
Hardware Acceleration of
Transactional Memory on
Commodity Systems

Jared Casper, Tayo Oguntebi,
Sungpack Hong, Nathan Bronson,
Christos Kozyrakis, Kunle Olukotun

Pervasive Parallelism Laboratory
Stanford University

1

TM Design Alternatives
  Software (STM)

  “Barriers” on each shared load and store update
data structures

  Hardware (HTM)
  Tap hardware data paths to learn of loads and

stores for conflict detection
  Buffer speculative state or maintain undo log in

hardware, usually at the L1 level
  Hybrid

  Best effort HTM falls back to STM
  Generally target small transactions

  Hardware accelerated
  Software runtime is always used, but accelerated
  Existing proposals still tap the hardware data path

2

TMACC: TM Acceleration
on Commodity Cores
  Challenges facing adoption of TM

  Software TM requires 4-8 cores just to break even
  Hardware TM is expensive and risky

  Sun’s Rock provides limited HTM for small transactions
  Support for large transactions requires changes to core
  Optimal semantics for HTM is still under debate

  Hybrid schemes look attractive, but still modify the core
  No systems available to attract software developers

  Accelerate STM without changing the processor
  Leverage much of the work on STMs
  Much less risky and expensive
  Use existing memory system for communication

3

TMACC: TM Acceleration
on Commodity Cores
  Conflict detection

  Can happen after the fact
  Can nearly eliminate expensive read barriers

  Checkpointing
  Needs access to core internals

  Version management
  Latency critical operations
  Common case when load is not in store buffer

must take less than ~10 cycles
  Commit

  Could be done off-chip, but would require
removing everything from the processor’s cache

4








Protocol Overview
  Reads

  Send address to HW
  Check for value in write buffer

  Writes
  Add to the write buffer
  Same as STM

  Commit
  Send HW each address in write set
  Ask permission to commit
  Apply write buffer

  Violation notification
  Must be fast to check for violation in

software

TMACC
HW Thread2

Read A

Read B
To write B

OK to
commit?

You’re
Violated

Yes

5

Thread1

Problem of Being Off-Core
  Variable latency to

reach the HW
  Network latency
  Amount of time in the

store buffer
  How can we determine

correct ordering? Read A

To write A

OK to
commit?

6

TMACC
HW Thread2 Thread1

OK to
commit?

Yes

Global and Local Epochs

A

 B

C C

B

A

  Global Epochs
  Each command embeds epoch number (a global variable).
  Finer grain but requires global state
  Know A < B,C but nothing about B and C

  Local Epochs
  Each thread declares start of new epoch
  Cheaper, but coarser grain (non-overlapping epochs)‏
  Know C < B, but nothing about A and B or A and C

Global Epochs Local Epochs

Epoch N Epoch N+1 Epoch N-1

7







Two TMACC Schemes
  We proposed two TM schemes.

  TMACC-GE uses global epochs
  TMACC-LE uses local epochs

  Trade-Offs

  Details in the paper

TMACC-GE TMACC-LE
More accurate conflict detection

  less false positives 

No global data in software

  less SW overhead 
Global epoch management

  more SW overhead 
Less information for ordering

  more false positives 

8

TMACC Hardware
  A set of generic BloomFilters + control logic

  BloomFilter: a condensed way to store ‘set’ information
  Read-set: Addresses that a thread has read
  Write-set: Addresses that other threads have written

  Conflict detection
  Compare read-address against write-set
  Compare write-address against read-set

9

  First implementation of FARM single node configuration
  From A&D Technology, Inc.
  CPU Unit (x2)

  AMD Opteron Socket F (Barcelona)
  DDR2 DIMMs x 2

  FPGA Unit (x1)
  Altera Stratix II, SRAM, DDR

  Each unit is a board
  All units connected via cHT backplane

  Coherent HyperTransport (ver 2)
  We implemented cHT compatibility for

 FPGA unit (next slide)

Procyon System

10

Base FARM Components

2MB
L3 Shared Cache

…

Hyper
Transport

2MB
L3 Shared Cache

Hyper
Transport

32 Gbps

32 Gbps
~60ns

AMD Barcelona

6.4 Gbps cHTCore™
Hyper Transport (PHY, LINK)‏

Altera Stratix II FPGA (132k Logic Gates)‏

Configurable
Coherent Cache

Data
Transfer Engine

Cache IF

Data Stream IF

TMACC MMR
IF

1.8G 
Core 0 
64K L1 

512KB 
L2 

Cache 

1.8G 
Core 3 
64K L1 

512KB 
L2 

Cache 

…
1.8G 
Core 0 
64K L1 

512KB 
L2 

Cache 

1.8G 
Core 3 
64K L1 

512KB 
L2 

Cache 

  Block diagram of Procyon system

  FPGA Unit = communication logics + user application

  Three interfaces for user application
  Coherent cache interface

  Data stream interface

  Memory mapped register interface

*cHTCore is from University of Heidelberg

11

FARM: A Prototyping Environment for Tightly-
Coupled, Heterogeneous Architectures. Tayo
Oguntebi et. al. FCCM 2010.

6.4 Gbps
~380ns

Communication
  Sending addresses

  FARM’s streaming interface
  Address range marked as “write-

combing” causes non-temporal store
  As close to “fire-and-forget” as is

available
  630MB/s

  Commit request
  Read from memory mapped register
  Approx. 700ns, 1000s of cycles!

  Violation notification
  FPGA writes to cacheable address
  Common case of no violation is fast,

just as cache hit for the processor

TMACC
HW Thread2

Read A

Read B
To write B

OK to
commit?

You’re
Violated

Yes

12

Thread1

Implementation Result
  Full prototype of both TMACC schemes on FARM
  HW Resource Usage

13

Common TMACC-GE TMACC-LE
4Kb BRAM 144 (24%) 256 (42%) 296 (49%)
Registers 16K (15%) 24K (22%) 24K (22%)
LUTs 20K 30K 35K
FPGA Altera Stratix II EPS130 (-3)
Max Freq. 100 MHz

Microbenchmark Analysis
  Two random array accesses

  Partitioned (non-conflicting)
  Fully-shared (possible

conflicts)

  Free from pathologies and 2nd-
order effects

  Decouple effects of parameters
  Size of Working Set (A1)
  Number of Read/Writes (R,W)
  Degree of Conflicts (C, A2)

Parameters: A1, A2, R, W, C

TM_BEGIN
 for I = 1 to (R + W) {
 p = (R / R + W)

 /* Non-conflicting Access */
 a1 = rand(0, A1 / N) + tid * A1/N;
 if (rand_f(0,1) < p))
 TM_READ(Array1[a1])
 else
 TM_WRITE(Array1[a1])

 /* Conflicting Access */
 if (C) {
 a2 = rand(0, A2);
 if (rand_f(0,1) < p))
 TM_READ(Array2 [a2])
 else
 TM_WRITE(Array2[a2])
 }
 }
TM_END 14

EigenBench: A Simple Exploration Tool
for Orthogonal TM Characteristics.
Sungpack Hong et. al. IISWC 2010

Microbenchmark Results

15

Working set size Transaction size
  The knee is overflowing the cache
  Constant spread out of speedup

  All violations are false positives
  Sharp decrease in performance

for small transactions
  TMACC-LE begins to suffer from

false positives

~10%

Microbenchmark Results

16

Write set size Number of threads
  TMACC-GE suffers from lock

migration as the number of
writes goes up

  Medium sized transactions
scale well

  Small transactions are not
accelerated

  TL2 suffers across chip
boundary

~22%
+76%

STAMP Benchmark Results

17

Vacation Genome

  Transactions with few conflicts, a lot of reads, and few writes
  Bread and butter of transactional memory apps
  Barrier overhead primary cause of slowdown in TL2

+85% +50%

STAMP Benchmark Results

18

K-means low K-means high
  Few reads per transaction

  Not much room for acceleration

  Large number of writes
  Hurts TMACC-GE

  Violations dominating factor
  Still not many reads to

accelerate

-8%

  Simulated processor greatly exaggerated
penalty from extra instructions
  Modern processors much more tolerant of

extra instructions in the read barriers
  Simulated interconnect did not model

variable latency and command
reordering
  No need for epochs, etc.

  Real hardware doesn’t have “fire-and-
forget” stores
  We didn’t model the write-combining buffer

  Smaller data sets looked very different
  Bandwidth consumption, TLB pressure, etc.

Prototype vs. Simulation

19

Summary: TMACC

  A hardware accelerated TM scheme
  Offloads conflict detection to external HW
  Accelerates TM without core modifications
  Requires careful thinking about handling latency

and ordering of commands

  Prototyped on FARM
  Prototyping gave far more insight than simulation.

  Very effective for medium-to-large sized
transactions
  Small transaction performance gets better with

ASIC or on-chip implementation.
  Possible future combination with best-effort HTM

20

Questions

21

