
)
)

4

Bus Functional Model (BFM)
Simulator

pmm—————

b <&
)
\/

Network RTL -
Simulator Simulator

(HyperTransport) AL N (Custom HW)
SW + BFM + Network simulator <)
linked together

———--—____- _——mm——
-

S

(cycle-based)

(event-based)

S

Our BFM Simulator

m Deterministic Concurrency Control
= BFM itself is single-threaded

= BFM uses light-weight threads (i.e. fibers) to implement
user threads in the applications

=« Contexts switch happens at network packet injection

void clock () {

for (1 =1 .. N) {

if (thread[i].isReady()) {
-> Context Switch (thread[i]);

int BFM SIM Read(..) {

4 4

Network D‘S:
Simulator

(cycle-based)

C

Our BFM Simulator

m Fast execution
= All the local computations are natively executed
= No CPU simulation at all

« We only need software interacting with HW
simulation

=« Do not waste simulation cycles for computation

- void WRITE (..) { | ?ntlg; .
x = READ (...) 1fomeprocessing(); in _send_msg (...)

Y = return

local compute (Y); T TEIRT BFM_SIM WRITE NC(..)

}

WRITE (Y);) /
77 4

User Program TM library NEW HAL

All this local computation is executed natively,
without consuming a simulation cycle

Our BFM Simulator

m Variable interleaving of concurrent executions
+ Deterministic replay
= All the local computation happens at a cycle
= Actual packet delivery time is deterministic

> Insert random idle cycles before packet injection

= Not meant to compensate for computation time

= But inserts deterministic variation in concurrent executions
m Interleaving is dependent solely on random seed

= Deterministic re-play = use the same random seed

int BFM SIM Read(..) { Thread1 ___:[} _________ _
BFM Idle Cycles(get random()) ; <:>

Context_Switch(SIM);

ThreadN A\ S ~7"~°~ D’[

Network Inject packet (READ REQ, ..);

Zero-cycle
computatio

Random Idle |peterministic

Context Switch (SIM);
7 Packet Delivery

Our BFM Simulator

m Convenient error analysis
= Logging at high-level
=« at packet level, or
= at HAL level

s Automatic error detection

cycle

1048976
1048990
1059102
1070428
1078824
1081034
1081106

— TX Begin -
W 1000786h
R 1000786h
— TX commit —
C 1000786h
— TX end -
— TX commit —

1081300
1081300

Error: T7 got Commit Okay.
It should be violated by 100786h

« Simulation = shared-memory, single threaded,

deterministic execution

= Each user thread can see what other threads are

doing
=« Further modify STM

= Maintain a shadow data-structure that checks
conflicts on-line (only works for simulation)

Worked well for our case

m Fast simulation enabled many different interleaving of
concurrent executions in short time

Small test-bench execution time What we actually }

Prototype HW
(1.8Ghz x86 + FPGA))

_ _ *For comparisons.
BFM + RTL sim ~ 15 mins ' *BFM uses much

BFM + Virtual HW ~ 100 ms less simulation
cycle

ISS + Virtual HW ~ 100 mins /

= With this environment, we actually designed and debugged
The Custom HW (RTL)
The new SW (STM library)
And the new communication protocol (system)
All together

Generalization and Pitfalls .l\

= Key insights
= SW modification is easier than simulator modification
= Local computation can be natively executed

= Only global communication is simulated via Network
simulation

m Caveat: Ease of SW modification

= Assumes that you can identify HW interface easily

= Assumes that you can distinguish local computation and
global communication (i.e. shared data access)

= Usually true
=« Parallel SW designed with HAL and critical sections
« But you should check your SW...

m Not suitable for performance estimation

Requests for CAD Researchers

= Our approach was still ad hoc ...
= Is there a more systematic solution?

m Part-wise selection of details of simulation
(e.g) Native SW execution (for local computation)
+ Detailed HW simulation (for custom HW design)
+ Detailed network simulation

® Randomizing variance of concurrent executions
= Should be deterministically re-playable

Summary

m Co-design and Co-verification for post Moore’s
law era

= Parallelism and Heterogeneity
= Potential concurrency issues at design time

m Required Features
= Variable interleaving of concurrent executions
= Deterministic Replay
= Fast execution time + sufficient of visibility

m In our case study
= We used SW Model + BFM (interconnection) + RTL sim

= SW modification was easier than ISS improvement
= Hope there can be a generalized solution

Questions?

