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In this study, the transmissibility estimation of novel coronavirus (COVID-19) has been presented using 
the generalized fractional-order calculus (FOC) based extended Kalman filter (EKF) and wavelet transform 
(WT) methods. Initially, the state-space representation for the bats-hosts-reservoir-people (BHRP) model 
is obtained using a set of fractional order differential equations for the susceptible-exposed-infectious-
recovered (SEIR) model. Afterward, the EKF and Kronecker product based WT methods have been applied 
to the discrete vector representation of the BHRP model. The main advantage of using EKF in this 
system is that it considers both the process and the measurement noise, which gives better accuracy 
and probable states, which are the Markovian (processes). The importance of proposed models lies in 
the fact that these models can accommodate conventional EKF and WT methods as their special cases. 
Further, we have compared the estimated number of contagious people and recovered people with the 
actual number of infectious people and recovered people in India and China.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

The novel coronavirus (COVID-19) disease has emerged as the world’s biggest outbreak of the century. It is a positive sensed group of 
the single-standard ribonucleic acid (RNA) virus, which belongs to the coronavirdae family. These viruses cause a mild infectious disorder 
that leads to severe acute respiratory syndrome (SARS) in mammals [1–3]. Since the infection of COVID-19 is spreading faster, and until 
now, there is no approved vaccine available for its prevention and control, its transmissibility estimation is of utmost importance. Several 
methods have been proposed in the literature for the transmissibility estimation of COVID-19 [4–8]. In [4], Zhao et al. estimated the 
reproduction rate of coronavirus in China, and they found out that the early outbreak data largely follows the exponential. Li et al. 
[5] presented a mathematical model for estimating the reproduction number regarding coronavirus’s confirmed cases. Lauer et al. [6]
presented an incubation period estimation of coronavirus disease and studied its implication on public health. The method proposed in 
[6] gives good results for mild cases, but its performance falls with the patients’ severity. The susceptible-exposed-infectious-recovered 
(SEIR) is one of the most popular estimation models in the literature, and Tang et al. [7] estimated the transmission risk of COVID-19 
disease using this method. In [8], Fanelli et al. proposed susceptible infected recovered dead (SIRD) model-based estimation of COVID-19.

Several parametric Bayesian methods are useful for the parameter estimation of Gaussian and non-Gaussian systems in which states 
are Markov process. Different parametric Bayesian estimation methods are available in the literature [9–32] are described in Table 1. For 
the non-Gaussian systems, Bayesian computation of conditional probabilities has been used for updating the weights involved in the state 
estimation. This method can be applied for Markovian state dynamics, i.e., the input is represented using the Ornstein-Uhlenbeck (O.U.) 
process; further, it is added to the state process to get a non-Gaussian Markov process of larger size. Using the extended Kalman filter 
(EKF) method, a more accurate estimation of COVID-19 can be performed as the nonlinear dynamical system is modeled as an O.U. process 
that accounts for both white noise and the Brownian process. EKF is derived from a real-time estimator, i.e., Kushner Kallainpur filter, and 
has several applications in electronics engineering and biomedical engineering. The main advantage of EKF is that it uses the stochastic 
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Table 1
State estimation literature survey.

Method Merits Limitations Applications

WLS* Real-time modeling. (i) Inaccurate estimations.
(ii) Limited to static systems.

Electrical power systems [9].

KF** (i) Least computational burden.
(ii) Accurate estimation for linear systems.
(iii) Real-time estimation.

(i) Limited to linear systems
but fails for nonlinear systems.
(ii) Applicable for Gaussian noise.

(i) Electrocardiogram [10].
(ii) Epidemic model of chronic disease [11].
(iii) Power system state estimation [12].
(iv) Electromagnetic field estimation [13].

H∞ filter (i) Accurate estimation even for strongly
nonlinear system.
(ii) Considers process and measurement
noise as non-Gaussian process.

(i) Real-time implementation
constraints.
(ii) Fundamental time domain
behavior is not addressed
when deals with frequency domain.

(i) Optimal control method for bioneuron [14].
(ii) Blood glucose level optimal control [15].
(iii) Multi-agent financial models [16].

PF*** (i) Better estimation for strongly
nonlinear system.
(ii) State process is non-Gaussian
process which gives improved accuracy.

(i) Particle degradation results
in estimation error.

(i) Electrocardiogram denoising [17].
(ii) Cancer patient treatment systems [18]
(iii) Heart rate estimation [19].

EKF (i) Real-time estimations
(ii) Moderate computational complexity.
(iii) Ideal for weakly and
mildly nonlinear systems

(i) Fails for strongly
nonlinear system.

(i) Electronics engineering [20], [21].
(ii) Biomedical engineering [22], [23].
(iii) Wireless communication [24].

WT (i) Lesser data stored.
(ii) Compressed data.
(iii) Better for weakly and
mildly nonlinear systems

(i) Fails for strongly
nonlinear system.
(ii) Not real time estimation.

(i) Electronics engineering [21], [27].
(ii) Biomedical engineering [28], [29].

UKF (i) Accurate estimations
(ii) Moderate computational complexity.
(iii) It can be used with
discontinuous transformation.

(i) Larger computational time. (i) Electrical power systems [30].
(ii) Power plant [31].
(iii) Human arm motion tracking [32].

* Weighted least squares.
** Kalman filter.

*** Particle filter.

approach for estimation; i.e., it considers measurement noise and process noise; consequently, it provides better accuracy. EKF gives the 
joint evaluation of conditional mean and conditional error covariance; therefore, it provides better estimates than the conventional SEIR 
model. Recently, the wavelet transform (WT) method has been used in state and parameter estimation of various systems [21][27–29]. In 
this method, different minimum and maximum frequencies are used for each time slot.

Recently, fractional-order calculus (FOC) has been popular amongst researchers in the arena of mathematical analysis [33][34]. FOC 
has several advantages over conventional calculus, and therefore several phenomena can better be explained using the FOC. The main 
advantage of FOC based model representation is that it can be considered as a superset of integer-order calculus. The FOC based model 
is more accurate than the other integer-order modeling methods presented in the literature. Moreover, the fractional-order process has a 
simplified model structure and less computational complexity without compromising the model’s accuracy. Furthermore, estimation and 
prediction of transmissibility of any disease can be investigated in a more generalized way using the fractional-order differential equations 
due to its property of huge global memory. Recently, fractional-order calculus theory has been used in the mathematical modeling of 
biological systems [35–43] as shown in Table 2. Given the several advantages of FOC-based models in terms of the generalized and 
flexible solution with high accuracy, it is important to investigate the accuracy of these models for the COVID-19 case. Although there 
are many works in the literature related to the transmutability estimation of COVID-19, none of the previous works have investigated 
the performance of the prediction model using FOC based EKF and WT methods by transforming the dynamical state equations using 
Kronecker product (tensor product) [44][45] into a form, where the gradient algorithm can be applied. The importance of these models 
lies in the fact that these models can accommodate conventional EKF [26] and WT methods as their special cases. We have also considered 
bats-hosts-reservoir-people (BHRP) transmission modes [46] for our study. We obtained a continuous-time BHRP based SEIR deterministic 
mathematical model. This continuous-time deterministic model is converted to a stochastic model by introducing noise to the state-
space equations. Then, it is discretized using the Euler-Maruyama method to obtain discrete-time state-space equations to apply the EKF 
algorithm. Such investigation is essential in the estimation of resources required to fight against this epidemic. Motivated by this, we have 
performed a detailed analysis of FOC-based EKF and WT methods for the transmissibility estimation of COVID-19. We can summarize the 
key contributions of the paper as

• We have proposed the FOC based EKF and WT nonlinear system for transmissibility estimation of COVID-19.
• To improve the accuracy of nonlinear systems in WT method, Kronecker product-based fractional-order system is presented.
• We extensively analyzed the developed models and their special cases for different values of the parameters to estimate the COVID-19 

contagious and recovered people.
• The comparison between the transmissibility estimation of COVID-19 using real-time EKF algorithm and block processing based WT 

method has been provided for different values of the system parameters.

The rest of the paper is organized as follows: A brief introduction to EKF and FOC is presented in Section 2 and Section 3. Section 4
presents the state-space modeling of SEIR based BHRP transmission network model. The application of EKF to the BHRP transmission 
2



R. Bansal, A. Kumar, A.K. Singh et al. Digital Signal Processing 112 (2021) 103001
Table 2
Recent fractional order calculus applications in biomedical science.

S. No. Applications References

1. Electrocardiogram Miljkovic et al. [35], Popovic et al. [36]
2. Epidemic model Rihan et al. [37], Rihan et al. [38], Latha et al. [39]
3. State/parameter estimation Mawonou et al. [40], Hidalgo et al. [41], Wang et al. [42], Huang et al. [43]

Fig. 1. Representation of dynamical system.

network model is given in Section 5. Kronecker product based fractional-order system representation using the WT method is presented 
in Section 6. Discussion on results and concluding remarks are given in Section 7 and Section 8, respectively.

2. Extended Kalman filter

Following notations have been used throughout the paper:-

(i) Cap on the bold lower case letters denotes estimated value e.g. x̂.
(ii) Random variables (xk, zk, vk, wk) are denoted using bold lower case letters.
(iii) Bold italic lower case letters denote deterministic vectors (uk).
(iv) Bold italic capital letters denote matrices (F k, Hk, Q k, Rk, Bk , P k , Lk , Mk).

Consider a nonlinear dynamical system as shown in Fig. 1. Mathematically, it can be represented as

xk = fk−1(xk−1, uk−1,vk−1), (1)

zk = hk(xk,wk), (2)

where xk ∈Rn denotes the state vector and zk ∈Rp is the measurement vector at time k, fk(.) :Rn ×Rd →Rn and hk(.) :Rn ×Rl →Rp

are the nonlinear functions of the nonlinear dynamical system. uk is the known input vector. vk ∈ Rd and wk ∈ Rl are the process noise 
and measurement noise respectively, having zero mean white Gaussian noise with covariance Q k and Rk respectively. Expand equations 
(1) and (2) using Taylor series expansion, we have

xk ≈ fk−1(x̂k−1|k−1) + F k−1(xk−1 − x̂k−1|k−1) + Lk−1(�vk−1), (3)

zk ≈ hk( fk−1(x̂k−1|k−1)) + Hk(xk − fk−1(x̂k−1|k−1)) + Mk(�wk), (4)

where �xk−1 = xk−1 − x̂k−1|k−1 and �xk = xk − x̂k|k−1 = xk − fk−1(x̂k−1|k−1) for every �xk−1, �vk−1, �xk and �wk , where

F k−1 = ∂ fk−1(x̂k−1|k−1)

∂xk−1
, (5)

Lk−1 = ∂fk−1(x̂k−1|k−1)

∂vk−1
, (6)

Hk = ∂hk(fk−1(x̂k−1|k−1))

∂xk
, (7)

Mk = ∂hk(fk−1(x̂k−1|k−1))

∂wk
. (8)

Steps involved in EKF algorithm are as shown in Table 3.
The EKF algorithm gives the best estimates if following assumptions are fulfilled:

• Matrices wk and vk have small norms;
• Initial estimates are equal to actual state of the system;
• Nonlinear functions fk(.) and hk(.) are mildly nonlinear functions;
3
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Fig. 2. EKF algorithm flowchart.

Table 3
Summary of EKF algorithm for nonlinear dynamical system.

Algorithm 1: Extended Kalman filter.

Initialization:
Initialize P k−1|k−1, x̂k−1|k−1, Q k−1 and Rk .
Prediction step:
Calculate F k−1 and Lk−1 using (5) and (6) respectively.
Calculate predicted mean x̂k|k−1
x̂k|k−1 = fk−1(x̂k−1|k−1, uk−1).
Evaluate the predicted covariance P k|k−1:
P k|k−1 = F k−1 P k−1|k−1 F T

k−1 + Lk−1 Q k−1 LT
k−1.

Update step:
Calculate Hk and Mk using (7) and (8) respectively.
Compute the Kalman gain K k:

K k = P k|k−1 H T
k

[
Hk P k|k−1 H T

k + Mk RkMT
k

]−1
.

Compute estimated mean x̂k|k:
x̂k|k = x̂k|k−1 + K k[zk − hk(x̂k|k−1)].
Compute the estimated covariance P k|k:
P k|k = [I − K k Hk] P k|k−1.

where (k|k −1) and (k|k) denote a prior estimate and post estimate, respectively. I is the identity matrix. The time prediction step consists 
of computing the state projection and error covariance estimation. Measurement update step (correction step) consists of computing the 
Kalman gain, state correction, and covariance update. Kalman gain is used to correct the expected state. In this step, observed measure-
ments and expected values are compared for state correction and covariance estimation. The steps involved in the EKF algorithm using 
flowchart are as shown in Fig. 2.

3. Fractional-order calculus

Fractional order calculus was introduced in 1695 by Leibniz, and it attracted several researchers due to its various advantages. In the 
literature, mainly, Grünwald-Letnikov, Riemann-Liouville, and Caputo defined fractional-order calculus integral form [33]. Amongst these 
three, Grünwald-Letnikov definition for fractional-order derivative can be used for state estimation of any nonlinear dynamical system due 
to its compatibility with various filtering methods [34]. Mathematically, it can be expressed as

Dαx(t) = lim
τ→0

1

τα

t
T∑

j=0

(−1)α〈α, j〉x(t − jτ ), (9)

where Dα and α denote the integral-differential operator and integral-differential order, respectively. t
T is the memory length. 〈α, j〉 is 

the Newton Binomial coefficient which is formulated as

〈α, j〉 = �(α + 1)

�( j + 1)(α − j + 1)
, (10)

where �(.) is the Gamma function, mathematically it is expressed as

�(α) =
∞∫

ζα−1 e−ζ dζ. (11)
ζ=0

4



R. Bansal, A. Kumar, A.K. Singh et al. Digital Signal Processing 112 (2021) 103001
Table 4
State variable description.

Source State variable Description

Bat x1 Susceptible bats
x2 Exposed bats
x3 Infected bats
x4 Removed bats

Hosts x5 Susceptible hosts
x6 Exposed hosts
x7 Infected hosts
x8 Removed hosts

People x9 Susceptible people
x10 Exposed people
x11 Symptomatic infected people
x12 Removed people
x13 Asymptomatic infected people
x14 SARS-CoV-2 in reservoir

Table 5
Parameter description.

Source Parameter Description

Bats nB Birth rate of bats
mB Death rate of bats
μB Number of newborn bats

1
ωB

The incubation period of bats
1
γB

Infectious period of bats

Hosts nH Birth rate of hosts
mH Death rate of hosts
μH Number of new hosts

1
ωH

The incubation period of hosts
1

γH
Infectious period of hosts

People 1
ω′

P
Latent period of people

mP Death rate of people
1

ωP
The incubation period of people

1
γ ′

P
Infectious period symptomatic infection of people

1
γP

Infectious period asymptomatic infection of people

Transmission 
from one source 
to another 
source

βB Transmission rate from infectious bats to susceptible bats
βB H Transmission rate from infectious bats to susceptible hosts
βH Transmission rate from infectious hosts to susceptible hosts
βP Transmission rate from infectious people to susceptible people
βW Transmission rate from infectious people from reservoir to susceptible people
βW Transmission rate from infectious people from reservoir to susceptible people
1
ε Virus lifetime in reservoir

Continuous time Grünwald-Letnikov fractional-order derivative has the disadvantage that it can not be operated and implemented on com-
puter software as it is infinite dimensional. To get over infinite dimensionality, Grünwald-Letnikov fractional-order derivative is converted 
to discrete form and reduced to finite dimensional form. Therefore, equation (9) is formulated as

Dαxk = 1

τα
xk + 1

τα

L∑
j=0

(−1)α〈α, j〉xk− j. (12)

4. State space modeling of BHRP transmission network model

Fig. 3 shows SEIR compartmental model [47], which is based on the clinical progression of the COVID-19. The SEIR model is parameter-
ized in accordance with increase in the number of confirmed cases. The stability of fractional-order SEIR is presented in [48]. Reproduction 
number R0 denotes the estimated transmission of the disease.

BHRP model is based on the fact that viruses are transmitted among the bats, and it is transmitted to unknown hosts. These hosts were 
sent to the seafood market, which was called the reservoir of the COVID-19. Then, it is transmitted to local people, as shown in Fig. 4. 
Description of state variables x1, x2...x14 and parameters is as shown in Table 4 and Table 5 respectively. In the proposed generalized SEIR 
based model, there is the potential presence of unparameterized disease thresholds for both the infected and infectious populations. It 
should be noted that the total people and infectious people can be directly known by inspecting the day-to-day disease effects by directly 
taking the required data.

Based on the SEIR model, BHRP model may be obtained. Nonlinear dynamic equations for the SEIR model for bats are

dαx1
α

= μB − mB x1 − βB x1 x3, (13)

dt

5
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Fig. 3. SEIR model.

Fig. 4. BHRP model.

dαx2

dtα
= x2(−w B − mB) + βB x1 x3, (14)

dαx3

dtα
= x3(−γB + mB) + w B x2, (15)

dαx4

dtα
= −x4mB + γB x3. (16)

Similarly, dynamic equations for hosts are

dαx5

dtα
= μH − mH x5 − βB H x5 x3 − βH x5 x7, (17)

dαx6

dtα
= x6(−w H − mH ) + βS H x5 x3 + βH x5 x8, (18)

dαx7

dtα
= x7(−γH − mH ) + w B x2, (19)

dαx8

dtα
= −x8mH + γH x7. (20)

Dynamic equations for transmissibility from people are

dαx9
α

= μP − mP x9 − βw x9 x14 − βP x9 (x11 + ξ x13), (21)

dt

6
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dαx10

dtα
= x10(−w ′

P − mP ) + βw x9 x14 + βP x9 x11 + βP ξ x9 x13 − w P (1 − δP ), (22)

dαx11

dtα
= x11(−γP − mP ) + w P (1 − δP )x10, (23)

dαx12

dtα
= −x12mP + γP x11 + γ ′

P x13, (24)

dαx13

dtα
= x13(−γ ′

P − mP ) + w ′
P δP x10, (25)

dαx14

dtα
= α x14

x7

NH
+ w ′

P δP x10 + μP x11 + μ′
P x13 − εx14. (26)

SIER based model consists of susceptible people (x9), exposed people (x10), symptomatic infected people (x11), asymptomatic infected 
people (x13), and removed people (x12) including recovered and death people. The birth rate and death rate of people were defined as nP

and mP . In this model, we set μP = nP × N P where N P denotes the total number of people. The incubation period and latent period of 
people infection was defined as 1

ωP
and 1

ω′
P

.

Total number of infected people due to the COVID-19 are

z = x11 + x13 + x14. (27)

The above dynamic equations (13) to (27) combined to give BHRP model. Vector form of above BHRP model based fractional-order 
differential equations are

dαx(t)

dtα
= F x(t) + B(1)u1(t) + B(2)u2(t) + B(3)u3(t) +Z(t), (28)

z = Hx(t), (29)

where x = [
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

]T
,

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1 0 0 0 0 0 0 0 0 0 0 0 0 0
βB x3 F2 0 0 0 0 0 0 0 0 0 0 0 0

0 w B F3 0 0 0 0 0 0 0 0 0 0 0
0 0 γB F4 0 0 0 0 0 0 0 0 0 0
0 0 0 0 F5 0 0 0 0 0 0 0 0 0
0 0 0 0 βB H x3 + βH x8 F6 0 0 0 0 0 0 0 0
0 w B 0 0 0 0 F7 0 0 0 0 0 0 0
0 0 0 0 0 0 γH F8 0 0 0 0 0 0
0 0 0 0 0 0 0 0 F9 0 0 0 0 0
0 0 0 0 0 0 0 0 F10 F11 0 0 0 0
0 0 0 0 0 0 0 0 0 w P (1 − δP ) F12 0 0 0
0 0 0 0 0 0 0 0 0 0 γP F13 γ ′

P 0
0 0 0 0 0 0 0 0 0 w ′

P δP 0 0 F14 0
0 0 0 0 0 0 0 0 0 w ′

P δP μP 0 μ′
P F15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where F1 = −mB − βB x3, F2 = −w B − mB , F3 = −γB + mB , F4 = −mB , F5 = −mH − βB H x3 − βH x7, F6 = −w H − mH , F7 = −γH − mH , 
F8 = −mH , F9 = −mP − βw x14 − βP (x11 + ξ x13), F10 = βw x14 + βP x11 + βP ξx13, F11 = (−w ′

P − mP ), F12 = (−γP − mP ), F13 = −mP , 
F14 = (−γ ′

P − mP ), F15 = −ε + α x7
NH

.

B1 = [
1 0 0 0 0 0 0 0 0 0 0 0 0 0

]T
,

B2 = [
0 0 0 0 1 0 0 0 0 0 0 0 0 0

]T
,

B3 = [
0 0 0 0 0 0 0 0 1 0 0 0 0 0

]T
,

u1 = μB , u2 = μH , u3 = μP ,

Z = [
0 0 0 0 0 0 0 0 0 −w P (1 − δP ) 0 0 0 0

]T
,

H = [
0 0 0 0 0 0 x7 0 0 0 1 0 1 1

]T
.

Consider R0 as reproduction number of infected people of the COVID-19. Using next generation matrix method, we can express R0 for 
the BHRP model as

R0 = βP
μP

mP

(1 − δP )w P

(w P + mP )(γP + mP )
+ βP ξ

μP

mP

δP w P

(w P + mP )(γ ′
P + mP )

+ βw
μP

mP

(1 − δP )ξ w P

(γP + mP )(γw + mP )ε
. (30)

Euler-Maruyama method has been used to obtain discrete time state space equation using tk − tk−1 = T S such that

F k = eF (tk−tk−1) ≈ I + F T S , (31)
7
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Bk =
tk∫

tk−1

eF (tk−τ ) Bdτ ≈ BT S , (32)

where Ts is the sampling time [49].

5. Applying EKF to BHRP transmission network model

Discrete time equations of (13)-(26) and (30) in the form of state space model can be formulated as

xk = fk−1(xk−1, uk−1), (33)

zk = hk(xk), (34)

where

F k−1 = ∂αfk−1(x̂k−1|k−1, uk−1)

∂xα
k−1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α + T α
s F1 0 0 0 0 0 0 0 0 0 0 0 0 0

βB x3 α + T α
s F2 0 0 0 0 0 0 0 0 0 0 0 0

0 w B 1 + T α
s F3 0 0 0 0 0 0 0 0 0 0 0

0 0 γB α + T α
s F4 0 0 0 0 0 0 0 0 0 0

0 0 0 0 α + T α
s F5 0 0 0 0 0 0 0 0 0

0 0 0 0 βB H x3 + βH x8 α + T α
s F6 0 0 0 0 0 0 0 0

0 w B 0 0 0 0 α + T α
s F7 0 0 0 0 0 0 0

0 0 0 0 0 0 γH α + T α
s F8 0 0 0 0 0 0

0 0 0 0 0 0 0 0 α + T α
s F9 0 0 0 0 0

0 0 0 0 0 0 0 0 F10 α + T α
s F11 0 0 0 0

0 0 0 0 0 0 0 0 0 w P (1 − δP ) α + T α
s F12 0 0 0

0 0 0 0 0 0 0 0 0 0 γP α + T α
s F13 γ ′

P 0
0 0 0 0 0 0 0 0 0 w ′

P δP 0 0 α + T α
s F14 0

0 0 0 0 0 0 0 0 0 w ′
P δP μP 0 μ′

P α + T α
s F15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B(1)

k−1 = ∂αfk−1(x̂k−1|k−1, uk−1)

∂uα
1

= [
T α

s 0 0 0 0 0 0 0 0 0 0 0 0 0
]T

,

B(2)

k−1 = ∂αfk−1(x̂k−1|k−1, uk−1)

∂uα
2

= [
0 0 0 0 T α

s 0 0 0 0 0 0 0 0 0
]T

,

B(3)

k−1 = ∂αfk−1(x̂k−1|k−1, uk−1)

∂uα
3

= [
0 0 0 0 0 0 0 0 T α

s 0 0 0 0 0
]T

,

Zk−1 = [
0 0 0 0 0 0 0 0 0 −T α

s w P (1 − δP ) 0 0 0 0
]T

.

EKF algorithm has been implemented to the discrete equations by adding process noise vk and measurement noise wk to (33) and (34)
respectively,

xk =F k−1xk−1 + B(1)

k−1u1 + B(2)

k−1u2 + B(3)

k−1u3 +Zk−1 +
L∑

l=2

(−1)l�α
l xk−l+1 + vk, (35)

zk = Hkxk + wk. (36)

6. Kronecker product based fractional-order system representation using WT method

Formalism of the measurement model is

dz(t)

dt
= Hx(t) + σN(t), (37)

where
8
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H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

N(t) denotes the zero mean white Gaussian process. x(t) can be expanded using wavelet basis as

x(t) =
∑

N1≤i≤N2,kmin(i)≤k≤kmax(i)

c(i,k)ψi,k(t), (38)

where resolution range [N1, N2] depends on frequency of operation and the measured time duration and the mother wavelet ψi,k(t) is 
given by

ψi ,k(t) = 2
i
2 ψ(2i t − k). (39)

Mother wavelet in WT method can be reconstructed from the ‘scaling sequence’ for different type of wavelets (Daubechies wavelet, 
Haar wavelet, Shannon wavelet etc.) which have specific properties required for specific kinds of applications. Daubechies wavelets are 
discrete time orthogonal wavelets in which the scaling and the wavelet functions have longer supports, which offers improved capability 
of these transformations. These transformations offer powerful tool for various signal processing such as compression, noise removal, 
image enhancement etc. Let mother wavelet range is [a, b], ω1 and ω2 denote the lowest and the highest frequency of operation. Consider 
[0, τ ] is the measurement time span. Then, for a specified resolution index i, the extent of the transition index k is chosen such that a ≤
2i t −k ≤ b, t ∈ [0, τ ]. Therefore, 2i t −b ≤ k ≤ 2i, t −a, t ∈ [0, τ ] or −b ≤ k ≤ 2i T −a, t ∈ [0, τ ]. Wavelet frequency �n,k(t) is mathematically 
expressed as∣∣∣∣∣

dψn,k(t)
dt

ψn,k(t)

∣∣∣∣∣ = 2n
∣∣ψ ′(2nt − k)

∣∣
|ψ(2nt − k)| ∈ [2nζmin,2nζmax], (40)

where

ζmax = max
t

|ψ ′(t)|
|ψ(t)| , (41)

ζmin = min
t

|ψ ′(t)|
|ψ(t)| , (42)

so the resolution indexes N1, N2 must be chosen such that

2N2ζmax ≈ ω2

2π
, (43)

2N1ζmin ≈ ω1

2π
, (44)

or

N1 ≈ log2

(
ω1

2πζmin

)
, (45)

N2 ≈ log2

(
ω2

2πζmax

)
. (46)

Now, resolution index range is selected using this method enables us to reserve lesser data for estimation purpose i.e., estimation is done 
using compression. The wavelet method is applied either directly to estimate the entire set of the state variables or another way is to 
formulate a square non-singular matrix. The latter case is formulated as

x(t) ≈ H−1Dαz(t), (47)

and so

D2αz(t) ≈ HDαx(t)

≈ HF x(t) +H(B1u1(t) + B2u2(t) + B3u3(t)) +HZ(t). (48)
9
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The signals Dαz(t) and D2αz(t) are expressed using wavelets as

Dαz(t) ≈
∑
i,k

cDαz(t)[i,k]ψi,k(t), (49)

D2αz(t) ≈
∑
i,k

cD2αz(t)[i,k]ψi,k(t). (50)

Substituting (49) and (50) into (48) and neglecting noise terms, we get∑
i,k

cD2αz(t)[i,k]ψi,k(t) ≈
∑
i,k

HFH−1cDαz(t)[i,k]ψi,k(t) +HB1u1(t) +HB2u2(t) +HB3u3(t) +HZ(t), (51)

where

cDαz(t)[i,k] ≈
T∫

0

Dαz(t)ψi,k(t)dt =< Dαz,ψi,k >= Dαz[i,k]. (52)

Now, the inner product is computed with ψp,q on (51) can be written as∑
i,k

cD2αz[i,k] < ψi,k,ψp,q >≈
∑
i,k

HFH−1cDαz[i,k] < ψi,k,ψp,q > +HB1u1[p,q] +HB2u2[p,q]

+HB3u3[p,q] +HZ[p,q], (53)

where the input u(t) = ∑
u[i, k]ψi,k(t), i.e. u[i, k] =< u, ψi,k >. Equation (53) can be formulated as

cD2αz[p,q] =
∑
i,k

m1[p,q|i,k] cDαz[i,k] + δ
∑

i,k,m,r

m2[p,q|i,k,m, r](cDαz[i,k] ⊗ cDαz[m, r]) +
∑
i,k

m3[p,q|i,k]u[i,k], (54)

where m1, m2 and m3 are formulated in terms of H, F , B1, B2, B3. m1, m2 depend on �, so we write

cD2αz[p,q] =
∑
i,k

m1[p,q|i,k,�]cDαz[i,k] + δ
∑

i,k,m,r

m2[p,q|i,k,m, r,�](cDαz[i,k] ⊗ cDαz[m, r]) +
∑
n,k

m3[p,q|i,k]u[i,k]. (55)

Now, the perturbation method is used to retain O(δ2) terms as

cD2αz[i,k] = c(0)

D2αz
[i,k] + δc(1)

D2αz
[i,k] + δ2c(2)

D2αz
[i,k] +O(δ3). (56)

Comparing the coefficients of δ(0) , δ(1) , δ(2) respectively gives

c(0)

D2αz
[p,q] =

∑
i,k

m1[p,q|i,k,�]c(0)
Dαz[i,k] +

∑
i,k

m3[p,q|i,k,�]u[i,k], (57)

c(1)

D2αz
[p,q] =

∑
i,k,m,r

m2[p,q|i,k,m, r](c(0)
Dαz[i,k] ⊗ c(0)

Dαz[m, r]) + m1c(1)
Dαz[p,q|i,k]

�=m2(c(0)
Dαz ⊗ c(0)

Dαz)[p,q] + m1c(1)
Dαz[p,q], (58)

c(2)

D2αz
[p,q] = m1c(2)

Dαz[p,q] + m2(c(0)
Dαz ⊗ c(1)

Dαz + c(1)
Dαz ⊗ c(0)

Dαz)[p,q], (59)

where c(0)

Dαz[i, k], c(1)

Dαz[i, k] and c(2)

Dαz[i, k] are obtained from WT of Dαz(0)[i, k], Dαz(1)[i, k] and Dαz(2)[i, k] respectively by equating 
O(δ0), O(δ1) and O(δ2) variations expressed in z(t). ⊗ is the Kronecker product of two matrices.

Thus, we can use gradient search algorithm to estimate � to minimize

ξ(�) =
∑
p,q

||cD2αz[p,q] −
∑
n,k

m1[p,q|i,k,�]cDαz[i,k] −
∑

i,k,m,r

m2[p,q|i,k,m, r,�]

× (cDαz[i,k] ⊗ cDαz[m, r]) −
∑
i,k

m3[p,q|i,k]u[i,k]||2. (60)

7. Results and discussion

The mathematical model proposed here is a generalized method that can be applied to any population under different scenarios. In 
this work, we have applied the proposed model to estimate the number of infected and the recovered people due to COVID-19 in India 
and China. Figs. 5 to 11 depict the number of estimated infected people and recovered people using FOC-based EKF method and WT 
method, and it is compared with the actual number of infected people and recovered people [50]. The values of the parameters used for 
the estimation are: The incubation period is set to 5.2 days, i.e. 95% confidence interval is 4.1-7.0, ωP = ω′

P = 0.1923, the mean infectious 
period of the cases as 5.8 days i.e. γP = 0.076, δP = 0.50. The transmission rate from infectious people to susceptible people (βP ) is 
0.31. Transmissibility of symptomatic infection is considered to be twice the transmissibility of asymptomatic infection; thus, ξ = 0.5. 
ε = 0.1. The reproduction number during this period for India and China is found to be 3.85 and 2.74, respectively. Parameters γP and 
10
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Fig. 5. Estimation of infected and recovered people in India using SEIR model based EKF and WT method for γP = 0.076, βP = 0.31. Fractional parameter α = 1. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 6. Estimation of infected and recovered people in India using SEIR model based EKF and WT method for γP = 0.076, βP = 0.31. Fractional parameter α = 1.82.

βP are controlling the estimation of the infected and the recovered population using EKF and WT method and any change in these 
parameter values leads to a significant change in the infected and the recovered population. The about fact is as shown in Fig. 5 and 
Fig. 7, which depict the estimation of infected people and recovered people using EKF and WT method as γP and βP change from 0.076 
to 0.042 and 0.31 to 0.25, respectively. Change in fractional order parameter value also affecting the estimation as shown in Fig. 6 and 
Fig. 8.

The comparison of estimation using different values of fractional parameter α is presented in Fig. 9. The fractional-order parameter 
value α = 1.82 gives better estimates as compared to α = 1.0 (conventional EKF and WT method). Fig. 10 shows the estimation of infected 
and recovered people in China using EKF and WT methods for a fixed value of γP = 0.002, βP = 0.16, and α = 1.82. It is observed that 
the EKF method gives better estimates than the WT method. A comparison of the proposed BHRP-based SEIR model with the conventional 
SEIR model for China has been demonstrated in Fig. 11. It is noted that the proposed model outperforms the standard SEIR model for 
the initial estimation, which further merges with the standard model. This is because, initially, the spreading of coronavirus in China 
was due to bats, host, and reservoir, so their parameters’ effect was more significant. This effect of bats, host, and reservoir parameters 
got diminished in further spreading of COVID-19 due to the dominance of human transmission. The estimation accuracy of the methods 
discussed in the preceding sections can be calculated in terms of symmetric mean absolute percentage error (SMAPE) [51] as

SMAPE[k] = 1

N

N∑ |zi[k] − ẑi[k]|
(zi[k] + ẑi[k])/2

, (61)

i=1

11
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Fig. 7. Estimation of infected and recovered people in India using SEIR model based EKF and WT method for γP = 0.042, βP = 0.25. Fractional parameter α = 1.

Fig. 8. Estimation of infected and recovered people in India using SEIR model based EKF and WT method for γP = 0.042, βP = 0.25. Fractional parameter α = 1.82.

Table 6
SMAPE for the estimation of infected people using EKF and WT method.

Country Parameter values EKF method WT method

α = 1 α = 1.50 α = 1.82 α = 1 α = 1.50 α = 1.82

India γP = 0.042, βP = 0.25 0.00143 0.00138 0.00131 0.00157 0.00154 0.00148
India γP = 0.076, βP = 0.31 0.00145 0.00140 0.00136 0.00161 0.00162 0.00151
India γP = 0.090, βP = 0.40 0.00148 0.00145 0.00140 0.00166 0.00164 0.00161
China γP = 0.003, βP = 0.16 0.00126 0.00118 0.00110 0.00252 0.00248 0.00262
China γP = 0.005, βP = 0.19 0.00135 0.00120 0.00113 0.00261 0.00257 0.00261
China γP = 0.007, βP = 0.22 0.00144 0.00131 0.00128 0.00266 0.00264 0.00262

where N is the number of samples, zi[k] and ẑi[k] are the cumulative number of cases and estimated number of cases, respectively, 
for region i at time k. Table 6 and Table 7 show the SMAPE for the estimation of infected and recovered people using EKF and WT 
methods for India and China for various values of system parameters. It is clear from the results that the FOC-based EKF method gives 
better performance than the conventional EKF and the WT methods. This is due to the fact that EKF uses the stochastic approach for the 
estimation; i.e., it considers both the measurement noise and the process noise in which states are Markov process. Moreover, EKF gives 
the joint evaluation of conditional mean and conditional error covariance; therefore, it gives better estimates.
12
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Fig. 9. Estimation of infected and recovered people in India using SEIR model based EKF for different value of fractional parameter.

Fig. 10. Estimation of infected and recovered people in China using SEIR model based EKF and WT method for γP = 0.002, βP = 0.16. Fractional parameter α = 1.82.

Table 7
SMAPE for the estimation of recovered people using EKF and WT method.

Country Parameter values EKF method WT method

α = 1 α = 1.50 α = 1.82 α = 1 α = 1.50 α = 1.82

India γP = 0.042, βP = 0.25 0.00150 0.00149 0.00145 0.00170 0.00167 0.00160
India γP = 0.076, βP = 0.31 0.00153 0.00151 0.00148 0.00173 0.00165 0.00162
India γP = 0.090, βP = 0.40 0.00160 0.00158 0.00155 0.00175 0.00173 0.00170
China γP = 0.003, βP = 0.16 0.00137 0.00130 0.00122 0.00264 0.00260 0.00273
China γP = 0.005, βP = 0.19 0.00145 0.00132 0.00124 0.00269 0.00268 0.00265
China γP = 0.007, βP = 0.22 0.00156 0.00140 0.00139 0.00276 0.00275 0.00272

General remarks

1. When non-Gaussian component is added with the Gaussian distribution of measurement noise, it is called as outlier. EKF can be 
formulated for this condition also. As EKF is derived from Kushner filter’s equation for which the states are Markovian and the 
measurement noise considered as Gaussian process. When the measurement noise is non-white Gaussian process, nonlinear EKF 
can be formulated which is based on the Bayesian method for computing the conditional probabilities using non-Gaussian probability 
13
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Fig. 11. Estimation of infected people using EKF method based on conventional SEIR model and BHRP-based SEIR model.

density functions. This follows the fact, for non-Gaussian measurement noise, the states are Markovian. First discretize the state model 
as

χn+1 = f(χn, un+1) + vn+1, (62)

y(n) = h(χn) + wn, (63)

yn = {y(n) : k ≤ n}, (64)

p(χn+1|yn+1) = p(χn+1,yn+1)

p(yn+1)
= p(y(n + 1),yn,χn+1)

p(yn+1)
(65)

=
∫

p(y(n + 1)|χn+1)p(χn+1|χn)p(χn|yn)dχn∫
p(y(n + 1)|χn+1)p(χn+1|χn)p(χn|yn)dχndχn+1

(66)

=
∫

pwn+1(y(n + 1) − h(χn+1))pvn+1(χn+1 − f(χn, un+1))p(χn|yn)dχn∫
pwn+1(y(n + 1) − h(χn+1))pvn+1(χn+1 − f(χn, un+1))p(χn|yn)dχndχn+1

(67)

χ̂n+1|n+1 = argmax
χ

∫
pwn+1(y(n + 1) − h(χ))pvn+1(χ − f(χn, un+1))p(χn|yn)dχn. (68)

Using these Bayesian arguments, we can develop the nonlinear filter, when states are arbitrary Markovian process and measurement 
noise is non-Gaussian process. It should be noted that in our notation, y(n) is the instantaneous measurement at the time n, while 
yn = {yk : k ≤ n} is the aggregate of all measurements taken up to time n.

2. Large measurement noise (R) leads to bad estimates in EKF method. However, small value of R leads to large R−1 which cause 
numerical instability. On the other hand, application of gradient search algorithm has computational limitations as matrix F (�) is 
highly nonlinear dependence of parameter �.

8. Conclusions

This paper presents the transmissibility and recovery estimation of COVID-19 using the FOC-based EKF and WT methods. The EKF 
considers measurement and process noise into consideration, which gives better accuracy, while Kronecker product-based WT utilizes the 
property of scaling/resolution over different-time slots, which results in the compression of data. The importance of proposed models lies 
in the fact that these models can accommodate conventional EKF and WT methods as their special cases. Further, the estimated number 
of infected people and recovered people has been compared with the actual number of infected people and recovered people in India and 
China. Furthermore, the estimation accuracy of the proposed models is obtained in terms of SMAPE forecast errors. It is concluded that 
the FOC-based EKF method gives better performance than the conventional EKF and WT methods.
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