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Abstract

Respiratory motion poses a major challenge in lung radiotherapy. Based on 4D CT images, a 

variety of intensity-based deformable registration techniques have been proposed to study the 

pulmonary motion. However, the accuracy achievable with these approaches can be sub-optimal 

because the deformation is defined globally in space. Therefore, accuracy of the alignment of local 

structures may be compromised. In this work, we propose a novel method to detect a large 

collection of natural junction structures in the lung and use them as the reliable markers to track 

the lung motion. Specifically, detection of the junction centers and sizes is achieved by analysis of 

local shape profiles on one segmented image. To track the temporal trajectory of a junction, the 

image intensities within a small region of interest surrounding the center is selected as its 

signature. Under the assumption of the cyclic motion, we describe the trajectory by a closed B-

spline curve and search for the control points by maximizing a metric of combined correlation 

coefficients. Local extrema are suppressed by improving the initial conditions using random walks 

from pair-wise optimizations. Several descriptors are introduced to analyze the motion trajectories. 

Our method was applied to thirteen real 4D CT images. More than 700 junctions in each case are 

detected with an average positive predictive value of greater than 90%. The average tracking error 

between automated and manual tracking is sub-voxel and smaller than the published results using 

the same set of data.
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I. INTRODUCTION

Lung respiratory motion is a complex biomechanical process (Tustison et al. 2011). The 

lung is a soft and elastic organ, consisting of bronchi, bronchioles and alveolar ducts, 

surrounded by alveoli and blood vessels. The movement of pulmonary tissue is driven by 
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contraction and expansion of muscles in the diaphragm and chest wall. The motion is 

heterogeneous, i.e. the lung deforms spatially in different magnitude and direction. The 

deformation is also discontinuous, manifested as relative sliding between the lung and the 

chest wall, as well as between lobes. In addition, the motion is nonlinear and hysteretic, 

leading to distinct paths during inhalation and exhalation. Furthermore, physiologic motion 

patterns are patient-specific and even non-stationary.

In recent years, a number of 4D CT procedures have been developed by sorting the CT data 

to corresponding phases or amplitudes from multiple respiratory cycles according to 

simultaneously recorded internal or external respiratory signals (Ford et al. 2003; Low et al. 

2003; Rietzel et al. 2005). The acquired images encode motion information with high spatial 

resolution and moderate temporal resolution. Respiratory motion is closely related to the 

function of the lung and a detailed knowledge of lung motion is thus valuable in diagnosis 

and prognosis by itself. Clinically, accurate motion information is also vital in radiotherapy 

to reduce healthy tissue irradiation while allowing target dose escalation (Xing et al. 2006). 

In radiation therapy treatment planning, for example, it is crucial to determine the motion 

extent and define appropriate margins to ensure adequate dose coverage. In the delivery 

stage, radiation beam is ideally gated or tracked with respective to the motion information 

derived from 4D CT data and online internal or external respiratory surrogates.

Deformable registration (Maintz and Viergever 1998) is the most common way to align 

deforming structures in 4D images and to derive the motion (Li et al. 2008; Xing et al. 2009; 

Xing et al. 2007). In this approach, homologous correspondences are established by 

satisfying optimal similarity metrics under proper regularization through explicit iterative 

processes or by analytical constructions. For deformable lung registration, there are two 

major categories in terms of the definition of the similarity: One is intensity-based, which 

aims at diminishing the mismatch of dense image intensities. The metrics widely used are 

the mean squared difference (MSD), the correlation coefficient (CC), and the mutual 

information (MI). A metric of sum squared tissue volume difference was also developed 

(Yin et al. 2011; Yin et al. 2009) to improve lung registration in regions lack of structural 

landmarks by particularly considering intensity changes during breathing. Depending on the 

applications, the metric can be defined over the whole image domain or in a region of 

interest (Chao et al. 2008; Chao et al. 2007). Lung deformation can be defined by either 

parametric or nonparametric transformations. The former approach parameterizes the spatial 

transform with a set of parameters and casts registration as a problem of optimization of the 

chosen metric. Parameterization with B-splines is common (McClelland et al. 2006; Rietzel 

and Chen 2006; Schreibmann and Xing 2006), while others, e.g. Fourier series (Amit 1994), 

piecewise affine (Collins and Evans 1997; Heath et al. 2007), and polyaffine (Arsigny et al. 

2005), are also proposed. On the other hand, the nonparametric approach defines the 

transform as a dense vector field and search the solution of the registration problem by 

solving a physical process, such as elastic solid (Davatzikos 1997), fluid flow (Foskey et al. 

2005), optical flow (Dougherty et al. 2003; Guerrero et al. 2004; Horn and Schunck 1981), 

demons (Sarrut et al. 2006; Thirion 1998), biomechanics (Sundaram and Gee 2005) and 

several others.
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Alternatively, landmark-based registration attempts to align the sparse paired landmarks, 

mostly points or sometimes curves or surfaces. Landmarks can be either feature-based or 

anatomy-based. The former identifies landmarks by searching for salient local intensity 

patterns, which may not be anatomically meaningful and thus hard to be interpreted and 

verified. Therefore, anatomy-based landmarks are often preferred when they are available 

and not difficult to be detected. Besides detection, a matching process must be followed to 

establish correspondences between landmarks on one image and another. Traditionally, this 

task is largely manual and thus is very subjective and error prone. In order to reduce manual 

procedures, computer-assisted and semi-automatic tools have been developed recently to 

successfully generate large numbers of paired landmarks (Murphy et al. 2011) for the sake 

of evaluation of registration performance. However, they are still relatively time-consuming 

and thus impractical for direct use in landmark-based registration, especially when 

considering many patients and each with 4D data. Finally, the deformations at the landmarks 

are extrapolated using thin plate spline (Bookstein 1989; Coselmon et al. 2004), elastic body 

spline (Davis et al. 1997; Kohlrausch et al. 2005) or moving least squares (Schaefer et al. 

2006) to obtain a dense deformation field. In both categories of registration, extra 

regularization constraints are proposed to favor a priori properties of the deformation, e.g. 

inverse consistency and diffeomorphism (Beg et al. 2005; Vercauteren et al. 2009).

To date, a majority of previous studies on quantification and analysis of pulmonary motion 

from 4D image data adopted a pair-wise registration paradigm. Some only considered the 

deformation between two distinct phases, e.g. the EMPIRE10 study (Murphy et al. in press), 

in which many state-of-the-art registration algorithms were evaluated using two phases at 

opposing ends of the breathing cycle. Others (e.g. (Boldea et al. 2008; Xie et al. 2009)) 

considered a series of deformations among all phases by registering either each phase to a 

reference phase, between consecutive phase pairs, or more expensively among any 

combination of phase pairs. Although these approaches provide an immediate extension 

from addressing paired data to 4D data, they do not take into account the order of the images 

in time and the temporal continuity is not imposed. Followed with the successful efforts in 

cardiac motion analysis (e.g. (Ledesma-Carbayo et al. 2005; McEachen et al. 2000; 

Perperidis et al. 2005; Peyrat et al. 2010; Sundar et al. 2009)), a few recent studies on 

pulmonary motion analysis have shifted towards a new and more natural paradigm of 

simultaneously registering images from all phases by incorporating the temporal dimension 

into the optimization metric and deformation representation. Metz et al. (Metz et al. 2011) 

proposed a generic free-form deformation model with B-spline parameterizations for both 

spatial and temporal dimensions. Optionally, cyclic motion can be smoothly imposed on the 

temporal dimension. Similar to the group-wise registration techniques, the MSD-based 

similarity metric is defined with respect to an implicit reference image instead of a reference 

image. Parallel to their work, Vandemeulebroucke et al. (Vandemeulebroucke et al. 2011) 

proposed a similar technique but the cyclic motion is either continuously or smoothly 

imposed. The MSD-based metric is defined with respect to a chosen reference image, in 

which the deformation is set to be zero. In both studies, the user-selected landmarks and 

those extracted from the resulted 4D deformation model were compared for the purpose of 

evaluation. Compared to aforementioned approaches based on dense image intensities, 

Castillo et al. proposed to separately register individual voxels from a subset chosen on a 
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coarse grid. The trajectory of a voxel is parameterized by a cubic polynomial. It is then 

calculated by performing nonlinear least squares fit to a local compressible flow equation. 

Cyclic motion is not imposed since only the expiratory trajectories are considered. Finally, 

the dense deformation field is generated by moving least squares. Again, the user-selected 

landmarks were utilized for evaluation.

In this paper, we propose a novel method to detect a large collection of natural junction 

structures in the lung and use them as the reliable markers to track the lung motion. The 

current work represents an substantial extension (improved method, more data, and further 

validation) to our preliminary results in Xiong et al. 2011. Junction structures, such as vessel 

and bronchial bifurcations, are abundantly distributed in the lung and visually apparent in 

4D CT images even without any contrast enhancement. They are the natural anatomy-based 

markers that can be reliably detected and verified. They may also serve as the noninvasive 

counterparts of the implanted fiducial markers (e.g. metal beads) for tumor tracking in image 

guided radiotherapy (Seppenwoolde et al. 2002). From the perspective of continuum 

mechanics, the junctions, as the material particles, follow the motion of the whole lung as a 

continuum, which realizes a Lagrangian description of the motion kinematics. We choose 

the landmark-based approach as opposed to the intensity-based approach partly because 

intensity information from both local and distant regions affects the local deformation in the 

latter approach, which may compromise the accuracy of aligning local structures. In 

addition, the common assumption of spatial smoothness regularizes the deformation but it 

contradicts the fact that the deformation is discontinuous close to the pleural surfaces and 

between lobes as mentioned. Instead of using the polynomial, we describe the motion 

trajectory of a junction by a B-spline space curve to avoid the oscillation effects due to the 

Runge’s phenomenon (Runge 1901) if the order is too high. The cyclic motion is explicitly 

imposed. Specifically, detection of the junction centers and sizes is achieved by analysis of 

local shape profiles on one segmented image. To track the temporal trajectory of a junction, 

the image intensities within a small region of interest surrounding the center is selected as its 

signature. Under the assumption of the cyclic motion, we describe the trajectory by a closed 

B-spline curve and search for the control points by maximizing a metric of combined 

correlation coefficients. Local extrema are suppressed by improving the initial conditions 

using random walks from pair-wise optimizations. To analyze the motion, several 

descriptors are introduced to characterize a trajectory.

II. METHODS

We start off by briefly describing our method for lung and vessel segmentation in Section II–

A.1. Next, an insight on local shape profiles of junctions is made and utilized to construct an 

automated junction detection algorithm in Section II–A.2. In Section II–B.1, we present how 

to parameterize an individual trajectory and mention its properties relevant to tracking. Then 

in Section II–B.2, we describe the similarity metric that can be used to measure how well the 

intensities along the trajectory match. Next in Section II–B.3, we introduce the optimization 

strategy and a special technique to suppress local minima, if found although rarely. Finally 

in Section II–B.4, quantitative descriptors of tracked trajectories are introduced.
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A. Lung Junction detection

A.1 Lung and Vessel Segmentation—This step is only performed on one reference 

image (e.g. at the maximal inhale phase) of a 4D CT dataset. Lung region is segmented 

using thresholding and morphological operations. The image is cropped to cover only the 

body region, which is denoted as I1
0. Denoting Hounsfield unit as [H.U.], it is then 

thresholded between low −900 [H.U.] and high −500 [H.U.] intensity values, yielding I1
1, 

which mainly contains the lung and part of the trachea close to its wall. To remove the 

trachea, I1
0 is thresholded below −900 [H.U.] with a seeding point, yielding I1

2. The seeding 

point is automatically detected by searching for the near-circular, air-filled region in the few 

slices of I1
0 by noting that it is sufficient as long as it is inside the trachea. I1

2 is then dilated 

using a sphere structuring element (SE) with a radius of 4 voxels, yielding I1
3, which will 

include the whole trachea including the part close to the wall. To remove the trachea, I1
1 is 

subtracted by I1
3, yielding I1

4, which contains the lung and a few small unwanted regions. To 

select the lung, I1
4 is decomposed by an analysis of connected components. Usually, the two 

components with the largest volumes correspond to the left and right lungs, denoted as I1
5. 

Sometimes, both lungs are connected because there is no clear boundary in certain spots 

between them. This case can be easily detected by comparing the ratio of the first and the 

second largest volume. No further separation is needed in our study. Since I1
5 has some large 

concavities due to bronchi penetrating into the lung around the helium and holes due to 

lower intensities of bronchioles and higher intensities of vessels inside the lung, it is closed 

using a sphere SE with a radius of 20 voxels, yielding I1
6. There may be small holes 

remaining in I1
6, which are filled iteratively (Soille 2003), yielding I1

7. Finally, I1
7 is eroded 

using a sphere SE with a radius of 2 voxels to remove the banding region close to the chest 

wall, yielding I1
8, which serves as the lung mask.

Using I1
8, I1

0 is masked to include only the lung region, yielding I1
9. To segment the 

pulmonary blood vessels, we propose a simple yet effective algorithm. The major challenge 

for this task is the nonuniform background caused by the partial volume effects. It manifests 

as higher intensities of big vessels around the helium than those of distal smaller ones. 

Therefore, a global thresholding is not applicable. Instead, we choose an adaptive 

thresholding strategy within a range of ambiguous intensities. First, a baseline threshold is 

determined from the intensities of I1
0 within I1

8 using Otsu’s method (Otsu 1979). That is, the 

voxels above baseline+25 [H.U.] are set to belong to vessels, while those below baseline-75 

[H.U.] are set to belong to background. Any voxel in this range is decided based on the 

difference between its intensity and the Gaussian blurred intensity calculated in the 

neighboring region. If the difference is greater than 10 [H.U.], the voxel is considered to 

belong to a vessel. To address the issue of various sizes of the vessels in the lung, we test for 

multiple widths of the Gaussian kernel: 3, 4, and 5 voxels. If any test is positive, the voxel of 

interest is considered to belong to a vessel. The resultant binary image from adaptive 

thresholding is denoted as I1
10, from which any disconnected component with less than 10 
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voxels is removed from further consideration, yielding I1
11. Finally, the well-composed 

property (Latecki et al. 1995) is enforced to ensure that there is no critical and nonrealistic 

configuration in the vessel segmentation, yielding I1
12. For a 3-D binary image, it is well-

composed if and only if the set of points in the pixel boundaries between the foreground and 

the background forms a 2-D manifold. Certain critical and nonrealistic configurations 

circumvent well-composedness whenever there are two neighboring background or 

foreground pixels that are 8-connected but not 4-connected.

Note that all the parameters mentioned in this section are set empirically and fixed in all of 

our experiments. Our lung and vessel segmentation method may be replaced by other 

methods (e.g. those reviewed in (Sluimer et al. 2006)). But one must be careful to use 

Hessian-based vessel enhancement methods (Frangi et al. 1998). If not designed properly, 

they tend to alter vessel sizes and more importantly they may weaken junction structures of 

interest while enhancing tubular structures. In addition, junctions are not isolated spheres 

and cannot be simply treated as blob structures and detected using the existing blob 

detection methods.

A.2 Detection by Analyzing Local Shape Profile—Our goal is to search for the 

center and size (defined by the minimal distance from the center to the boundary) for a large 

collection of junctions in the segmented reference image. The basic idea for junction 

detection comes from an insight of the unique characteristics of the local shape profile of a 

junction. There are three or more disconnected components inside the spherical shell 

between two concentric spheres of appropriate sizes at the center of a junction, whereas two 

or less at other locations (e.g. near/off the center of a tube, near/off the center of an endpoint, 

and off the center of a junction). Fig. 1(a) illustrates six typical cases in a synthetic 2D 

example.

To analyze the local shape profiles, the maximal distance d of a ray traveling within the 

object in the direction θ at different locations is plotted in Fig. 1(b). The portion of the 

object is separated into disconnected regions by the corresponding inner rin and outer rout 

radii of the two concentric spheres in Fig. 1(a). For a variety of scales of pulmonary vessels, 

it is important to determine the appropriate rin and rout that robustly differentiate junctions 

from other structures. Let dmin = minθ∈[0,2π) d(θ) and it indicates the scale of the structure. 

Then, rin >= dmin, because there is always only one disconnected region otherwise. To adapt 

to different scales, simple linear relations of αin = αindmin and rout = αoutdmin are chosen to 

make the spherical shell capture the size of a local shape, where αin and αout are user-

defined constants. Furthermore, αin should be larger than 1 by an amount related to the 

tolerance of commonly observed small bulges. In addition, αout should be larger than αin to 

make each disconnected component a sufficient size but not too large to save the 

computation cost. We empirically use αin = 3.0 and αout = 4.0 for all experiments.

Based on the insight of local shape profile, each candidate voxel within the object of interest 

in the image is checked whether it belongs to a junction. The distance dmin for all candidates 

can be obtained in one pass using a fast distance transform (Maurer et al. 2003). In practice, 

the approach to use Euclidean distance to find voxels between concentric spheres may result 
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in a wrong detection by generating three disconnected components when there is another 

non-contacting branch nearby (see e.g. Fig. 2(a)). Instead, the minimal distance from the 

candidate is employed. It is computed using the fast marching method seeded at the 

candidate (Sethian 1999), and modified to keep track of voxels inside the spherical shell. 

Then, these voxels are assigned to different components based on the connectedness. As 

mentioned before, the candidate with three or more disconnected components is considered 

as a junction point.

It should be noted that multiple candidates can belong to a particular junction due to similar 

profiles among voxels close to the center of a junction. Fortunately, those for a given 

junction are in the neighborhood of each other and can be easily clustered. For two 

candidates 1 and 2 as shown in Fig. 2(b), they are considered to be directly related and 

belong to the same junction if d1, 2 < max dmin
1 , dmin

2 . where d1,2 is the distance between two 

candidates. A cluster consists of all candidates that are directly and indirectly related. The 

candidate with the largest dmin in each cluster is chosen as the center of the junction and its 

dmin is the size of the junction.

To speed up the detection, it is sufficient to consider only the voxels close to the centerline 

of the object. Thus, the set of candidates is narrowed down to be C = {υ ∈ S |Dx(υ) ∨ Dy(υ) 

∨ Dz(υ)}, where S is the set of all voxels within the object in the image and Dx(υ) := D−x(υ) 

< D(υ) ∧ D+x(υ) < D(υ) with D(υ), D−x(υ), and D+x(υ)is the distance transform at the voxel 

υ and the adjacent voxels in both directions along x axis, respectively. Dy(υ) and Dz(υ) are 

defined similarly. Furthermore, all tests of candidates in C are independent with each other. 

Therefore, the algorithm for junction detection is parallelizable.

B. Junction Trajectory Tracking

B.1 Trajectory Parameterization—A B-spline curve is a sequence of lower-order 

polynomial curve segments that joins continuously (De Boor 2000). It is used here to 

represent the trajectory that fits the motion of the junction under smoothness regularization 

to suppress noises and artifacts. Thanks to the convex hull property of the B-spline curve, 

the oscillation effect by a single higher-order polynomial is avoided and the trajectory is 

completely bounded by the control polygon. Another advantage is that each control vertex 

only influences locally as a consequence of the compact support of B-spline basis functions. 

Without loss of generality, the fourth-order B-splines with periodic basis functions and 

uniform knot vectors are considered here. In addition, the assumption of cyclic motion from 

all images of the 4D data is explicitly imposed; i.e. the last image is temporally next to the 

first image. Note three repeated control vertices are placed at the end of the control polygon 

to close the curve and ensure the same order of smoothness at the joint of any two curve 

segments. Mathematically, the k-th curve segment (k = 1 … m) of the B-spline curve is

Ck(s) = [b0(s) b1(s) b2(s) b3(s)]

P(k + 0) mod m
P(k + 1) mod m
P(k + 2) mod m
P(k + 3) mod m

(1)
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[b0(s) b1(s) b2(s) b3(s)]T = 1
6

−1 3 −3 1
3 −6 0 4

−3 3 3 1
1 0 0 0

s3

s2

s
1

(2)

where, bh, h = 0…3 are the basis functions with Σh bh = 1, mod is the modulo, s ∈ [0,1) is 

the time fraction, and m is the number of curve segments, or equally, control vertices Pl, l = 

1...m. It determines the flexibility of the curve. Notice that m ∈ [4, n] is required, where n is 

the number of images in the 4D data. The choice of m depends on the complexity of the 

actual trajectory and the temporal resolution of the data. In the presence of noises and 

artifacts, smaller m is generally preferred when sufficient in order to avoid over-fitting. Fig. 

3 shows an example B-spline curve with m = 5 control vertices and n = 10 images.

Let Ii(x), i = 1…n denote the images in the 4D data. Assuming the images are evenly 

distributed in time and the interval is unity, the i-th image is at time t = i. For any 

intermediate time t ∈ [1,n + 1), the corresponding curve segment is k = m(t − 1)
n + 1  and the 

time fraction within the segment is s = k − m t − 1
n + 1  The derivatives of the position at s 

with respect to the support control vertices are the basis functions and zero for non-support 

control vertices, i.e.

∂Ck(s)
∂Pl

=
bℎ(s) if l = (k + ℎ) mod m, ℎ = 0…3

0 otherwise
(3)

B.2 Tracking by Optimizing Combined Correlation Coefficients—To find the 

corresponding points in other phased images, let the center of a junction detected in the 

reference image (t = r) be xc and its size be dc. Its trajectory due to respiratory motion is 

modeled as T(xc, t) = xc + Ck(s), where Ck(s) is the displacement from xc as defined in Eq. 

(1). An observation that we utilize to simplify the tracking problem is the shape of an 

individual junction, and the statistics of intensity values over the neighborhood region will 

not significantly change during the respiration. Therefore, the movement of any voxel xj in 

the neighborhood region N(xc) is assumed to be constant with respect to that of xc, i.e. the 

deviation between them stays constant as in the reference image

T (xj, t) − T (xc, t) = xj − xc, xj ∈ N(xc) (4)

where, the size of the region N(xc) is junction-specific and is chosen to be αneighbor, where 

αneighbor = 4.0 empirically. In addition, the voxels outside the lung mask are excluded from 

N(xc) since they may move quite differently from those inside due to the sliding motion.

We need to define a metric that measures the similarity among the intensity values Ii,(T(xj,i)) 
on the trajectory. Unlike the popular choice of mean squared intensity differences, we 

propose to use the sum of normalized correlation coefficients with subtracting means. There 

are two advantages compared to the former. One is the metric is bounded and suitable to 
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indicate the reliability of a tracked trajectory. The other is that it is insensitive to additive 

intensity fluctuations among the images, which are very common because of the density 

change of lung tissue due to ventilation, especially considering the neighborhood region at 

the junction center in our case. Mathematically, the metric with respect to the reference 

image Ir is

M(p) = ∑
i = 1

n
Mi(p) (5)

Mi(p) =
∑xj ∈ N(xc) (Ir(xj) − Ir)(Ii(T (xj, i)) − Ii)

∑xj ∈ N(xc) (Ir(xj) − Ir)
2∑xj ∈ N(xc) (Ii(T (xj, i)) − Ii)

2 (6)

where, p is a vector of the coordinates of all control vertices Pl, l = 1…m. The mean 

intensities Īr and Īi are computed in the reference image as Ir = 1
|N(xc)| ∑xj ∈ N(xc)Ir(xj) and 

in the i -th image as Ii = 1
N xc

∑xj ∈ N xc Ii T xj, i . It is straightforward to show that –n ≤ 

M(p) ≤ n. Ideally, the relation M(p) = n holds if the intensities on the trajectory perfectly 

correlate. In practice, two problems can cause the value of M(p) far away from n. One is that 

the original observation does not hold, i.e. the shape and intensities values of a junction 

change significantly. The other is that the tracking algorithm converges to local extrema. In 

fact, each individual Mi(p) (ideally equal to 1) also indicates the reliability of a tracked 

trajectory passing through the i-th image. There are possibilities when some Mi(p) close to 

one but others not.

Notice that in Eq. (5), the summation actually includes the contribution from the reference 

image Mr(p). In other words, the position of the junction at the reference image is not strictly 

constrained as T(xc, r) = xc (as shown in Fig. 3 with r = 1), but leaves these particular 

degrees of freedom to the optimization. It is a deliberate choice to account for the fact that 

the trajectory may need to deviate slightly from xc in order to achieve a better overall metric 

while satisfying the smoothness set forth by the B-spline curve.

Solving the trajectory tracking problem then becomes the estimation of the optimal 

parameters p* that maximizes the metric M(p)

p * = arg max M(p)
p (7)

Again, the optimization problem of each junction is independent with each other. Therefore, 

the algorithm for junction tracking is also parallelizable. In our landmark-based approach, 

spatial regularization between junctions is not introduced, as mentioned in the introduction.

B.3 Optimization Strategy—Optimization of Eq. (7) is handled by a Quasi-Newton 

approach in the form of the limited memory BFGS (L-BFGS) method (Nocedal 1980). The 

main advantage is due to its high precision and improved convergence rate compared to 
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simple gradient descent algorithms. Another feature of L-BFGS is that simple bounds can be 

placed to constrain the range of parameters (Byrd et al. 1995). Thanks to the convex hull 

property of B-spline curves, the feature can be used to explicitly incorporate a prior 

knowledge of the scope of the trajectory (e.g. in each of the three dimensions).

We start the optimization with zero initial conditions, i.e. the whole trajectory is simply a 

single point at xc. In most cases, this trivial choice leads to converge to the actual trajectory. 

However, in some cases, especially for the large movement or poor image quality, the 

optimization converges to a local extremum, which can be easily detected if the value of the 

metric M(p) is far away from n. It is necessary to search for an improved initial condition, 

which is closer to the actual trajectory.

As illustrated in Fig. 4, we propose to use random walks from pair-wise optimizations. The 

iterative procedure is as follows: starting from xc at t = r, suppose a good match (Mi(p) is 

close to 1) is found at t = i and the corresponding position is T′(xc, i). To search for the 

position at the next time step t = i + 1, a pair-wise optimization using L-BFGS can be 

performed to maximize Mi+1(p) in Eq. (6), which involves only Ir(xj) and Ii+1(T(xj, i + 1)), xj 

∈ N(xc). It is simpler to optimize in the pair-wise fashion than globally since the movement 

of the junction between the consecutive steps is smaller. To further improve the coverage, a 

number of random positions in a neighborhood centered at T′(xc, i) are sampled and used to 

initialize a series of optimizations. The position with the largest Mi+1(p) is then chosen to be 

T′(xc, i + 1). The iteration continues until it returns to r. However, error in each step may 

accumulate in this manner. We instead walk halfway in both the forward and backward 

directions. Finally, the control vertices P ′l, l = 1…m of the B-spline curve that best fit T′(xc, 

i), i = 1…n are computed by solving a least squares problem based on Eq. (1). The 

parameters p′ from this set of control vertices serves as the new initial conditions to repeat 

the optimization.

L-BFGS requires the derivatives of the metric M(p) with respect to p are explicitly defined, 

which can be obtained by differentiating Eq. (5) as

∂M(p)
∂p = ∑

i = 1

n 1

∑xj ∈ N(xc) (Ir(xj) − Ir)
2∑xj ∈ N(xc) (Ii(T (xj, i)) − Ii)

2

⋅ ∑
xj ∈ N(xc)

(Ir(xj) − Ir)
∂Ii(T (xj, i))

∂p

−
∑xj ∈ N(xc) (Ir(xj) − Ir)(Ii(T (xj, i)) − Ii)

∑xj ∈ N(xc) (Ii(T (xj, i)) − Ii)
2

⋅ ∑
xj ∈ N(xc)

(Ii(T (xj, i) − Ii)
∂Ii(T (xj, i))

∂p

(8)

where, Īr and Īi, are defined as before. The derivatives 
∂Ii T xj, i

∂p  represent the change of the 

intensity at position T(xj, i) on the trajectory with respect to the change of the parameters p, 

which are computed using the chain rule as
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∂Ii(T (xj, i))
∂p = ∂Ii(T (xj, i))

∂T (xj, i)
∂T (xj, i)

∂p (9)

where, the first term is the intensity gradient. Evaluating the intensity and its gradient at 

T(xj, i), usually a non-grid position, requires a continuous representation of the image. It is 

obtained by interpolation using fourth-order B-splines. The second term is readily available 

in Eq. (3).

B.4 Trajectory Descriptors—The qualitative assessment of the tracked trajectory 

through direct visualization is helpful to reveal the complexity of the motion pattern, such as 

motion heterogeneity and hysteresis. On the other hand, the quantitative analysis of the 

trajectory is very important to measure the extents of such complexities. For this purpose, 

we define the following descriptors to characterize a trajectory:

a. Long axis length QL: it is the length of the long axis, which is defined as the 

displacement from the maximal inhale to the maximal exhale.

b. Short axis length QS: it is the length of the short axis, which is defined as the 

displacement from a point to the point half cycle later on the trajectory with the 

smallest distance.

c. Hysteresis QH: it measures the deviation between the inhale and exhale paths and 

is defined as QS/QL. QH ≥ 0 and QH = 0 if there is no hysteresis.

d. Max curvature QC: it measures the degree of maximal turning along the 

trajectory. Thanks to the B-spline representation, the curvature of any point on 

the trajectory can be analytically computed as |C′(t) × C″(t)|
|C″(t)|3

.

e. Max torsion QT: it measures the degree of maximal twisting. The torsion of any 

point on the trajectory can be analytically computed as |(C′(t) × C″(t)) · C‴(t)|
|C′(t) × C″(t)|2

.

f. Uniformity QU: it measures how points at different phases are distributed 

temporally along the trajectory and is defined as −∑i = 1
n l i ln l i, where l i is the 

length of the trajectory between the i-th and (i + 1)-th phases, normalized by the 

perimeter QU ≤ ln n and QU = ln n if uniformly distributed.

III. EXPERIMENTS AND RESULTS

A. Algorithm Implementation

The algorithms were implemented in C++, with the support of the ITK library (Ibanez et al. 

2005). All experiments were carried out on a computer with a 3.0 GHz quad-core processor 

and 8 GB memory. Both junction detection and tracking were implemented in parallel taking 

advantage of the multiple cores in the processor, whenever possible.
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B. Datasets

We employ 4D CT datasets of the lungs from two sources in our experiments. One is 

publicly available from DIR-Lab (http://www.dir-lab.com). It has ten cases (referred as 

Cases 1-10); each composed of ten CT images corresponding to respiratory phases. The first 

image is at maximal inhale and the sixth image is at maximal exhale. There are two sets of 

manually identified landmarks (mostly vessel bifurcations) for each case. One is 300 

landmarks in the maximal inhale and maximal exhale phases. The other is 75 landmarks in 

the six expiratory phases. The other source is from CREATIS (Vandemeulebroucke et al. 

2011). It has three cases (referred as Cases 11-13). Each case has 100 landmarks identified 

in all ten phases. For more details of image acquisition protocols, image specifications, and 

landmark extraction procedures, we refer the readers to their original papers and websites.

C. Junction Detection

The first image at the maximal inhale phase is selected as the reference image, in which the 

junction detection algorithm is performed. In Fig. 5, an example of lung segmentation, 

vessel segmentation, and junction detection in one axial slice is shown. Fig. 6 shows the 

detected junctions in Case 1, depicted as spheres of corresponding sizes, in volume-rendered 

reference image masked by the lung region. Visually, they are in a large number and spread 

quite uniformly across both the left and right lungs. Note that the sufficiency and proper 

distribution of the landmarks are necessary for adequately sampling the motion through 

trajectory tracking. For a more quantitative assessment in Fig. 7, we show the histogram-

based spatial distributions in three main directions for all ten cases. General trends are 

observed as follows: in inferior-superior direction, the distribution does not change much 

except at apex and base. However, the number ofjunctions clearly increases from anterior to 

posterior, which is primarily related to the spatially-varying distribution of the lung volume 

in this direction. The gap in the right-left direction is caused by the separation of the left and 

right lungs. Furthermore, the number of junctions in the right lung is greater than that of the 

left lung, also attributing to the difference in lung volumes.

Table I summarizes the results of junction detection. In each case, we have automatically 

detected a range of 700-1100 junctions in less than 5 minutes of the segmentation and 

detection time. This is significantly more than what manual or semi-automatic approaches 

can achieve in the same time frame. Certainly, such a large number of junctions may not be 

always necessary, especially when motion in only a small region is of interest. In order to 

evaluate the accuracy, two radiation oncologists (observer 1 and 2), who are expert in lung 

anatomy, independently inspected 1/4 (random selected) of all detected junctions for each 

case. This was done using MimVista (MIM Software Inc., Cleveland, OH) by overlaying the 

detected junctions (spheres in different colors) on the original CT image and displaying in 

three orthogonal views. After seeing every detected junction, the observers have three 

judgments to make: “correct”, “uncertain”, and “incorrect”, indicating the existence of a true 

junction. The positive predictive value (PPV) is then computed as the percentage of true 

positives (the number of “correct” and half of the number of “uncertain”) of the total number 

of positives. The average PPV for observer 1, observer 2, and both observers are 92.0%, 

90.3%, and 91.2%, respectively. Notice that we do not attempt to compute the sensitivity for 

three reasons. First, the problem of correctly detecting all junctions in the lung is still 
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challenging and we admit that there are a considerable number of the false negatives led by 

our method. Second, manually generating such a ground truth data is intimidating if not 

impossible. Moreover, the number of junctions we are able to detect is considered to be 

sufficient for our purpose. The computation of specificity is also not applicable since true 

negatives are not defined. To assess the inter-observer difference, we define agreement and 

disagreement values as the percentages of same judgments and different judgments. On 

average the agreement and disagreement are 94.8% and 5.2%, respectively. In regard to the 

junction sizes, we plot the histograms using seven bins in Fig. 8. A clear exponential trend 

exhibits in all cases, which agrees with the exponential branching pattern of the pulmonary 

vessels.

D. Tracking using Manually Identified Landmarks

We test our tracking algorithm using the manually identified landmarks from DIR-Lab as the 

ground-truth data. The landmarks on the first phase are supplied as inputs and they are 

tracked in the following phases. To evaluate the accuracy, the tracking error is defined by the 

Euclidean distance between manual and tracked landmark positions, or commonly known as 

the target registration error (TRE). It should be noted that manual landmarks are not 

necessarily all junctions and their locations are delineated only in the voxel without sub-

voxel accuracy. Furthermore, we have assigned the size of all landmarks to 2.0 mm since no 

sizing information is available. In addition, tracking is performed in all images but accuracy 

is assessed only on I1 … I6, or I1 and I6.

In order to determine the appropriate number of control vertices m that is sufficient to 

capture the motion, we track 75 landmarks for Case 1 using different numbers of control 

vertices m = 4…10. In the following, we employ box plots to show the distribution of the 

tracking errors. On each box, the central line is the median, the edges of the box are the 25th 

p25% and 75th percentile p75%, and the whiskers extend to p75% + 1.5(p75% – p25%) and 

p25% – 1.5(p75% – p25%). Remaining outliers are not plotted for clarity. Box plots of the 

tracking errors at Phases 1-6 among are shown in Fig. 9. There are no significant differences 

of the tracking errors for Phases 2-6 (p-value=0.9983, 0.9994, 0.9973, 0.9902, and 0.9771, 

respectively using ANOVA) except for Phase 1 (p-value=4.13×10−39). Recall that we do not 

explicitly impose zero displacements at Phase 1 (the reference). The results suggest that 

fewer numbers of control vertices are already sufficient to represent the motion of the lung 

due to the limited temporal resolution. Increasing the control vertices allows the trajectory to 

be dragged more closely to the reference phase. In respect of the metric of the combined 

correlation coefficients M(p*), there is also no significant difference (p-value=0.9999) 

among m = 4 … 10 (box plots in Fig. 10). Therefore, we choose m = 7 in our further 

evaluations for a compromise between the simplicity of the trajectory and the additional 

flexibility of the represented motion.

Next, we track 75 landmarks in each Case 1-10 and show the box plots of the tracking errors 

at Phases 1-6 in Fig. 11. In addition, we track 300 landmarks and show the box plots of the 

tracking errors at Phases 1 and 6 in Fig. 12. In both figures, the box plots of the tracking 

errors of all ten cases are shown on the right. In comparison, we define the baseline tracking 

errors as the distances between the manual and stationary (i.e. without trajectory tracking) 
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reference landmark positions, which indicate the extents of the motion. It is clear that the 

trajectory tracking dramatically reduces the tracking errors.

Table II summarizes the mean and standard deviations of the tracking errors in Fig. 11 and 

Fig. 12. It suggests that the proposed tracking algorithm can achieve sub-voxel accuracy. 

The mean TRE values of combined Phases 1-6 in the experiment with 75 landmarks and 

those of combined Phase 1 and 6 in the experiment with 300 landmarks are smaller than the 

published results in (Metz et al. 2011) using the same data (first five cases) and the same 

landmark sets. However, it should be mentioned that the algorithm in (Metz et al. 2011) are 

not designed to specifically optimize for alignment at the landmarks. Therefore, 

optimization in a global manner may compromise the alignment of local structures. In fact, 

the purpose of our algorithm is to explicitly align the local junction structures. Compared to 

the results in (Castillo et al. 2010), the median of TRE values per phase in combined Cases 

1-10 is smaller in the experiment with 75 landmarks (from reading Figure 6 of (Castillo et 

al. 2010), though the exact value is not available). In comparison of the mean TRE values in 

our experiment with 300 landmarks and theirs with larger number of landmarks, 6 out of 10 

are smaller, whereas our standard deviations are consistently smaller. Unfortunately, we have 

no access to this larger set of landmarks for a more fair comparison. In addition, the 

performance of our algorithm from case to case is found to be loosely related to the extent of 

the lung motion. But in each case as shown in Fig. 11, the performance per phase does not 

depend on the extent of the motion at a given phase number (excluding Phase 1).

Similarly, we track 100 landmarks in each Case 11-13 from CREATIS. Note that Phase 6 at 

maximal exhale is selected as the reference in order to compare with (Vandemeulebroucke et 

al. 2011). Fig. 13 shows the box plots of the tracking errors and Table III summarizes the 

mean and standard deviations. Again, the proposed tracking algorithm can achieve sub-voxel 

accuracy. Compared to the results in (Vandemeulebroucke et al. 2011), the mean TRE values 

of Phase 1 and Phases 1-5,7-10 in each case is smaller using the same data and the same 

landmark sets.

The computational time depends on the size of the local region, the optimization 

convergence rate, and the necessity to search for an improved initial condition. On average, 

the time for tracking one trajectory is about 2-3 seconds.

E. Tracking using Automatically Detected Junctions

Finally, we track the junctions automatically detected in Section III–C. Fig. 14 shows the 

optimized metrics M(p*) for all cases, of which a majority are greater than 7.0. Note that the 

tracked trajectories with metrics less than 8.0 are considered to be unreliable and thus 

discarded for further analysis. Fig. 15 shows some examples of tracked trajectories in Case 

1, colored by their metric values. The trajectories are actually space curves in 3D and can be 

quite complex. From maximal inhale at Phase 1 (marked by a sphere), a trajectory moves 

forward through the successive phases (marked by cones with tips pointing to the direction), 

until reaching maximal exhale at Phase 6. Inversely, the trajectory clearly has a different 

return path, i.e. hysteresis. To characterize the hysteresis, we draw their major and minor 

axes (marked by arrows). As mentioned before, the ratio of the lengths between the minor 

and major axes is used to indicate the degree of hysteresis (1 for full hysteresis, 0 for no 
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hysteresis). Fig 16 displays an example tracked trajectory with the volume-rendered junction 

structure in each phase.

To analyze the trajectories quantitatively, we compute the descriptors defined in Section II–

B.4 for all tracked trajectories with M(p*) > 8.0. Fig. 17 demonstrates the results overlaid on 

the trajectories and colored by their corresponding values for Case 1. From the figure, we 

can see the long axis length is greater at the bottom portion of the lung, which is expected 

because the diaphragm pushes the tissue up during respiration. For the short axis length, 

there is a large region with higher values in the bottom of left lung than that of the right. But, 

this region does not have high hysteresis values, which are essentially short axis lengths 

normalized by long axis lengths. Conversely, the hysteresis values are larger in the upper 

lung, especially in the left. For the max curvature, there is a similar region with higher short 

axis length but lower curvature value, which suggests the trajectories turn less sharply than 

elsewhere. On the other hand, the max torsion in the upper lung is clearly higher than that in 

the bottom. In addition, the uniformity values in the left lung are roughly larger than those in 

the right. Finally, we should emphasize that the above analysis is only made on this 

particular case. Therefore, it may not be generalizable to other cases for the obvious patient-

specific nature of lung motion. But similar analysis can be performed in those cases.

IV. CONCLUSION

We have proposed a framework to both detect junction structures and track their trajectories 

in 4D CT images. In the problem of detection, we identified more than 700 junctions with an 

average accuracy of greater than 90%. We believe the automation of detecting junctions as 

landmarks should be useful in various applications of lung analysis, where manual or semi-

automatic annotation is still a common practice. In principle, any landmarks can be used to 

study the motion of the lung as long as they possess the intensity profiles that can be reliably 

tracked. However, it is difficult, if not impossible, to detect a large number of other types of 

landmarks throughout the lung other than the vessel junctions. It should be emphasized that 

our junction detection algorithm is only performed in one reference phase. Therefore, no 

pair-wise matching is necessary in our approach, compared to common landmark-based 

approaches, e.g. in (Tashiro et al. 2006). For a particular junction, its locations in the 

following phases are determined simultaneously by the optimization in the trajectory 

tracking step.

In the problem of tracking, we do not pursue the common intensity-based approach which 

first registers in the whole image space and then extracts the motion trajectories. In this 

approach, one assumes the spatial smoothness of transformation and may compromise the 

accuracy of alignment of local structures. Another drawback is that one has to optimize a 

large number of transform parameters together and can be extremely time-consuming. In our 

approach, trajectories of the landmarks are separately tracked by optimizing a combination 

of correlation coefficients of intensities on the trajectory from all images. Our choice is more 

apparent when only local deformation is of interest, e.g. in the application of tracking local 

structures around a tumor. We have achieved sub-voxel accuracy and obtained better results 

than other published work using the same data and the same landmark sets. Our approach to 

generate better initialization suppresses local extrema. Although worst cases may still 
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happen rarely, they can be detected by extremely low correlation coefficients and 

disregarded for further consideration. But we should mention that distorted junctions due to 

imaging noises or artifacts may also lead to low correlation coefficients even the alignment 

has been achieved. Another potential application of our tracking algorithm is to ease the 

tedious task of generating large validation data sets for 4D image registration. Given the 

automated or manual landmarks on one phase, the corresponding landmark positions on 

successive phases are automatically detected. Once examined and confirmed by experts, they 

can be used to evaluate other registration methods. There is one problem we have not 

addressed in this paper: how to generate a full 4D deformation field from a large number of 

trajectories. It is only necessary if the goal is to obtain motion information in the whole 

image space. Although we could simply produce a series of 3D deformation fields using thin 

plate spline (Bookstein 1989), this approach does not account for the temporal consistency. 

Future work will be directed to tackle this problem more thoroughly.
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Fig. 1. 
(a) Six typical cases of concentric spheres at different locations of a synthetic 2D object; (b) 

their corresponding local shape profiles: the maximal distance d of a ray traveling with the 

object in the direction θ. The number of disconnected components between inner rin and 

outer rout radii can be used to differentiate junctions from other structures, such as tubular 

structure and endpoint.
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Fig. 2. 
(a) An example shows that Euclidean distance may lead to three disconnected components 

when there is another non-contacting branch nearby; (b) The candidates 1 and 2 are 

clustered together, i.e. belong to the same junction, if d1, 2 < max dmin
1 , dmin

2 .
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Fig. 3. 
An example of trajectory parameterization using B-spline with m=5 control vertices (P1…

P5) and tracking using n=10 images (I1…I10). The B-spline curve and its control polygon 

are in solid and dashed lines. A tracked trajectory should pass through corresponding 

junction centers in all images. The dotted lines depict the displacements at different time 

points.
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Fig. 4. 
An illustration of searching for an improved initial condition by random walks. Random 

positions in the neighborhood (gray dashed circle) of the previous step T′(xc, i) are used to 

initialize pair-wise optimizations to determine the next step T′(xc, i + 1). Both forward and 

backward directions are searched halfway to avoid accumulating error. The new initial 

conditions, i.e. P ′l, l = 1…m, are obtained by a least square fitting.
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Fig. 5. 
Results of lung segmentation, vessel segmentation, and junction detection in one axial slice. 

The segmented lung region and vessels are marked in red. The detected junctions are marked 

in different colors.
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Fig. 6. 
Detected Junctions in Case 1. The reference image masked by the lung region is volume-

rendered in coronal, sagittal, and transverse views. Junctions are depicted as red spheres of 

radii corresponding to junction sizes. Letters indicate anatomical directions.
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Fig. 7. 
Spatial distributions of the detected junctions in three main directions for Cases 1-10.
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Fig. 8. 
Sizes of the detected junctions for Cases 1-10.
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Fig. 9. 
Tracking errors for Case 1 using different numbers of control vertices m = 4…10.
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Fig. 10. 
The Metric M(p*) for m = 4…10.
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Fig. 11. 
Tracking errors for each of Cases 1-10 based on 75 landmarks at Phases 1-6. The right two 

box plots (note that they are in different scales) compare the combined and baseline tracking 

errors of all ten cases with and without trajectory tracking.
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Fig. 12. 
Tracking errors for each of Cases 1-10 based on 300 landmarks at Phases 1 and 6. The right 

two box plots (note that they are in different scales) compare the combined and baseline 

tracking errors of all ten cases with and without trajectory tracking.
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Fig. 13. 
Tracking errors for each of Cases 11-13 based on 100 landmarks at all ten phases. The right 

two box plots (note that they are in different scales) compare the combined and baseline 

tracking errors of all three cases with and without trajectory tracking.
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Fig. 14. 
The metrics M(p*) for Cases 1-10.

Xiong et al. Page 33

Phys Med Biol. Author manuscript; available in PMC 2020 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 15. 
Example trajectories tracked in Case 1 with color-coded metric values M(p*). The spheres 

mark the trajectory at Phase 1 and cones at successive phases with tips pointing to the 

direction.
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Fig. 16. 
An example trajectory (in green) displayed with the volume-rendered junction structure (in 

red) in each phase. Note that the trajectory tracks the movement of the junction center.
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Fig. 17. 
Descriptors of trajectories for Case 1.
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TABLE I

A SUMMARY OF JUNCTION DETECTION

Case Number of 
Junctions

Segmentation Time 
(s)

Detection Time 
(s)

PPV by 
observer 1

PPV by 
observer 2 Agreement Disagreement

1 977 73 45 91.6% 91.4% 98.8% 1.2%

2 1050 83 53 88.3% 83.0% 85.0% 15.0%

3 800 55 48 93.5% 93.1% 97.5% 2.5%

4 739 72 88 91.6% 88.9% 93.4% 6.6%

5 788 49 45 91.0% 89.2% 93.0% 7.0%

6 1043 98 106 87.6% 84.6% 93.3% 6.7%

7 1071 135 129 93.5% 93.7% 97.0% 3.0%

8 883 75 72 92.4% 91.0% 95.3% 4.7%

9 830 131 160 92.4% 91.1% 96.2% 3.8%

10 953 88 63 98.2% 97.3% 98.2% 1.8%
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TABLE II

MEAN AND STANDARD DEVIATION OF THE TRACKING ERRORS (MM) USING DIR-LAB DATA

Case

Experiment with 75 landmarks Experiment with 300 landmarks

Phase 
1

Phase 
2

Phase 
3

Phase 
4

Phase 
5

Phase 
6

Phases 
1-6

Phases 
1-6*

Phase 
1

Phase 
6

Phase 
1,6

Phase 
1,6*

Phase 
6**

1 0.10 
(0.08)

0.50 
(0.38)

0.99 
(0.70)

1.13 
(0.77)

1.17 
(0.77)

1.05 
(0.61)

0.82 
(0.72)

0.93 
(0.65)

0.09 
(0.08)

1.05 
(0.52)

0.57 
(0.61)

0.99 
(0.48 )

0.97 
(1.02)

2 0.16 
(0.12)

0.95 
(0.62)

0.97 
(0.62)

0.89 
(0.43)

0.91 
(0.54)

0.92 
(0.49)

0.80 
(0.57)

0.89 
(0.51)

0.15 
(0.10)

1.00 
(0.51)

0.58 
(0.56)

0.96 
(0.49)

0.86 
(1.08)

3 0.17 
(0.13)

1.08 
(0.74)

1.05 
(0.60)

1.03 
(0.57)

1.15 
(0.55)

1.14 
(0.51)

0.94 
(0.64)

1.05 
(0.56)

0.17 
(0.13)

1.15 
(0.62)

0.66 
(0.66)

1.11 
(0.62)

1.01 
(1.17)

4 0.24 
(0.16)

1.16 
(0.64)

1.44 
(0.85)

1.60 
(0.97)

1.48 
(0.91)

1.36 
(0.68)

1.21 
(0.88)

1.40 
(1.10)

0.20 
(0.14)

1.39 
(0.72)

0.79 
(0.79)

1.49 
(1.08)

1.40 
(1.57)

5 0.23 
(0.13)

1.53 
(1.20)

1.32 
(0.75)

1.35 
(0.96)

1.19 
(0.67)

1.38 
(0.77)

1.16 
(0.92)

1.27 
(1.10)

0.24 
(0.13)

1.43 
(0.89)

0.83 
(0.87)

1.37 
(1.21)

1.67 
(1.79)

6 0.23 
(0.12)

1.05 
(0.90)

1.45 
(0.91)

1.55 
(1.10)

1.30 
(0.72)

1.45 
(0.96)

1.16 
(0.95) - 0.22 

(0.14)
1.32 

(0.80)
0.76 

(0.79) - 1.58 
(1.65)

7 0.24 
(0.13)

0.95 
(0.68)

1.21 
(0.83)

1.44 
(1.00)

1.39 
(0.96)

1.32 
(0.64)

1.08 
(0.86) - 0.24 

(0.14)
1.29 

(0.70)
0.76 

(0.73) - 1.46 
(1.29)

8 0.20 
(0.14)

1.17 
(0.68)

1.44 
(1.11)

1.47 
(1.09)

1.44 
(1.01)

1.48 
(1.02)

1.20 
(1.01) - 0.21 

(0.14)
1.39 

(0.82)
0.79 

(0.83) - 1.77 
(2.12)

9 0.17 
(0.09)

1.16 
(0.65)

1.21 
(0.79)

1.13 
(0.58)

1.24 
(0.72)

1.31 
(0.74)

1.04 
(0.75) - 0.17 

(0.09)
1.32 

(0.68)
0.75 

(0.75) - 1.19 
(1.12)

10 0.20 
(0.14)

1.12 
(0.88)

1.24 
(0.96)

1.52 
(1.08)

1.20 
(0.66)

1.26 
(0.74)

1.09 
(0.90) - 0.18 

(0.10)
1.24 

(0.68)
0.71 

(0.72) - 1.59 
(1.87)

1-10 0.19 
(0.13)

1.07 
(0.80)

1.23 
(0.84)

1.31 
(0.91)

1.24 
(0.78)

1.26 
(0.75)

1.05 
(0.84) - 0.19 

(0.13)
1.26 

(0.71)
0.72 

(0.74) - 1.25 
(1.43)

*
Results from Metz et al. 2011.

**
Results from Castillo et al. 2010, which were obtained using more landmarks.
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TABLE III

MEAN AND STANDARD DEVIATION OF THE TRACKING ERRORS (MM) USING CREATIS DATA

Experiment with 100 landmarks

Case Phase 
1

Phase 
2

Phase 
3

Phase 
4

Phase 
5

Phase 
6

Phase 
7

Phase 
8

Phase 
9

Phase 
10

Phases 
1-5,7-10

Phase 
1-5,7-10*

Phase 
1*

11 0.86 
(0.44)

1.00 
(0.44)

0.96 
(0.54)

0.89 
(0.94)

0.60 
(0.35)

0.24 
(0.13)

0.81 
(0.44)

0.96 
(0.54)

0.83 
(0.39)

0.89 
(0.45)

0.87 
(0.54)

1.00 
(0.69)

0.96 
(0.57)

12 1.30 
(1.01)

1.46 
(1.16)

1.01 
(0.84)

0.80 
(0.36)

0.88 
(0.40)

0.33 
(0.16)

1.16 
(0.79)

1.15 
(0.91)

1.03 
(0.69)

1.22 
(0.74)

1.11 
(0.83)

1.27 
(1.09)

1.56 
(1.34)

13 1.13 
(0.83)

1.18 
(0.97)

0.97 
(0.72)

0.87 
(0.39)

0.71 
(0.41)

0.31 
(0.17)

0.65 
(0.47)

0.83 
(0.50)

0.88 
(0.48)

1.12 
(0.78)

0.93 
(0.67)

1.16 
(1.15)

1.53 
(1.70)

11-13 1.10 
(0.81)

1.21 
(0.93)

0.98 
(0.71)

0.85 
(0.62)

0.73 
(0.40)

0.29 
(0.16)

0.87 
(0.63)

0.98 
(0.69)

0.91 
(0.54)

1.08 
(0.69)

0.97 
(0.70)

1.14 
(1.00) -

*
Results from Vandemeulebroucke et al. 2011.
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