
Supplementary Appendix 2:

Molecular rational function approximation

1 Single molecules as rational functions

Nature exhibits remarkable computational abilities mediated through the com-
plex interactions between nucleic acids and proteins. The capacity of a molecule to
bind input and output ligand(s) endows the potential to carry out computations in-
situ. Among the vast array of biomolecules, nucleic acids, such as DNA and RNA,
hold particular promise as molecular calculators due to their versatility and the
ease with which they can be designed and manipulated. Although the complexity
of molecular calculators can be enhanced by linking multiple calculators together,
this supplement concentrates on the investigation of single-molecule calculators.

1.1 Partition function of a generalized molecular calculator
at equilibrium

Given a single-molecule calculator, S, that has N unique binding sites for
ligand A and M unique binding sites for a reporter ligand R we can write out all
the states of S complexed with A and R. We denote S·Ak as the set of all states
where A bound to the kth-unique binding site on S. We let R denote a fluorescent
reporter that gives a signal of 1 when bound by S and a signal of 0 when free in
solution. In practice, other output modalities can be used such as transcription
activation.

Let SA = {Ai|i = 1..N}, SR = {Ri|i = 1..M}

(
Si

k

)
denote the set of all combinations choosing k from Si

E.g.

(
SA

2

)
=

N⋃
i=1

M⋃
j=i

Ai·Aj = {Ai·Aj |i = 1..N, j = i..M}

We can express all the states of S complexed with A and R.

States = {S bound to 1 copy of A} ∪ {S bound to 2 copy of A} ∪ ...

=


M⋃
j=0

⋃
a∈(SA

0 )

⋃
r∈(SR

j )

S·a·r

 ∪


M⋃
j=0

⋃
a∈(SA

1 )

⋃
r∈(SR

j )

S·a·r

 ∪ ...

=

N⋃
i=0

M⋃
j=0

⋃
a∈(SA

i )

⋃
r∈(SR

j )

S·a·r (1)
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From the set of states, we can proceed to computing the partition function Z.
Assume the system is in thermodynamic equilibrium and [R] is constant, we may
write the partition function of the system as

Z =

N∑
i=0

M∑
j=0

∑
a∈(SA

i )

∑
r∈(SR

j )

ZS·a·r

=

N∑
i=0

M∑
j=0

[A]i[R]j

Ki
AK

j
R

e−β∆Gi,j

=

N∑
i=0

[A]i
M∑
j=0

[R]j

Ki
AK

j
R

e−β∆Gi,j

where β = 1/kBT , where kB is Boltzmann’s constant and T is temperature. KA

and KR are the dissociation constants of A and R respectively with units L
mol

Let bi,j =
[R]j

ki,j
e−β∆Gi,j

Z =

N∑
i=0

[A]i
M∑
j=0

bi,j (2)

The term bi,j represents the degeneracy and energetic contributions of all states
of S complexed with i copies of A and j copies of R.

We can simplify (2) further by letting x = [A] and ci =
∑M

j=0 bi,j resulting in

Z =
∑N

i=0 cix
i

1.2 Calculating the output probability of the biomolecule

Using the partition function defined in the previous section, we can compute
the probability of n copies of R bound to the S which is related to the observable
in an experiment.

We write for our partition function of activated states,

Zout =

N∑
i=1

bix
i (3)

Since the set of activated states is always a subset of the total states represented
by ci we have 0 ≤ bi ≤ ci. Thus the signal, f(x) of the system is represented by
Zout/Z.

If S can only bind up to one copy of the reporter we can write out the functional
equation of a system where M = 1. We assume the signal of the reporter is 0 when
free in solution, and 1 when bound.

f(x) = p(R bound) =

∑N
i=0 bix

i∑N
i=0 cix

i
≤ 1, 0 ≤ bi ≤ ci (4)

If M > 1 our function is
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f(x) =

M∑
j=1

j ·
∑N

i=0 bi,jx
i∑N

i=0 cix
i

=

∑N
i=0 x

i
∑M

j=1 j · bi,j∑N
i=0 cix

i

di =

M∑
j=1

j · bi,j

f(x) =

∑N
i=0 dix

i∑N
i=0 cix

i
≤ M, (5)

ci,di ≥ 0

di = 0 ⇐⇒ ci = 0

One way to interpret the expression (5) is through probability. f(x) can be
written as the sum of probabilities of different number of copies bound attenuated
by some signaling strength factor.

f(x) =

N∑
k=0

Akp(k) (6)

Ak represents the signaling strength when k copies are bound and p(k) =
ckx

k∑N
i=0 cixi is the probability of k copies bound. Depending on M , Ak · ck = bk or dk.

In theory, we can express almost any positive rational function with positive
coefficients as the partition function of a molecular calculator at equilibrium (5).

One limitation is that since di = 0 if and only if ci = 0 the degree of the
numerator must be less than or equal to the degree of the denominator. In order
to overcome this limitation one can use 1

f(x) as the output function.

1.3 Molecular functions in higher dimensions

We can expand our function (7) to higher dimensional rational functions. Let
the molecule, S, having binding sites for ligand x1, x2, ..., xn where each ligand xk

has Nk unique binding sites. Also, let S able to bind m copies of a reporter. We
can write out the new partition function.

Z =

N1∑
α1=0

N2∑
α2=0

...

Nn∑
αn=0

cα1,α2,...,αn
xα1
1 xα2

2 ...xαn
n (7)

Using this partition function we can write the molecular calculator’s output
signal as a higher dimensional rational function which has the same constraints as
(5).

f(x1, x2, ..., xn) =

∑N1

α1=0

∑N2

α2=0 ...
∑Nn

αn=0 dα1,α2,...,αn
xα1
1 xα2

2 ...xαn
n∑N1

α1=0

∑N2

α2=0 ...
∑Nn

αn=0 cα1,α2,...,αn
xα1
1 xα2

2 ...xαn
n

(8)
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2 Polynomial approximation

2.1 Polynomial decomposition

In addition to approximating rational functions, it is also possible for the
system to approximate any positive polynomial. The Stone–Weierstrass theorem
[3] states that any continuous function defined on a closed interval [a, b] can be
uniformly approximated as closely as desired by a polynomial function. It is possible
to create a polynomial to any desired function.

Let f(x) = be our polynomial where f(x) > 0 when x ≥ 0. We apply these
constraints on the range and domain since partition functions can only express
positive values and the input in the system can never be negative. Poincaré showed
that polynomials can be decomposed into linear and quadratic terms.

f(x) = F1 · F2 · F3 · F4 (9)

F1 =
∏
i

x+ xn,i

F2 =
∏
i

x2 − aix+ bi

F3 =
∏
i

x2 + αix+ βi

F4 =
∏
i

x− xp,i

ai, bi > 0

αi, βi > 0

xn,i, xp,i > 0

Since we have a positive function for x ≥ 0, f(x) = ·F1 · F2 · F3. Since we
know all the coefficients in F1 and F3 are positive if we can substitute the quadratic
terms in F2 with rational polynomials with positive coefficients, then it is possible
to express any f(x) as a rational polynomial with positive coefficients.

2.2 Quadratic expressed as positive rational function

Meissner [1] (include translation), simplified by Motzkin and Straus [2], showed
that F2 can be rewritten as a rational function with positive coefficients. Here, we
briefly summarize these results.

Start with a quadratic term x2 − ax+ b.

x2 − ax+ b =
Q2(x)

Q1(x)
(10)

Q2(x) = ρ2a0

(
1− sin(m+ 2)θ

sin θ
· x

m+1

ρm+1
+

sin(m+ 1)θ

sin θ
· x

m+2

ρm+2

)
Q1(x) =

m∑
k=0

ak+1

ρk
xk
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ρ2 = b, a = 2ρcosθ

m+ 1 <
π

θ
<

π

sin θ

ak =
a0
sin θ

sin(k + 1)θ, k = 0, 1, ...,m

a−1 = am+1 = 0

bk = ak−1 + ak+1 − 2ak cos θ, k = 0, 1, ...,m

Thus, any positive polynomial can be represented as a rational function with
positive coefficients. In theory we can approximate any such polynomial using
biomolecular calculators.

For example, using (10) we can transform x2 − 2x+ 8.

x2 − 2x+ 8 =
1
4x

3 + 1
2x

2 + 8
1
4x+ 1

(11)

This is also true in the case of higher dimension polynomials which was proved by
Meissner [1]. Motzkin and Straus showed that there is an extra constraint [2]. The
highest degree homogenous part of the polynomial must not have any nonnegative
zeros. For example, 1 + (x − y)2 cannot be written as a rational function with
positive coefficients since (x− y)2 contains nonnegative zeros.

3 Examples functions

3.1 Sigmoid function

Let the molecule, S, able to bind only one copy of A and one copy of R.

f(x) =
b0 + b1x

c0 + c1x
(12)

This represents the simplest space of rational functions for the system. In addi-
tion to containing the constant functions where the output is fixed independent of
the input, ON and OFF-switches are also in this space.

An example ON-switch function would be f(x) = x
1+x . If we substitute x for

eu we can transform our ON-switch function into a sigmoid where the domain is
(−∞,∞).

f(u) =
eu

1 + eu

=
1

1 + e−u
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Figure 1: Example sigmoid function

If one defines an output threshold, such that responses above the threshold are
labeled as “1”, and outputs below the threshold are labeled as “0”, then the sigmoid
function above has two “islands” in its domain. One island corresponds to an output
of 0 and the other island corresponds to an output of 1 (terminology from [4]). The
number of islands can be viewed as a measure of complexity: a computer with more
islands in its domain has the potential to perform more complex computations.

3.2 Multi-island function

By incorporating more binding sites to the input A, we can create more complex
functions that have multiple islands. Let the molecule, S, able to bind 2 copies of
A. This allows the function to have up to three islands in its domain. Such a setup
could be useful for detection of a ligand within a specific range of concentrations.

From this system we can create the following function:

f(x) =
x

1 + x+ x2
(13)

Figure 2: Example three island function

We can create more complex island functions by increasing the number of bind-
ing sites beyond 2. If the molecule, S, able to bind 4 copies of A then five islands
becomes possible.
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f(x) =
x+ x3

.01 + x+ 10x2 + x3 + .01x4
(14)

Figure 3: Example five island function

The maximum number of islands is N + 1 where N is the number of unique
binding sites for ligand A.

3.3 Two-input logic gate

Various two-input logic gates can also be modeled by allowing for two inputs.
Let x and y represent the concentration of two different input ligands. We can
create a function for a XOR logic gate.

f(x, y) =
1 + xy

1 + x+ y + xy
(15)

Figure 4: Example XOR logic gate function
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