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Trends in hardware design   

 Moore‟s Law still in effect 

 But no more free lunch…performance is no longer free 

 Parallelism   

 Due to limited clock frequency 

 Many CPUs rather than a single super-fast one. 

 Heterogeneity 

 Due to limited power budget 

 Specialized HW for a specific task 



Questions Raised… 

 This trend leads us to a system with … 

 Multiple CPUs 

 Custom HW units 

 All working concurrently for a single program 

 More than simple time-sharing 

 Questions 

 What does such a system look like?  

 Do we have proper design/verification methodology 
for such a system? 

 If not, what are the issues? 

 This is a case-study presentation to explore these 
questions rather than to answer them. 



Our system as a case study 

 External hardware acceleration of software 
transactional memory on commodity CPUs  

 … wait, what? 

 Several x86 CPUs 

 Two sockets, each AMD quad core 

 All running a single multi-threaded application 

 Plus a custom HW 

 A FPGA, attached coherently to CPUs 

 Accelerating a special software library, called Software 
Transactional Memory (STM) 

 All working in parallel  

 Okay then, what is STM? 



Backgrounds: Transactional Memory 

 Parallel programming is hard 

 data races.. 

 Related issues: dead-lock, live-lock, … 

 

 Transactional Memory (TM) 

 A proposal to simplify parallel programming 

 The programmer simply declares critical regions in the 
program as transactions and puts all shared 
reads/writes inside 

 The runtime system (a.k.a. transactional memory) 
detects all the runtime data races 

 The runtime roll-backs conflicting transactions and thus 
guarantees serialize-ability of the program execution. 

 



TM Example: Programming 

void money_transfer(int account[], int from,  

                    int to, int amount) { 

 

  BEGIN_TX();  

 

    int from_before = READ(account[from]); 

    int to_before   = READ(account[to]);    

    

    int from_after  = from_before – amount; 

    int to_after    = to_before + amount; 

 

    WRITE (account[from], from_after); 

    WRITE (account[to], to_after); 

   

  END_TX(); 

} 

Begin 
transaction 

Read shared 
variables 

Local 
computation 

Write shared 
variable 
computation 

End 
transaction Each transaction is guaranteed 

to be “atomic” 



TM Example: Runtime 

Thread 1 Thread 2 Thread 3 

TM 
Runtime 

(A C) 
 
   Read A; 
   Read C; 
   .. 
   Write A; 
   Write C; 
 

(B C) 
 
   Read B; 
   Read C; 
   .. 
   Write A; 
   Write C; 
 

(G F) 
 
   Read G; 
   Read F; 
   .. 
   Write G; 
   Write F; 
 

Each thread 
runs its own 
transaction  

TM Runtime 
detects data 
race 

TM Runtime 
rolls back 
conflicted TX 



Back to our case 

 Approaches in TM runtime implementation 

 STM: all in SW  lots of overhead, slow 

 HTM: all in HW  Requires CPU core modification 

 … but you‟d rather avoid changing a commodity 
core‟s RTL 

 Our approach  

 Part in HW, rest in SW (a hybrid approach) 

 External custom HW  

 Sits outside cores (on FPGA) via memory bus 

 No core modification required 

 External communication takes some time but we 
know how to mitigate this! 

 

 



Our idea in a nutshell 

Core 1 Core 2 FPGA 

1:Read A 

1:Read C 

1:Write A 

1:Write C 

2:Read C 

Each core sends  a 
message to FPGA, 
for each read/write. 

1:Ok To 
Commit? 

1:OK 

2:Rollback 

AC CB 

FPGA detects 
violation and 
sends 
notification 

 
“Wow, this is 
so cool. Let’s 
build this thing 
already!” 

+ Some ideas for 
latency hiding on 
the SW-side 

+ Some ideas for 
fast violation 
detection on the 
HW-side 



Our initial co-design 

 How to design a closely-coupled system? 

 New HW 

 New software library (STM) that uses the new HW 

 Let‟s simulate it!  

 Design HW/SW interface (i.e. communication protocol)  

   with a cycle-based x86 ISS (Instruction-Set simulator) 

 Custom HW  pure virtual model  

 Develop the SW on top of simulation 

 What about HW design? 

 Do RTL design separately 

 Find RTL bugs with unit test 

 High-level protocol is already validated with simulation 



And there we go …  

 Our simulation was successful 

 Our protocol works and is faster than 
conventional STM 

 We obtained a HW framework 

 Two sockets, each with AMD quad-core 

 An FPGA connected via HyperTransport® 

 We implemented a coherent cache on FPGA* 

 It was a (re-usable) part of our design   

 We implemented the custom HW as we 
designed 

 All the unit tests are passed  

 So we ran the whole system …. 

 … And it didn‟t work 

 Transactions were not atomic at all 

* Another long story 



What happened..? (In retrospect) 

Core 1 Core 2 FPGA 

1:Write C 

2:Read C 

1:Ok To 
Commit? 

2:Rollback 

What we designed What actually happened 

1:OK 

Core 1 Core 2 FPGA 

1:Write C 

2:Read C 

1:Ok To 
Commit? 

1:OK 

Read happens here 

The message delivery 
has been delayed 
(out of order) 

FPGA can’t detect the 
conflict (thinks it’s a 
valid read-after-write) 



How could we have missed that? 

 Problems with our simulator 

 We used a detailed x86 ISS 

 All instructions included and some cache protocols.  

 But the simulated interconnect was far from that of real 
HW system… 

 HyperTransport + external pin-out + FPGA … 

 The simulation was in-order and deterministic 

 no latency variance  

 Problems with unit testing 

 Cannot generate the complicated error sequence! 

 Requires a lot of interaction with software 

 



A Futile Resistance 

 “Hey, we already have the FPGA implementation. Let‟s just 
debug it (with a logic analyzer).” 

 Problem 

 The „time span‟ of a typical error is very long 

 It is not clear when and how the problem happens 

 i.e. Error not detectable by a simple trigger 

 Logic analyzer gives a limited scope in time 

 

 

Timeline 

CPU1 

CPU N 

…… 

100s ~ 100,000s of transactions (ms ~ secs of time) 

Each TX contains R 
reads and W writes 

Error, if fails to detect 
a conflict between any 
two TXs 

The error is observed 
much later at time; 
without knowing when 
the error has happened 
 

 
Limited logic analyze 
scope (order of us) 
 



What do we need? 

 Verification of a concurrent system  

 Interleaving of parallel executions  

 Out-of-order message delivery 

 Many different interleaving in a short time (i.e. fast 
execution) 

 Resemblance to the actual system 

 Actual HW (RTL) + Actual SW debugging preferred 

 Minimum modification for verification 

 Crucial features for verification 

 Deterministic replay – the exact same interleaving 
should be generated at will  

 A better mechanism for bug finding than waveform view 

 Easier log analysis, at least 



Comparisons of Available Tools 

Method Pros Cons 

Prototyping  • Target HW + SW 
• Fast execution  

• Limited visibility 
• No deterministic replay 

Full RTL sim. 
(CPU + interconnection + 
Custom HW) 

• Target HW + SW 
• Deterministic replay 

• All RTL not available 
• Too slow 
• No variation of interleaving 

Binary instrumentation 
(i.e. PIN-based simulation) 

• Target SW 
• Fast execution 

• No HW debugging  
• No deterministic replay 

Instruction-set sim. 
+ RTL sim (or virtual HW)  

• Target SW 
• Deterministic replay 

• No variation of interleaving 
 

SW Model  
+ network sim. 
(Bus Functional Model) 
+ RTL sim. (or virtual HW) 

• Faster than ISS 
 
 

• SW modification 
• Variation of interleaving? 
• Deterministic replay? 

[Option 1] Modify x86 ISS 
• Connect ISS with network sim (BFM) + 
RTL sim 
• Add various interleavings?  

[Option 2] Modify Target SW  
• Connect SW with BFM + RTL sim 
• Add various interleavings 
• Add deterministic replay 

• Easier to do  
(you know a lot more 
about SW than simulator) 
• Faster to run  

 



ISS-based approach (illustration) 
void foo(…){ 

  BEGIN_TX();  

  int … = READ(…); 

  local_compute(); 

  WRITE (…); 

  END_TX(); 

} 

User Program 

Binary 

void READ(…){ 

 HW_check_status(); 

 … 

 some_processing(); 

  

 HW_send_msg(); … } 

TM library 

Compile 

inline  

int HW_check_status(…) 

 return  

  *FPGA_ADDR & bitmask; 

} 

HAL (HW Abstraction Layer) 

ISS 
Simulator 
(CPU) 
 
(cycle-based) 

Network 
Simulator 
(HyperTransport) 
 
(cycle-based) 

RTL 
Simulator 
(Custom HW) 
 
(event-based) 

• Where / How do we add various interleavings, 
i.e. which simulator do we want to modify? 
 
• A lot of simulation overhead 

Do we 
need CPU 
simulation 
at all? 



BFM-based approach (illustration) 
void foo(…){ 

  BEGIN_TX();  

  int … = READ(…); 

  local_compute();  

  WRITE (…); 

  END_TX(); 

} 

User Program 

void READ(…){ 

 HW_check_status(); 

 … 

 some_processing(); 

  

 HW_send_msg(); … } 

TM library 

inline  

int HW_check_status(…) 

 return  

   BFM_SIM_Read(…) &  

      bitmask; 

} 

NEW HAL 

Network 
Simulator 
(HyperTransport) 
 
(cycle-based) 

RTL 
Simulator 
(Custom HW) 
 
(event-based) 

int BFM_SIM_Read(…){ 

  ……   

  Network_Inject_packet(READ_REQ, …); 

  …… 

} 

Bus Functional Model  (BFM) 
Simulator 

• HAL is re-written to 
invoke BFM 
methods instead 

BFM directly interacts with 
the Network simulator 

SW + BFM + Network simulator 
linked together 



Our BFM Simulator 

 Deterministic Concurrency Control 

 BFM itself is single-threaded 

 BFM uses light-weight threads (i.e. fibers) to implement 
user threads in the applications 

 Contexts switch happens at network packet injection 

 

int BFM_SIM_Read(…){ 

  ……   

  Network_Inject_packet(…); 

  Context_Switch(SIM); 

  …… 

} 

void clock(){ 

 for (i = 1 .. N) { 

  if (thread[i].isReady()) { 

    Context_Switch(thread[i]); 

    … 

  } 

} 

Network 
Simulator 
(cycle-based) 



Our BFM Simulator 

 Fast execution 

 All the local computations are natively executed 

 No CPU simulation at all  

 We only need software interacting with HW 
simulation 

 Do not waste simulation cycles for computation 

… 

x = READ(…) 

Y =  

 local_compute(Y);  

 

WRITE (Y); 

User Program 

void WRITE(…){ 

 Some_processing(); 

 … 

 HW_send_msg(…);  

 

} 

TM library 

inline  

int HW_send_msg(…) 

 return  

   BFM_SIM_WRITE_NC(…)  

} 

NEW HAL 

All this local computation is executed natively, 
without consuming a simulation cycle 



Our BFM Simulator 

 Variable interleaving of concurrent executions  

   + Deterministic replay 

 All the local computation happens at a cycle 

 Actual packet delivery time is deterministic 

 Insert random idle cycles before packet injection 

 Not meant to compensate for computation time 

 But inserts deterministic variation in concurrent executions 

 Interleaving is dependent solely on random seed 

 Deterministic re-play  use the same random seed 

 int BFM_SIM_Read(…){ 

  BFM_Idle_Cycles(get_random()); 

  Context_Switch(SIM); 

  … 

  Network_Inject_packet(READ_REQ, …); 

  Context_Switch(SIM); 

} 

Thread1 

Thread N 

Zero-cycle 
computation 

Random Idle 
Cycles 

Deterministic 
Packet Delivery 



Our BFM Simulator 

 Convenient error analysis 

 Logging at high-level 

 at packet level, or 

 at HAL level 

 

 Automatic error detection 

 Simulation = shared-memory, single threaded, 
deterministic execution  

 Each user thread can see what other threads are 
doing 

 Further modify STM 

 Maintain a shadow data-structure that checks 
conflicts on-line (only works for simulation) 



Worked well for our case 

 Fast simulation enabled many different interleaving of 
concurrent executions in short time 

 

 

 

 

 

 

 

 With this environment, we actually designed and debugged  

 The Custom HW (RTL) 

 The new SW (STM library) 

 And the new communication protocol (system) 

 All together 

 

Environment Execution Time 

Prototype HW 
(1.8Ghz x86 + FPGA) 

~ 10 ms 

BFM + RTL sim ~ 15 mins 

BFM + Virtual HW ~ 100 ms 

ISS + Virtual HW ~ 100 mins 

Small test-bench execution time 
What we actually 
used 

•For comparisons. 
•BFM uses much 
less simulation 
cycle 



Generalization and Pitfalls 

 Key insights 

 SW modification is easier than simulator modification 

 Local computation can be natively executed 

 Only global communication is simulated via Network 
simulation 

 Caveat: Ease of SW modification  

 Assumes that you can identify HW interface easily 

 Assumes that you can distinguish local computation and 
global communication (i.e. shared data access) 

 Usually true  

 Parallel SW designed with HAL and critical sections  

 But you should check your SW… 

 Not suitable for performance estimation 

 



Requests for CAD Researchers 

 Our approach was still ad hoc … 

 Is there a more systematic solution? 

 

 Part-wise selection of details of simulation 

(e.g) Native SW execution (for local computation)  

  + Detailed HW simulation (for custom HW design) 

  + Detailed network simulation  

 

 Randomizing variance of concurrent executions 

 Should be deterministically re-playable  

 



Summary 

 Co-design and Co-verification for post Moore‟s 
law era 

 Parallelism and Heterogeneity   

 Potential concurrency issues at design time 

 Required Features 

 Variable interleaving of concurrent executions 

 Deterministic Replay 

 Fast execution time + sufficient of visibility 

 In our case study 

 We used SW Model + BFM (interconnection) + RTL sim 

 SW modification was easier than ISS improvement 

 Hope there can be a generalized solution 

 



Questions? 


