
Hardware Acceleration of  
Transactional Memory on 
Commodity Systems 

Jared Casper, Tayo Oguntebi,  
Sungpack Hong, Nathan Bronson, 
Christos Kozyrakis, Kunle Olukotun 

Pervasive Parallelism Laboratory 
Stanford University 

1 



TM Design Alternatives 
  Software (STM) 

  “Barriers” on each shared load and store update 
data structures 

  Hardware (HTM) 
  Tap hardware data paths to learn of loads and 

stores for conflict detection 
  Buffer speculative state or maintain undo log in 

hardware, usually at the L1 level 
  Hybrid 

  Best effort HTM falls back to STM 
  Generally target small transactions 

  Hardware accelerated 
  Software runtime is always used, but accelerated 
  Existing proposals still tap the hardware data path 
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TMACC: TM Acceleration 
on Commodity Cores 
  Challenges facing adoption of TM 

  Software TM requires 4-8 cores just to break even 
  Hardware TM is expensive and risky 

  Sun’s Rock provides limited HTM for small transactions 
  Support for large transactions requires changes to core 
  Optimal semantics for HTM is still under debate 

  Hybrid schemes look attractive, but still modify the core  
  No systems available to attract software developers 

  Accelerate STM without changing the processor 
  Leverage much of the work on STMs 
  Much less risky and expensive 
  Use existing memory system for communication 
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TMACC: TM Acceleration 
on Commodity Cores 
  Conflict detection 

  Can happen after the fact 
  Can nearly eliminate expensive read barriers 

  Checkpointing 
  Needs access to core internals 

  Version management 
  Latency critical operations 
  Common case when load is not in store buffer 

must take less than ~10 cycles 
  Commit 

  Could be done off-chip, but would require 
removing everything from the processor’s cache 
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Protocol Overview 
  Reads 

  Send address to HW 
  Check for value in write buffer 

  Writes 
  Add to the write buffer 
  Same as STM 

  Commit 
  Send HW each address in write set 
  Ask permission to commit  
  Apply write buffer 

  Violation notification 
  Must be fast to check for violation in 

software 

TMACC 
HW Thread2 

Read A 

Read B 
To write B 

OK to 
commit? 

You’re 
Violated 

Yes 
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Problem of Being Off-Core 
  Variable latency to 

reach the HW 
  Network latency 
  Amount of time in the 

store buffer 
  How can we determine 

correct ordering?  Read A 

To write A 

OK to 
commit? 
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TMACC 
HW Thread2 Thread1 

OK to 
commit? 

Yes 



Global and Local Epochs 

A 

     B 

C C 

B 

A 

  Global Epochs 
  Each command embeds epoch number (a global variable). 
  Finer grain but requires global state 
  Know A < B,C but nothing about B and C 

  Local Epochs 
  Each thread declares start of new epoch 
  Cheaper, but coarser grain (non-overlapping epochs)‏ 
  Know C < B, but nothing about A and B or A and C 

Global Epochs Local Epochs 

Epoch N Epoch N+1 Epoch N-1 
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Two TMACC Schemes 
  We proposed two TM schemes. 

  TMACC-GE uses global epochs 
  TMACC-LE uses local epochs 

  Trade-Offs  

  Details in the paper 

TMACC-GE TMACC-LE 
More accurate conflict detection  

       less false positives  

No global data in software 

      less SW overhead  
Global epoch management 

       more SW overhead  
Less information for ordering 

      more false positives  
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TMACC Hardware 
  A set of generic BloomFilters + control logic 

  BloomFilter: a condensed way to store ‘set’ information 
  Read-set: Addresses that a thread has read 
  Write-set: Addresses that other threads have written 

  Conflict detection 
  Compare read-address against write-set 
  Compare write-address against read-set 
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  First implementation of FARM single node configuration 
  From A&D Technology, Inc. 
  CPU Unit (x2) 

   AMD Opteron Socket F (Barcelona) 
   DDR2 DIMMs x 2 

  FPGA Unit (x1) 
   Altera Stratix II, SRAM, DDR 

  Each unit is a board 
  All units connected via cHT backplane 

  Coherent HyperTransport (ver 2) 
  We implemented cHT compatibility for  

 FPGA unit (next slide) 

Procyon System 
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Base FARM Components 

2MB 
L3 Shared Cache 

… 

Hyper 
Transport 

2MB 
L3 Shared Cache 

Hyper 
Transport 

32 Gbps 

32 Gbps 
~60ns 

AMD Barcelona 

6.4 Gbps cHTCore™ 
Hyper Transport (PHY, LINK)‏ 

Altera Stratix II FPGA   (132k Logic Gates)‏ 



Configurable 
Coherent Cache 

Data  
Transfer Engine 

Cache IF 

Data Stream IF 

TMACC MMR 
IF 

1.8G 
Core 0 
64K L1 

512KB 
L2 

Cache 

1.8G 
Core 3 
64K L1 

512KB 
L2 

Cache 

… 
1.8G 
Core 0 
64K L1 

512KB 
L2 

Cache 

1.8G 
Core 3 
64K L1 

512KB 
L2 

Cache 

  Block diagram of Procyon system 

  FPGA Unit = communication logics + user application 

  Three interfaces for user application 
  Coherent cache interface 

  Data stream interface 

  Memory mapped register interface 

*cHTCore is from University of Heidelberg 

11 

FARM: A Prototyping Environment for Tightly-
Coupled, Heterogeneous Architectures.  Tayo 
Oguntebi et. al. FCCM 2010. 

6.4 Gbps 
~380ns 



Communication 
  Sending addresses 

  FARM’s streaming interface 
  Address range marked as “write-

combing” causes non-temporal store 
  As close to “fire-and-forget” as is 

available 
  630MB/s 

  Commit request 
  Read from memory mapped register 
  Approx. 700ns, 1000s of cycles! 

  Violation notification 
  FPGA writes to cacheable address 
  Common case of no violation is fast, 

just as cache hit for the processor 

TMACC 
HW Thread2 

Read A 

Read B 
To write B 

OK to 
commit? 

You’re 
Violated 

Yes 
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Implementation Result 
  Full prototype of both TMACC schemes on FARM 
  HW Resource Usage 
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Common TMACC-GE TMACC-LE 
4Kb BRAM 144 (24%) 256 (42%) 296 (49%) 
Registers 16K (15%) 24K (22%) 24K (22%) 
LUTs 20K 30K 35K 
FPGA Altera Stratix II EPS130 (-3) 
Max Freq. 100 MHz 



Microbenchmark Analysis 
  Two random array accesses 

  Partitioned (non-conflicting) 
  Fully-shared  (possible 

conflicts)  

  Free from pathologies and 2nd-
order effects 

  Decouple effects of parameters 
  Size of Working Set (A1) 
  Number of Read/Writes (R,W) 
  Degree of Conflicts (C, A2) 

Parameters: A1, A2, R, W, C 

TM_BEGIN 
  for I = 1 to (R + W) { 
      p = (R / R + W) 

       /* Non-conflicting Access */ 
       a1 = rand(0, A1 / N) + tid * A1/N; 
       if (rand_f(0,1) < p))  
              TM_READ( Array1[a1] ) 
        else 
              TM_WRITE( Array1[a1] ) 

        /* Conflicting Access */ 
        if (C) { 
             a2 = rand(0, A2); 
             if (rand_f(0,1) < p))  
                    TM_READ( Array2 [a2] ) 
             else 
                    TM_WRITE( Array2[a2] ) 
        } 
  } 
TM_END 14 

EigenBench: A Simple Exploration Tool 
for Orthogonal TM Characteristics. 
Sungpack Hong et. al. IISWC 2010 



Microbenchmark Results
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Working set size Transaction size 
  The knee is overflowing the cache 
  Constant spread out of speedup 

  All violations are false positives 
  Sharp decrease in performance 

for small transactions 
  TMACC-LE begins to suffer from 

false positives 

~10% 



Microbenchmark Results
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Write set size Number of threads 
  TMACC-GE suffers from lock 

migration as the number of 
writes goes up 

  Medium sized transactions 
scale well 

  Small transactions are not 
accelerated 

  TL2 suffers across chip 
boundary 

~22% 
+76% 



STAMP Benchmark Results 
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Vacation Genome 

  Transactions with few conflicts, a lot of reads, and few writes 
  Bread and butter of transactional memory apps 
  Barrier overhead primary cause of slowdown in TL2 

+85% +50% 



STAMP Benchmark Results 
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K-means low K-means high 
  Few reads per transaction  

  Not much room for acceleration 

  Large number of writes 
  Hurts TMACC-GE 

  Violations dominating factor 
  Still not many reads to 

accelerate 

-8% 



  Simulated processor greatly exaggerated 
penalty from extra instructions 
  Modern processors much more tolerant of 

extra instructions in the read barriers 
  Simulated interconnect did not model 

variable latency and command 
reordering 
  No need for epochs, etc. 

  Real hardware doesn’t have “fire-and-
forget” stores 
  We didn’t model the write-combining buffer 

  Smaller data sets looked very different 
  Bandwidth consumption, TLB pressure, etc. 

Prototype vs. Simulation 
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Summary: TMACC 

  A hardware accelerated TM scheme 
  Offloads conflict detection to external HW 
  Accelerates TM without core modifications 
  Requires careful thinking about handling latency 

and ordering of commands 

  Prototyped on FARM 
  Prototyping gave far more insight than simulation. 

  Very effective for medium-to-large sized 
transactions  
  Small transaction performance gets better with 

ASIC or on-chip implementation. 
  Possible future combination with best-effort HTM 
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Questions 
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