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Abstract

The performance of reaching movements to visual targets requires complex kinematic

mechanisms such as redundant, multijointed, anthropomorphic actuators and thus is a difficult

problem since the relationship between sensory and motor coordinates is highly nonlinear. In this

article, we present a neural model able to learn the inverse kinematics of a simulated

anthropomorphic robot finger (ShadowHand™ finger) having four degrees of freedom while

performing 3D reaching movements. The results revealed that this neural model was able to

control accurately and robustly the finger when performing single 3D reaching movements as well

as more complex patterns of motion while generating kinematics comparable to those observed in

human. The long term goal of this research is to design a bio-mimetic controller providing

adaptive, robust and flexible control of dexterous robotic/prosthetics hands.

I. Introduction

THE human hand includes multiple joints allowing for an infinite number of different

trajectories to move the fingers from one spatial position to another, which is critical in

many daily tasks [1]. Such finger flexibility results in a complex neural control scheme that

needs to select, plan and execute a particular trajectory in order to take into account task

demands (e.g., accuracy) or changing environmental conditions (e.g., external perturbation)

[1].

Consequently, when considering the multiple degrees of freedom (DOFs) involved in the

control of dexterous robotic hands and fingers, both neuroscientists and roboticists focused

on adaptive robot controllers [2],[3].
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One fundamental problem for the brain as well as for any robotic controller aiming to

command complex kinematic mechanisms, is to learn internal models of forward and

inverse sensorimotor transformations (e.g., inverse kinematic) for reaching and grasping.

This is a complex problem since the mapping between sensory and motor spaces is generally

highly nonlinear and depends on the constraints imposed by the physical features of the

human or robotic hand/finger as well as by the environment. In order to solve the inverse

kinematic problem, various neural models were proposed; but many of these models did not

integrate specific neurophysiological substrate resulting in a very limited biological

plausibility (e.g., [4]). Conversely, other computational works proposed biologically

plausible neural network models including specific brain structures/functions such as the

Cerebellum [5]-[7] or the population vector coding processes found in motor/premotor areas

[8]-[11].

Here, in accordance with the latter approach, we present a cortical network model that was

able to learn the inverse kinematic. This neural architecture learned the internal inverse

kinematic model of a simulated anthropomorphic robot finger (ShadowHand™ finger)

having four geometrical DOFs. During an exploration (a motor babbling) phase, random

motor commands endogenously generated were used to activate the finger while the

corresponding sensorial consequences (e.g., visual) allowed training of the neural model to

learn the inverse kinematic of the actuator. The results revealed that, after learning, this

neural model was able to control the anthropomorphic finger in order to perform accurate

and robust 3D reaching movements (with various levels of complexity) towards spatial

targets with kinematics comparable to those previously observed in human. The long term

goal of this research is to design a large scale modular cortical neural network model

allowing adaptive, robust and flexible control of dexterous robotic/prosthetics hands.

II. Modeling Approach

A. Cortical Modeling and Sensorimotor Information

The proposed neural network model expanded the previous DIRECT (DIrection-to-Rotation

Effector Control Transform) model of redundant reaching [8],[9] that functionally

reproduces the population vector coding processes evidenced in the motor and premotor

cortices [12]. This neural architecture learned neural representations encoding the inverse

kinematic to accurately control an anthropomorphic robot finger with four DOFs.

Adaptive performance relied on the integration and processing of five main types of

sensorimotor information involved in the control of visually guided movements: i) the

neural drive conveying information about motor command for actual performance; ii) the

proprioceptive information providing the current state of the finger (e.g., angular position)

resulting from the sensory consequences of the motor commands; iii) the visual information

related to the finger and the localization of the targets in the 3D space; iv) the task and goal

related information involved in motor planning; v) the motor error computed (e.g., by the

cerebellum; [5]-[7]). The combination of this sensorimotor information was employed to

tune the neural model parameters throughout learning to perform accurate finger

movements. Specifically, this architecture learned the internal representations of the inverse

kinematic to establish the mapping between spatial displacements of the finger and the
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motor commands that generate the angular displacements at each joints by integrating

visual, proprioceptive and motor command signals of the moving finger. This neural model

also included a ‘context field’ (for more details see [13]) which is a set of neurons receiving

inputs that determine the context of a motor action. A context field (here, implemented with

radial basis functions) changes its activity when a particular joint configuration is

recognized as inputs.

B. Cortical Network Architecture

The relationship between spatial and joint velocities of the finger is given by the following

(discrete-time) equation:

(1)

where Δx, Δθ and J are the spatial velocity, the joint velocity of the finger and the finger’s

Jacobian matrix, respectively. To obtain a joint rotation vector that moves the finger at a

desired spatial velocity, (1) can be rewritten as follow:

(2)

where G(θ) =J−1(θ) is an inverse of the Jacobian matrix. For a redundant manipulator such

as the one used here, a unique inverse does not exist.

The elements of the matrix G(θ) are denoted by gij(θ) where index i refers to the actuator

space dimension and index j refers to the 3D workspace. The output of the network gij(θ) is

given by:

(3)

(4)

where gij(θ) are the basis functions of the network and k is the index of the basis function,

the vector cijkm is a measure of the distance between the input value θ and the center of the

kth basis function, and Aijk is the activation of the basis function (decreases in a Gaussian

manner from the center). Here, μijkm and σijkm are the center and the standard deviation

along the dimension m of the kth Gaussian activation function, respectively. Each basis

function is associated to a scalar weight wijk, related to the magnitude of the data ‘under its

receptive field’. The set of weights zijkm allow for locally and linearly approximating the

slope of the data ‘under its receptive field’.

The learning phase consisted of a babbling process that was performed by successive action-

perception cycles during which the motor commands were generated to perform finger

movements with various orientations to reach targets located in the 3D workspace (Fig. 1A).
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Namely, during each action–perception cycle, random finger joint displacements (ΔθR; R

denotes random movements) were generated. These random joint rotations were performed

from current joint configurations (denoted by θ) that were provided as inputs to the neural

architecture and to the direct kinematics of the finger resulting in spatial displacements (Δx)

of the finger. Then, based on these spatial displacements, the neural network computed an

estimation  that was compared to the corresponding random joint movement providing

thus, an error signal that guided the adaptation of the network parameters (e.g., wijk, zijkm in

equation (3); for further details on the model implementation, see [9],[10],[14]). After

learning, a spatial target was provided to the neural model that performed the corresponding

movement to reach it (Fig. 1B).

C. Geometrical Modeling of the Actuator

The model of the finger incorporated the geometrical features of the robotic ShadowHand™

finger (Shadow Robot Company Ltd.) which has the properties to mimic the main

biomechanical features of an actual human finger including four DOFs (two for the

metacarpophaleangeal (MCP; flexion-extension and abduction-adduction), one for the

proximal interphalangeal (PIP; flexion-extension) and one for the distal interphalangeal

(DIP; flexion-extension)). The direct model of the finger geometry was obtained by

employing the Denavit–Hartenberg parameterization (for further details see [14], [15]).

III. Results

During and after learning of the inverse kinematic of the finger, the performance of the

neural model was assessed by performing center-out reaching movements towards multiple

targets placed in the 3D Cartesian workspace. These targets were located in three different

planes (see Fig. 2A): i) the back plane (n=5) where flexion/extension and adduction

movements were combined; ii) in the middle plane (n=8) where only flexion/extension

movements were performed and iii) and the front plane (n=5) where flexion/extension and

abduction movements were combined.

The reaching error and its variability (mean and standard deviation obtained when

considering all targets and the three planes) decreased progressively throughout the learning

for all the targets (Fig. 2B-E). Namely, when considering all targets, the average pointing

errors were equal to 4.17 ± 2.34 mm, 0.40 ± 0.47 mm and 0.40 ± 0.39 mm for the early,

middle and late learning periods, respectively. Although the overall error was small, the

highest error values were obtained for movement performed in the front plane (Fig. 2C-2E).

These results also revealed that, after learning, the angular and linear displacements were

sigmoid-shaped and the velocity profiles were generally single-peaked and bell-shaped. The

trajectories were slightly curved and the targets were accurately reached. Also, the

robustness of the cortical network model was assessed by performing a movement where the

finger had to reach a target located in a singular region of the workspace involving a

completely outstretched configuration of the effector. This was done by employing both the

neural model and a classic Moore-Penrose inverse.
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The results revealed that higher velocity variations were found with the classic Moore-

Penrose inverse while the neural model appeared to behave correctly around this singular

region (Fig. 4A). Finally, to illustrate the potential capabilities of this neural model to

generate more complex finger motion, a “triangular loop” was performed by combining

successively flexion, abduction-extension and adduction-extension movements bringing the

finger in regions where highest reaching errors were found (i.e., front plane, Fig. 2C-D).

IV. Discussion

We presented a neural architecture functionally similar to the motor and premotor cortices

that was able to learn the inverse kinematic computation of an anthropomorphic finger

including four DOFs. Specifically, this neural model reproduced the main kinematics

features observed in human during finger movements and grip production [1],[16]. Namely,

after learning, the angular and linear displacements were sigmoid-shaped and the velocity

profiles were generally single-peaked and bell-shaped although for some targets a secondary

(small) peak was observed which was also consistent with human data [1]. These

specificities need to be further investigated. In addition, in agreement with the experimental

results from the literature, this neural model generated slightly curved trajectories and the

targets tested were accurately reached [1],[16]. The findings also suggested that this neural

model was able to control the finger properly when moving it near singular region.

However, when the learned mapping was replaced by the Moore-Penrose pseudoinverse,

excessive joint rates were generated as the finger passes near the same singular region (Fig.

4A) resulting in jerky movements not observed in human finger motion [1],[16]. This is due

to the fact that this type of neural model learns a mapping that remains zero along singular

directions because there is little spatial movement in nearly singular directions [9],[13].

Although the neural model performance was mainly assessed on relatively simple reaching,

more complex/ecological motions such as a “triangular loop” could also be correctly

executed (Fig. 4B).

Taken together, the present findings suggest that this model can reproduce accurate, flexible

and robust ecological human finger reaching movements. This is important since these

features contribute to the unique manual ability that is so critical for most of the activity of

daily living [1]. This work can be extended to consider several fingers by combining

multiple neural models based on the same principles albeit inducing a higher computational

cost. However, as previously mentioned, the performance of this neural model was mainly

assessed by considering relatively simple center-out reaching movements. Therefore, further

assessments need to be performed to extend these results. Namely, additional investigations

will further examine the potential of this neural architecture to control this anthropomorphic

finger under various conditions (e.g., robustness to multiple types of perturbations) as well

as when considering more complex and ecological movements. Also, as a next step, this

neural model will be employed to learn the inverse kinematic of an actual anthropomorphic

robot finger (ShadowHand™ finger) having the same geometrical features. On the long

term, future work will focus on the dynamics of the fingers since this neural model controls

a biomechanical system without including any dynamic components (e.g., gravity, inertia).

This could be performed by modeling more explicitly structures such as the Cerebellum that

has been considered to encode this type of information [5],[6]. In summary, the aim of this

Gentili et al. Page 5

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2014 July 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



research is to design a bio-mimetic controller providing adaptive, robust and flexible control

of dexterous robotic/prosthetics hands.
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Fig.1.
Neural model to learn and perform finger movements. (A) During the learning phase, the

Endogenous Random Generator (ERG) generated random angular displacements (ΔθR) that

were transformed into spatial displacements (Δx) of the finger. Such spatial displacements

allow the neural model to compute an estimation of angular displacements  and

compare them to those randomly generated. (B) After learning, the performance of the

neural model was assessed by performing reaching to multiple spatial targets in the 3D

workspace. A movement-gating GO signal was employed ([8]) to trigger the generation of

the voluntary reaching movement.
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Fig.2.
Performance of the neural model during three different learning phases. (A) Trajectories

during center-out (the stick diagram of the finger represents the initial position) reaching

movements performed after learning towards 18 targets placed in the rear (blue color, n=5),

middle (black color, n=8) and front (red color, n=5) plane. (B)-(E). Average reaching error

and standard deviation during the early, middle and late learning phase for the targets placed

in the three planes. For the panel (B), each point represented the average error values for the

targets placed in the three planes across a block of 1000 trials. n: number of targets for each

plane.
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Fig.3.
Typical angular (first row) and linear (second row) kinematics of the fingertip obtained after

learning for a reaching movement towards the target in the rear plane (purple circle in Fig.

2A). The first, second and third columns represent the position, velocity and acceleration,

respectively.
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Fig.4.
(A) Behavior of the neural model (thick line) and the classic Penrose-Moore inverse (thin

line) in a singular region (finger outstretched). (B) Performance of a more complex finger

movement (“triangular loop”, from 1 to 3) combining three sub-movements (flexion,

abduction/extension, and adduction/extension).
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