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Quantifying diversity is of central importance for the study of structure, function and evolution of
microbial communities. The estimation of microbial diversity has received renewed attention with the
advent of large-scale metagenomic studies. Here, we consider what the diversity observed in a sample
tells us about the diversity of the community being sampled. First, we argue that one cannot reliably
estimate the absolute and relative number of microbial species present in a community without making
unsupported assumptions about species abundance distributions. The reason for this is that sample data
do not contain information about the number of rare species in the tail of species abundance
distributions. We illustrate the difficulty in comparing species richness estimates by applying Chao’s
estimator of species richness to a set of in silico communities: they are ranked incorrectly in the presence
of large numbers of rare species. Next, we extend our analysis to a general family of diversity metrics (‘Hill
diversities’), and construct lower and upper estimates of diversity values consistent with the sample data.
The theory generalizes Chao’s estimator, which we retrieve as the lower estimate of species richness. We
show that Shannon and Simpson diversity can be robustly estimated for the in silico communities. We
analyze nine metagenomic data sets from a wide range of environments, and show that our findings are
relevant for empirically-sampled communities. Hence, we recommend the use of Shannon and Simpson
diversity rather than species richness in efforts to quantify and compare microbial diversity.
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Introduction

Species diversity is a crucial property of ecological
communities: it is the primary descriptor of commu-
nity structure, and it is generally believed to be a
major determinant of the functioning and the
dynamics of ecological communities (Wilson, 1999;
Loreau et al., 2001; Ives and Carpenter, 2007; Loreau,
2010). Therefore, diversity measurement is often a
first step in characterizing an ecological community
(Brose et al., 2003; Magurran, 2004; Gotelli and
Colwell, 2011). Because an exhaustive census of the
community is usually not feasible, community
diversity must be inferred from the diversity observed
in a sample taken from the community. The inference

problem can be difficult, especially when community
diversity is believed to be very large (Engen, 1978;
Bunge and Fitzpatrick, 1993; Mao and Colwell, 2005).

Diversity measurement is particularly challenging
for microbial communities (Hughes et al., 2001;
Bohannan and Hughes, 2003; Kemp and Aller,
2004; Schloss and Handelsman, 2005; Sloan et al.,
2008; Bunge, 2009; Øvreås and Curtis, 2011). First, it
should be recalled that there is no unambiguous way
to define microbial ‘species’ (Stackebrandt et al.,
2002). Here we use the term species pragmatically to
mean an operationally determined taxonomic unit
(for example, 97% identity of 16S rRNA (Schloss and
Handelsman, 2005)). However measured, the species
diversity of microbial communities is usually much
larger than that of communities of larger organisms.
Moreover, the number of organisms in microbial
communities is typically many orders of magnitude
larger than the number of organisms in plant
or animal communities (Whitman et al., 1998).
This leads to severe sampling problems. Although
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metagenomic approaches allow for impressively
large sample size (Huber et al., 2007; Roesch et al.,
2007; Rusch et al., 2007), even these huge samples
correspond to a tiny fraction of the community being
sampled. Hence, for microbial community samples,
community diversity is generally much larger than
sample diversity. This disparity between community
and sample leads to a challenge that we address here:
how can microbial diversity be estimated robustly?

One popular approach to circumvent the sampling
problem is to assume that the species abundance
distribution of the community belongs to a specific
family (for example, the family of lognormal dis-
tributions) (Curtis et al., 2002; Hong et al., 2006;
Schloss and Handelsman, 2006; Quince et al., 2008).
Such an assumption fills in the information about the
community missing in the data and leads to precise
diversity estimates. But the validity of the estimates
depends crucially on the choice of the species
abundance distribution family. This choice cannot
be verified empirically because the sample data do
not contain sufficient information about the commu-
nity structure. In fact, many distribution families
yield extrapolated community structures that are
consistent with the sample data. Here we show that
the extrapolation approach has intrinsic limitations.

Other methods for diversity estimation have been
proposed. For example, proposals have been made to

extrapolate the rarefaction curve beyond the actual
sample size (Gotelli and Colwell, 2001; Colwell et al.,
2004), or to assume a particular distribution for the
community diversity over taxonomic levels (May,
1988; Mora et al., 2011). Eventually, also these
methods are limited by the lack of information about
the community structure in the sample data. Rather
than filling this gap by unverifiable assumptions,
here we ask what can (and cannot) be inferred from
the sample data alone. An interesting step in this
direction is given by the popular Chao estimator
(Chao, 1984; Shen et al., 2003; Chao et al., 2009).
Chao’s estimate can be interpreted as a lower estimate
of the species richness consistent with the data. We
take the estimation strategy underlying Chao’s esti-
mator a step further, and construct lower and upper
estimates for a general family of community diver-
sities, including species richness, Shannon and
Simpson diversity (Hill, 1973). The unification we
propose here represents a robust approach to estimat-
ing microbial diversity in theory and in practice.

Materials and methods

Data sets
The data sets used in this paper were downloaded
from the Supplementary Material of Quince et al.,
(2008). The abundance data used in Figure 1
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Figure 1. Empirical sample data are consistent with very different communities. We consider the abundance data of a sample taken from
a bacterial soil community (sample ‘Brazil’ in (Roesch et al., 2007)). The sample consists of 26079 individuals belonging to 2880 species. We tried
to reconstruct the community from which the sample was taken. Panels a–c show the rank-abundance curve of three such reconstructed
communities. The first community (panel a, in red) has 104 species; the second community (panel b, in blue) has 105 species; the third
community (panel c, in green) has 106 species. For each of the three reconstructions the community rank-abundance curve is an extension of the
sample rank-abundance curve (in black). We claim that each of the three reconstructed communities is compatible with the sample data. This can
be seen from the rarefaction curves in panel d: the rarefaction curve for the sample data (black line) coincides with the rarefaction curves for the
reconstructed communities (red line with squares for community in panel a, blue line with x-marks for community in panel b, and green line with
diamonds for community in panel c). Because the sample data are consistent with very different values of the community richness, the
community richness cannot be estimated from the sample data. The colour reproduction of this figure is available on the ISME Journal online.
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correspond to 16S rDNA sequences obtained from a
bacterial soil community (sample ‘Brazil’ in (Roesch
et al., 2007)). The abundance data used in Figure 5
correspond to 16S rDNA sequences obtained from a
bacterial seawater community from the upper ocean
(Rusch et al., 2007), from four bacterial soil
communities (Roesch et al., 2007), and from bacter-
ial and archaeal seawater communities from two
hydrothermal vents (Huber et al., 2007) Rank-
abundance curves of the data sets are shown in
Supplementary Figure S3.

Rank-abundance curves
We represent the species abundance distribution of
a community as a rank-abundance curve, that is, we
arrange the species in decreasing order of commu-
nity abundance, and plot species abundance as a
function of species rank. We use logarithmic scales
for both axes of the rank-abundance curves, so that a
community with power-law abundance distribution
is represented as a straight line (the slope is equal to
the power-law exponent), see Figure 2a. We con-
structed the communities of Figure 1 by using a
piecewise linear parametrization of the rank-
abundance curve. Hence, the species abundance
distributions consist of power-law segments with
different exponents.

Rarefaction curves
We define Sm as the expected number of species in a
sample of m individuals taken from the community
(sampling with replacement). The rarefaction curve
of the community is the plot of the number of
species Sm as a function of the sample size m. It is
important to distinguish the community rarefaction

curve from the rarefaction curve estimated from
sample data. For a sample of size M taken from the
community, the part of the rarefaction curve corre-
sponding to Sm with mpM can be estimated by
subsampling the sample data. The same approach
fails for the part of the rarefaction curve correspond-
ing to Sm with m4M. In that case the rarefaction
curve has to be extrapolated, introducing large
estimation uncertainty. We studied two extreme
extrapolation scenarios: one for the slowest (that
is, smallest slope) and one for the fastest (that is,
largest slope) increase of the rarefaction curve
compatible with the sample data, see Figure 3.

Hill diversities
The Hill diversities, defined in Equation (3), can be
computed if the community abundances are known.
If only sample data are available, Hill diversities
have to be estimated. We consider sampling with
replacement, and denote by M the sample size and
by Fk the number of species sampled k times. We
developed an estimation procedure that exploits
the link between Hill diversities Da and the rarefac-
tion curve Sm. The lower estimate Ŝ�m of the
rarefaction curve,

Ŝ�m ¼
P
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Figure 2 Estimated species richness does not rank correctly communities. We generated three community abundance distributions, the
rank-abundance curves of which are shown in panel a. Community C1 (red) has the smallest number of species; community C3 (green) has the
largest number of species. The rarefaction curves of the three communities up to sample size 2 104 are shown in panel b. Based on the rarefaction
data, one would conclude that community C1 is the most diverse and community C3 the least diverse. Hence, the ranking of the communities
according to their observed diversity is inverted compared to the ranking according to their true diversity. This observation is confirmed when
applying Chao’s estimator to sample data. Community C1 is estimated to have 10 times more species than community C3, whereas in reality
community C1 has 20 times less species than community C3. See Supplementary Table S1 for the numerical data of the communities. The colour
reproduction of this figure is available on the ISME Journal online.
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where G denotes the gamma function. Similarly, the
upper estimate of the rarefaction curve,

Ŝþm ¼
P
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Fk 1�
M � k

m

� �
M
m

� �
 !

if mpM
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>>:

with N the (estimated) community size, yields the
upper estimate of the Hill diversity,

D̂þa ¼
X1
m¼1

aGðm� aÞ
m ! Gð1� aÞŜ

þ
m

 ! 1
1� a

: ð2Þ

The estimators (1) and (2) can be computed with the
Matlab code in the Supplementary Information, and
were used to generate upper and lower estimates of
Hill diversities.

Results

Species richness cannot be estimated from sample data
alone
We are interested in estimating the diversity of a
community based on the composition of a sample
taken from the community. Our approach is to
reconstruct community structures, that is, species
abundance distributions, from the sample data. For
the example data set of Figure 1, we find that a wide
range of communities are consistent with the sample
data. The reconstructed communities have vastly
different numbers of species, differing by two orders

of magnitude, implying that estimating species
richness is subject to large biases.

We claim that sample data is always consistent
with very different community structures. To estab-
lish this claim we study the link between the rare
species tail of the community and the sample data,
summarized by the rarefaction curve. A computa-
tion in Supplementary Text S1 shows that the
rarefaction curve up to sample size M is insensitive
to the abundance distribution of species with
relative abundance well below 1

M. For concreteness
we set a relative abundance threshold at 1

50M, and we
call the species with larger and smaller relative
abundance than this threshold the ‘non-rare’ and
‘rare’ species, respectively. The computation shows
that the rarefaction curves does not depend on the
abundance distribution of the rare species. Changes
in the rare species tail, such as increasing the
number of rare species by several orders of magni-
tude (but keeping the total abundance of rare species
constant), does not affect the sample data. As a
consequence, estimating species richness is intrin-
sically problematic.

Note that we use a statistical definition of rarity,
which depends on the sampling effort M; the set of
rare species gets smaller when sampling gets deeper.
This contrasts with the ecological concept of rarity, a
community property independent of sample size
(Pedrós-Alió, 2006; Sogin et al., 2006), see the
Discussion section.

To further illustrate the theoretical result we
reconsider the reconstructed communities of
Figure 1. The communities have the same abun-
dance distribution of the non-rare species. In each
community, the set of rare species occupies 0.5% of
the total community abundance, explaining why the
corresponding rarefaction curves coincide, see
Figure 1d. Nevertheless, the number of rare species
differs by two orders of magnitude. Another exam-
ple of in silico communities with very different rare
species tails but with the same rarefaction curve is
shown in Supplementary Figure S1.

We conclude that sample data do not allow us to
distinguish communities with very different rare
species tails. The insensitivity of the rarefaction
curve to rare species implies that it is difficult or
impossible to reliably estimate the community
species richness from sample data alone.

Relative species richness cannot be estimated from
sample data alone
We have shown that the number of species in a
community cannot be reliably estimated from
sample data. A related question is whether sample
data can be used to rank different communities
according to their number of species. In this section
we show that this cannot be done without additional
assumptions.

We present an explicit example to illustrate the
use of sample data to rank communities, see
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Figure 3 Extrapolating the rarefaction curve. The Hill diversity
estimators D̂�a and D̂þa are based on reconstructions of the
rarefaction curve Sm from sample data. For a sample of size M, the
rarefaction curve Sm for mpM can be estimated by subsampling
(red full line). If the sample size M is large, the estimator has small
uncertainty. The rarefaction curve Sm for m4M can be estimated
by extrapolating the sample data beyond the sample size
M. Different extrapolation scenarios are compatible with the
sample data. We consider two extreme scenarios (dashed lines). A
lower estimate is obtained by assuming that unobserved species
are approximately as rare as the rarest observed species. An upper
estimate is obtained by assuming that unobserved species are
represented in the community by one individual. The difference
between the two extremes quantifies the uncertainty of the
extrapolation, shown as the shaded region. The uncertainty
increases rapidly for m44M.
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Figure 2. We consider three communities, which
differ widely in species richness: community C1 has
20 times fewer species than community C3. We
construct the initial arcs of these rarefaction curves,
see Figure 2b. Surprisingly, the rarefaction curves
suggest that community C1 is the most diverse and
community C3 the least diverse. We therefore expect
that any estimator of species richness ranks the
communities in the inverse order of their true
species richness. Indeed, Chao’s estimator predicts
that community C1 has almost 10 times as many
species as community C3 (see Supplementary Table
S1; values are averaged over sample randomness).

To understand the incorrect ranking we take a
closer look at the communities in Figure 2a. We
explained, in the previous section, that sample data
are insensitive to rare species. When we compare
the number of non-rare species in the communities
(species with relative abundance above 10�6), we
find that community C1 has 15 times more non-rare
species than community C3. This explains why the
sample data suggest that community C1 is the most
diverse. Community C1 has a large number of non-
rare species combined with a relatively small
number of rare species. In contrast, community C3
has a relatively small number of non-rare species

combined with a very large number of rare species.
This explains the discrepancy between true number
of species, mainly determined by the rare species,
and estimated number of species, determined by the
non-rare species.

The example of Figure 2 indicates a general
problem: relative species richness cannot be reliably
estimated. The problem is due to the same mechan-
ism as the one identified in the previous section.
Sample data cannot be used to rank communities
according to their number of species because sample
data do not contain information about the number of
rare species.

Some generalized diversities can be estimated from
sample data alone
Although insensitive to rare species, sample data do
contain information about the community structure.
In this section we demonstrate that diversity indices
that are weakly dependent on rare species can be
estimated from sample data.

Diversity is a broader notion than species rich-
ness. Alternative definitions of diversity have been
proposed, in which rare species contribute less than
common species. These alternative diversities

100

102

104

106

108

N = 1010

M = 102

H
ill

 d
iv

er
si

ty

0 0.5 1 1.5 2

Hill parameter

0 0.5 1 1.5 2

Hill parameter

0 0.5 1 1.5 2

Hill parameter

N = 1010

M = 104

N = 1010

M = 106

N = 1015

M = 106

N = 1015

M = 104

N = 1015

M = 102

N = 1020

M = 102

N = 1020

M = 104

N = 1020

M = 106

100

102

104

106

108

H
ill

 d
iv

er
si

ty

100

102

104

106

108

H
ill

 d
iv

er
si

ty

Figure 4 Estimated Hill diversities for in silico communities. We generated samples from a community with power-law abundance
distribution (S¼106, z¼ 2) and evaluated the estimators D̂�a and D̂þa for the Hill diversity Da. We consider three sample sizes M (in
columns: M¼ 102, 104, 106) and three community sizes N (in rows: N¼1010, 1015, 1020). The shaded range between D̂�a and D̂þa indicates
the estimation uncertainty. The true Hill diversity Da of the community is plotted in black. The Hill diversities between a¼1 (Shannon)
and a¼2 (Simpson) are correctly estimated even for small sample size M. The estimates of Hill diversities less than a¼ 1, including a¼ 0
(species richness), are characterized by large uncertainty.
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account not only for species richness but also for the
evenness of the community structure. Examples are
the Shannon diversity index (Shannon, 1948) and
the Simpson diversity index (Simpson, 1949). Here
we study a family of generalized diversities, the Hill
diversities Da (Hill, 1973) that includes these two
examples as well as species richness as special
cases. For a community consisting of S species with
relative abundances p1, p2,y, pS, the Hill diversities
are defined by

Da¼
Xs

i¼ 1

pa
i

 ! 1
1� a

: ð3Þ

We obtain a Hill diversity for each value of the
parameter a. For a¼ 0 the species are weighted
equally in the sum of Equation (3) (each term is
equal to one), and D0¼S, that is, D0 is equal to
species richness. For a40 the species are not
weighted equally. Instead, a rare species contributes
less than a common species. For larger values of a
the weighting is more unequal, see Supplementary

Text S2. As an extreme case, only the most abundant
species contributes in the limit a!1. The Hill
diversity of order 1 is related to the Shannon
diversity index (note that Definition (3) should be
understood as D1¼ lima!1 Da) and the Hill diversity
of order 2 is related to the Simpson concentration
index. The Hill diversity for a community in which
all S species have the same relative abundance
pi ¼ 1

S is equal to Da¼S for any value of the
parameter a. This indicates that any Hill diversity
Da can be considered as an effective number of
species (Hill, 1973; Jost, 2006), which facilitates the
interpretation of estimated diversity values and
allows us to compare the estimation properties of
different Hill diversities.

As a increases the Hill diversities are increasingly
insensitive to the tail of rare species and are more
strongly determined by the non-rare species, see
Supplementary Figure S2. Hence, we expect that
they are more accurately estimated from sample
data. A mathematical link between the Hill diver-
sities and the rarefaction curve further indicates
which Hill diversities can be estimated from sample
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Figure 5 Estimated Hill diversities for natural microbial communities. We observe the same behavior as for the in silico generated data
sets of Figure 4: for aX1 the Hill diversity Da can be estimated accurately; for ao1 the estimation of the Hill diversity Da has large
uncertainty. We used the same data sets as Quince et al., (2008): a seawater bacterial sample from the upper ocean (Rusch et al., 2007),
soil bacterial samples at four locations: Brazil, Florida, Illinois and Canada (Roesch et al., 2007), and seawater samples from deep-sea
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for illustration; results are robust to changes in community size (see Supplementary Figure S4).

Robust estimation of microbial diversity
B Haegeman et al

1097

The ISME Journal



data. In Supplementary Text S3 we show that any
Hill diversity Da can be expressed in terms of the
rarefaction curve. The Hill diversity D2 is related to
the initial slope of the rarefaction curve (Lande
et al., 2000). Thus, for a close to 2, the Hill diversity
Da depends on the part of the rarefaction curve for
small sample size. For smaller a, the Hill diversity
Da depends on the rarefaction curve for increasingly
large sample size. The Hill diversity D0 is equal to
species richness, which can be obtained as the limit
of the rarefaction curve for infinite sample size.

These observations have important implications
for the diversity estimation problem. We suppose
that sample data of size M are given, and we try to
estimate the rarefaction curve at sample size m. The
community rarefaction curve for sample sizes mpM
can be estimated in an unbiased manner by
subsampling the sample data, but for m4M the
rarefaction curve can only be estimated based on
extrapolation. This leads to increasingly biased
estimates as m increases. Hence, we reach the
following conclusions. On one hand, Hill diversities
that depend on the initial part of the rarefaction
curve, that is, Da for a close to 2, can be estimated
robustly. On the other hand, Hill diversities that
depend on the part of the rarefaction curve for large
sample size, that is, Da for a close to 0, cannot be
estimated robustly. We now seek to make this
classification of community diversities more
precise.

Estimators for Hill diversities
We have argued that the Hill diversities Da with a
close to 2 can be estimated accurately, and that the
Hill diversities Da with a close to 0 cannot be
estimated accurately. In this section we introduce
and study estimators for the set of Hill diversities Da

with 0pap2.
We have shown that a wide variety of commu-

nities may be consistent with any given sample data.
Here we look for two extreme members of this set of
reconstructed communities. We construct a lower
estimate of the diversity, D̂�a , by assuming that
unobserved species are approximately as rare as the
rarest observed species. We construct an upper
estimate of the diversity, D̂þa , by assuming that
unobserved species are represented in the commu-
nity by a single individual. We first extrapolate the
rarefaction curve based on these assumptions, see
Figure 3, and then use the extrapolated curves to
calculate the Hill diversities. The detailed construc-
tion of the estimators D̂�a and D̂þa is presented in
Supplementary Texts S3, S4 and S5. A summary of
the estimator formulas can be found in the Materials
and methods section. We provide Matlab code to
compute the estimators in the Supplementary
Information.

Two properties follow directly from the definition
of the estimators D̂�a and D̂þa , see Supplementary
Text S5. First, the lower estimate D̂�0 for species

richness is equal to Chao’s estimator. Hence, the
lower estimate D̂�a generalizes Chao’s estimator for
Hill diversities Da with a40. Second, the estimators
for Simpson diversity D2 coincide, D̂�2 ¼ D̂þ2 .
This corresponds to the existence of an unbiased,
non-parametric estimator for the Simpson concen-
tration index, and confirms that Simpson diversity
D2 is particularly easy to estimate, even for small
sample size M. Note that the lower estimate can
be computed from the sample data alone, but the
upper estimate also requires an estimate of the
community size N.

In Figure 4 we apply the estimators D̂�a and D̂þa to
sample data from an in silico community. For a41
the lower and upper estimates almost coincide, so
that the Hill diversities Da with a41, and in
particular Simpson diversity D2, may be estimated
with small error. This holds for any sample size M
(as small as M¼ 100) and any community size N. For
ao1 the upper estimate increases steeply, so that the
estimation uncertainty of the Hill diversities Da with
a small, and in particular species richness D0, is very
large. This holds for any sample size M (as large as
M¼ 106) and any community size N much greater
than M. The effect of sample size M and community
size N is only pertinent for a close to 1. For these
values of a the range between the lower and upper
estimates narrows with increasing sample size M
and decreasing community size N, so that increas-
ingly accurate estimates are obtained for Shannon
diversity D1.

We observe the same behavior when applying the
Hill diversity estimators to empirical sample data,
see Figure 5. We applied the estimators to nine
metagenomic data sets from a wide range of
environments: soil samples at four locations
(Roesch et al., 2007), a seawater sample from the
upper ocean (Rusch et al., 2007) and seawater
samples at two deep-sea vent locations (Huber
et al., 2007). The estimators exhibit the same
patterns as for the in silico community studied in
Figure 4. The Hill diversities Da for aX1, including
Shannon and Simpson diversity, can be estimated
reliably. For small a the estimation uncertainty is
very large, that is, Hill diversities close to species
richness cannot be estimated reliably. The depen-
dence of the estimation accuracy on the (estimated)
community size N is weak, see Supplementary
Figure S4. These observations show that our
analysis for in silico communities is relevant for
real communities as well.

Discussion

We have argued that the estimation of species
richness is intrinsically problematic. We have
provided evidence in three different but related
ways. First, we have shown that it is possible to add
a large number of rare species to the community
without significantly affecting its statistical
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properties under fixed-size sampling, see Figure 1.
As the number of added rare species can be large,
the estimation uncertainty of the number of species
is large as well. Second, we have discussed an exact
relationship between the community rarefaction
curve and the set of Hill diversities. Hill diversities
close to Simpson’s are based on the initial part of the
rarefaction curve, which can be reliably interpolated
from sample data. Hill diversities beyond Shan-
non’s, and species richness in particular, depend on
parts of the rarefaction curve orders of magnitude
beyond the actual sample size, whose estimation
requires unverifiable extrapolation. Third, we have
constructed two estimators related to the Hill
diversities, delimiting the range in which each true
Hill diversity is expected to lie. This range is
relatively narrow for diversities from Simpson’s to
Shannon’s, but it diverges for diversities towards
species richness, see Figures 4 and 5. Hence, the
estimation uncertainty of species richness is intrin-
sically large.

We have also studied a weaker form of species
richness estimation, namely, whether communities
can be ranked according to species richness based
on sample data. We have argued that also in this
case the sample data are not sufficiently informa-
tive. The example shown in Figure 2 is interesting,
because the community ranking based on estimated
species richness, although completely different from
the ranking based on true richness, is the same as
the ranking based on true Simpson or Shannon
diversity, see Supplementary Table S1. This obser-
vation can be understood intuitively. The insensi-
tivity of the species richness estimator to the very
rare species in the community is shared by the
Simpson and Shannon diversity, but not by the
community species richness. In fact, different
diversity estimators often yield the same community
ranking (Shaw et al., 2008). This should not be
interpreted as an indication of the validity of the
ranking for species richness; the ranking based on
true species richness can be completely different.
Communities should only be ranked according to
community properties that can be estimated reliably.

The intrinsic problem of species richness estima-
tion can be unlocked by introducing more informa-
tion in the estimation procedure. Obviously, the
reliability of the estimate crucially depends on the
reliability of the additional information. For exam-
ple, assuming a family of abundance distributions
(for example, lognormal) can lead to species rich-
ness estimates with small uncertainty (Schloss and
Handelsman, 2005; Hong et al., 2006; Quince et al.,
2008). But both the estimate and the uncertainty are
conditional on the assumed distribution family. In
particular, assuming a species abundance distribu-
tion also fixes the rare species tail and, as we have
argued, the sample data contain little information
about the rare species tail. Hence, the choice of
distribution family is arbitrary. Still, this choice
strongly affects the species richness estimate. We

believe this to be a serious problem for this approach
to diversity estimation.

Other assumptions have been introduced to make
diversity estimation manageable. Some regularity
has been observed in the distribution of diversity
over coarse taxonomic groups (Mora et al., 2011).
This regularity can be assumed down to the species
level to guide the estimation of species richness.
Clearly, the approach depends crucially on the
unverifiable validity of the extrapolation. More
generally, this and other approaches attempt to
reduce the wide range of diversity values consistent
with the data to a single value. This implies that the
reduction step is based on detailed information not
contained in the sample data. Such an approach is
necessarily very sensitive to the detailed assump-
tions, and therefore not robust.

Mao and Colwell (2005) pointed out that rare
species pose a serious problem for estimating
species richness. In this paper we have shown a
practical way forward by quantifying the range of
diversity values consistent with the data. The latter
idea underlies our construction of lower and upper
estimates of community diversity, and is also crucial
for Chao’s estimator of species richness (Chao,
1984). This estimator does not attempt to directly
assess true species richness, but rather approximates
the lowest species richness consistent with the
sample data. In many practical cases this indirect
estimation is the most informative claim that can be
made about species richness.

Different studies have highlighted the role of rare
species in microbial communities (Dykhuizen, 1998;
Pedrós-Alió, 2006; Sogin et al., 2006; Pedrós-Alió,
2007; Huber et al., 2007; Gobet et al., 2010). We have
argued that sample data contain limited information
about the rare species tail of the community. For
example, the total number of rare species cannot be
estimated. However, an estimator for the relative
abundance of unobserved species is available, see
Supplementary Text S4. For the data sets we have
analyzed the estimated relative abundance ranges
from 0.1–5%, see Supplementary Table S2. These
estimates depend on sample size. It might be more
practical to use a notion of rarity that is independent
of sample size. For example, we could call a species
rare if its community abundance is below a certain
threshold value (for example, relative abundance
below 10� 4). We plan to address the problem of
estimating the relative abundance of rare species in
a sample-independent fashion as part of future
work.

In this paper we have only considered taxonomic
diversity. Other notions of diversity such as func-
tional and phylogenetic diversity are becoming
increasingly popular (Horner-Devine and
Bohannan, 2006; Lozupone and Knight, 2007;
Green et al., 2008). Our study suggests that any
diversity metrics that strongly depend on rare
species will be difficult or impossible to estimate
robustly. It is interesting to note that other
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measurement techniques for microbial diversity are
confronted with limitations similar to those of the
sample-based techniques discussed in this paper.
The reassociation kinetics of community DNA are
affected by community diversity (Torsvik et al.,
1990; Gans et al., 2005), but it has been argued that
not species richness, but Simpson and Shannon
diversity can be estimated from the data (Haegeman
et al., 2008). Fingerprinting techniques provide
snapshots of the community structure (Fromin
et al., 2002): in this context also, the estimation of
species richness seems to be impossible for highly
diverse communities (Loisel et al., 2006; Bent and
Forney, 2008), but preliminary results indicate that
accurate estimators can be constructed for Simpson
diversity. Estimates of the total number of genes in a
species, that is, the pan genome size, has been
estimated from a small number of sample genomes
(Tettelin et al., 2005), but it is has been argued that
these estimates are not robust and that similarity-
based metrics should be used instead (Kislyuk et al.,
2011).

These findings together with those of this paper
make a strong case for the versatility of generalized
diversities for the analysis of microbial diversity
estimation. They can be interpreted as effective
number of species giving greater weight to common
species (Hill, 1973; Jost, 2006), and have superior
estimation properties compared with species rich-
ness. We recommend the use of Shannon and
Simpson diversity to quantify and compare micro-
bial taxonomic diversity.
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Pedrós-Alió C. (2007). Dipping into the rare biosphere.
Science 315: 192–193.

Quince C, Curtis TP, Sloan WT. (2008). The rational
exploration of microbial diversity. Isme J 2: 997–1006.

Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin
AKM, Kent AD et al. (2007). Pyrosequencing enumer-
ates and contrasts soil microbial diversity. ISME J 1:
283–290.

Rusch DB, Halpern AL, Sutton G, Heidelberg KB, William-
son S, Yooseph S et al. (2007). The Sorcerer II Global
Ocean Sampling expedition: Northwest Atlantic
through Eastern Tropical Pacific. PLoS Biol 5: e77.

Schloss PD, Handelsman J. (2005). Introducing DOTUR, a
computer program for defining operational taxonomic
units and estimating species richness. Appl Environ
Microbiol 71: 1501–1506.

Schloss PD, Handelsman J. (2006). Toward a census of
bacteria in soil. PLoS Comput Biol 2: e92.

Shannon CE. (1948). A mathematical theory of commu-
nication. Bell System Tech J 27: 623–656.

Shaw AK, Halpern AL, Beeson K, Tran B, Venter JC,
Martiny JBH. (2008). It’s all relative: ranking the
diversity of aquatic bacterial communities. Environ
Microbiol 10: 2200–2210.

Shen TJ, Chao A, Lin CF. (2003). Predicting the number of
new species in further taxonomic sampling. Ecology
84: 798–804.

Simpson EH. (1949). Measurement of diversity. Nature
163: 688.

Sloan WT, Quince C, Curtis TP. (2008). The uncountables.
In: Zengler K (ed) Accessing Uncultivated Microorgan-
isms: From the Environment to Organisms and
Genomes and Back. ASM Press, pp 35–54.

Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM,
Neal PR et al. (2006). Microbial diversity in the deep
sea and the underexplored ‘rare biosphere’. Proc Natl
Acad Sci USA 103: 12115–12120.

Stackebrandt E, Frederiksen W, Garrity GM, Grimont PAD,
K̈ampfer P, Maiden MCJ et al. (2002). Report of the ad
hoc committee for the re-evaluation of the species
definition in bacteriology. Int J Syst Evol Microbiol 52:
1043–1047.

Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini
D, Ward NL et al. (2005). Genome analysis of multiple
pathogenic isolates of Streptococcus agalactiae: Impli-
cations for the microbial ‘pan-genome’. Proc Natl
Acad Sci USA 102: 13950–13955.

Torsvik V, Salte K, Sorheim R, Goksoyr J. (1990).
Comparison of phenotypic diversity and DNA hetero-
geneity in a population of soil bacteria. Appl Environ
Microbiol 56: 776–781.

Whitman WB, Coleman DC, Wiebe WJ. (1998). Prokar-
yotes: the unseen majority. Proc Natl Acad Sci USA
95: 6578–6583.

Wilson EO. (1999). The Diversity of Life. W.W. Norton &
Company.

Supplementary Information accompanies the paper on The ISME Journal website (http://www.nature.com/ismej)

Robust estimation of microbial diversity
B Haegeman et al

1101

The ISME Journal

http://www.nature.com/ismej

	title_link
	Introduction
	Materials and methods
	Data sets

	Figure™1.Empirical sample data are consistent with very different communities. We consider the abundance data of a sample taken from a bacterial soil community (sample ’Brazil’ in (Roesch et™al., 2007)). The sample consists of 26079 individuals belonging 
	Rank-abundance curves
	Rarefaction curves
	Hill diversities

	Figure™2Estimated species richness does not rank correctly communities. We generated three community abundance distributions, the rank-abundance curves of which are shown in panel a. Community C1 (red) has the smallest number of species; community C3 (gre
	Results
	Species richness cannot be estimated from sample data alone
	Relative species richness cannot be estimated from sample data alone

	Figure™3Extrapolating the rarefaction curve. The Hill diversity estimators D^   and D^   are based on reconstructions of the rarefaction curve Sm from sample data. For a sample of size M, the rarefaction curve Sm for mlesM can be estimated by subsampling 
	Some generalized diversities can be estimated from sample data alone

	Figure™4Estimated Hill diversities for in silico communities. We generated samples from a community with power-law abundance distribution (S=106, z=2) and evaluated the estimators D^   and D^   for the Hill diversity Dalpha. We consider three sample sizes
	Figure™5Estimated Hill diversities for natural microbial communities. We observe the same behavior as for the in silico generated data sets of Figure™4: for alphages1 the Hill diversity Dalpha can be estimated accurately; for alphalt1 the estimation of th
	Estimators for Hill diversities

	Discussion
	ACKNOWLEDGEMENTS




