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Computational Pathology (CPath) is an interdisciplinary science that augments developments of computational ap-
proaches to analyze and model medical histopathology images. The main objective for CPath is to develop infrastruc-
ture and workflows of digital diagnostics as an assistive CAD system for clinical pathology, facilitating
transformational changes in the diagnosis and treatment of cancer that are mainly address by CPath tools. With
evergrowing developments in deep learning and computer vision algorithms, and the ease of the dataflow fromdigital
pathology, currently CPath is witnessing a paradigm shift. Despite the sheer volume of engineering and scientific
works being introduced for cancer image analysis, there is still a considerable gap of adopting and integrating these
algorithms in clinical practice. This raises a significant question regarding the direction and trends that are undertaken
in CPath. In this article we provide a comprehensive review of more than 800 papers to address the challenges faced in
problem design all-the-way to the application and implementation viewpoints. We have catalogued each paper into a
model-card by examining the key works and challenges faced to layout the current landscape in CPath. We hope this
helps the community to locate relevant works and facilitate understanding of the field’s future directions. In a nutshell,
we oversee the CPath developments in cycle of stages which are required to be cohesively linked together to address
the challenges associated with such multidisciplinary science. We overview this cycle from different perspectives of
data-centric, model-centric, and application-centric problems. We finally sketch remaining challenges and provide di-
rections for future technical developments and clinical integration of CPath. For updated information on this survey
review paper and accessing to the original model cards repository, please refer to GitHub. Updated version of this
draft can also be found from arXiv.
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1. Introduction

April 2017 marked a turning point for digital pathology when the
Philips IntelliSite digital scanner received the US Food&Drugs Administra-
tion (FDA) approval (with limited use case) for diagnostic applications in
clinical pathology.1,2 A subsequent validation guideline was created to
help ensure the produced Whole Slide Image (WSI) scans could be used
2

in clinical settings without compromising patient care, while maintaining
similar results to the current gold standard of optical microscopy.3–6 The
use of WSIs offers significant advantages to the pathologist’s workflow: dig-
itally captured images, compared to tissue slides, are immune fromacciden-
tal physical damage and maintain their quality over time.7,8 Clinics and
practices can share and store these high-resolution images digitally
enabling asynchronous viewing/collaboration worldwide.9,10 The



Fig. 1. We divide the data science workflow for pathology into multiple stages,
wherein each brings a different level of experience. For example, the annotation/
ground truth labelling stage (c) is where domain expert knowledge is consulted as
to augment images with associated metadata. Meanwhile, in the evaluation phase
(e), we have computer vision scientists, software developers, and pathologists
working in concert to extract meaningful results and implications from the
representation learning.
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development of digital pathology shows great promise as a framework to im-
prove work efficiency in the practice of pathology.10,11 Adopting a digital
workflow also opens immense opportunities for using computational
methods to augment and expedite their workflow–the field of Computa-
tional Pathology (CPath) is dedicated to researching and developing these
methods.12–17

However, despite the aforementioned advantages, the adoption of digi-
tal pathology, and hence computational pathology, has been slow. Some
pathologists consider the analysis of WSIs as opposed to glass slides as an
unnecessary change in their workflow9,18–20 and recent surveys indicate
that the switch to digital pathology does not provide enough financial
incentive.8,21–25 This is where advances from CPath can address or over-
power many of the concerns in adopting a digital workflow. For example,
CPath models to identify morphological features that correlate with breast
cancer26 provide substantial benefits to clinical accuracy. Further, CPath
models that identify lymph nodemetastases with better sensitivitywhile re-
ducing diagnostic time27 can streamline workflows to increase pathologist
throughput and generate more revenue.28,29

Similar to digital pathology, the adoption of CPath methods has also
lagged despite the many benefits it offers to improve efficiency and accu-
racy in pathology.2,30–32 This lack of adoption and integration into clinical
practice raises a significant question regarding the direction and trends of
current work in CPath. This survey looks to review the field of CPath in a
systematic fashion by breaking down the various steps involved in a
CPath workflow and categorizing CPath works to both determine trends
in the field and provide a resource for the community to reference when
creating new works.

Existing survey papers in the field of CPath can be clustered into a few
groups. The first focuses on the design and applications of smart diagnosis
tools.15–17,33–43 These works focus on designing novel architectures for ar-
tificial intelligence (AI) models with regards to specific clinical tasks, al-
though they may briefly discuss clinical challenges and limitations. A
second group of works focus on clinical barriers for AI integration
discussing specific certifications and regulations required for the develop-
ment of medical devices under clinical settings.44–49 Lastly, the final
group focuses on both the design and the integration of AI tools with clini-
cal applications.12–14,29,50–56 These works speak to both the computer vi-
sion and pathology communities in developing machine learning (ML)
models that can satisfy clinical use cases.

Our work is situated in this final group as we breakdown the end-to-
end CPath workflow into stages and systematically review works related
to and addressing those stages. We oversee this as a workflow for CPath
research that breaks down the process of problem definition, data collec-
tion, model creation, and clinical validation into a cycle of stages. A visual
representation of this cycle is provided in Fig. 1. We review over 700 pa-
pers from all areas of the CPath field to examine key works and challenges
faced. By reviewing the field so comprehensively, our goal is to layout the
current landscape of key developments to allow computer scientists and
pathologists alike to situate their work in the overall CPath workflow, lo-
cate relevant works, and facilitate an understanding of the field’s future
directions. We also adopt the idea of generating model cards from57 and
designed a card format specifically tailored for CPath. Each paper we re-
viewed was catalogued as a model card that concisely describes (1) the
organ of application, (2) the compiled dataset, (3) the machine learning
model, and (4) the target task. The complete model card categorization
of the reviewed publications is provided in Appendix A.12 for the
reader’s use.

In our review of the CPath field, we find that two main approaches
emerge in works: 1) a data-centric approach and 2) a model-centric
approach. Considering a given application area, such as specific cancers,
e.g. breast ductal carcinoma in-situ (DCIS), or a specific task, e.g. segmenta-
tion of benign and malignant regions of tissue, researchers in the CPath
field focus generally on either improving the data or innovating on the
model used.

Works with data-centric approaches focus on collecting pathology data
and compiling datasets to train models on certain tasks based on the
3

premise that the transfer of domain expert knowledge to models is cap-
tured by the process of collecting and labeling high-quality data.51,58,59

The motivation behind this approach in CPath is driven by the need to
1) address the lack of labeled WSI data representing both histology and
histopathology cases due to the laborious annotation process24 and 2) cap-
ture a predefined pathology ontology provided by domain expert patholo-
gists for the class definitions and relations in tissue samples. Regarding the
lack of labeledWSI data our analysis reveals that there are a larger number
of datasets with granular labels, but there is a larger total amount of data
available for a given organ and disease application that have weakly super-
vised labels at the Slide or Patient-level. Although some tasks, such as seg-
mentation and detection, require WSI data to have more granular labels at
the region-of-interest (ROI) or image mosaic/tiles (known as patch) levels,
to capture more precise information for training models, there is a poten-
tial gap to leverage the large amount of weakly-supervised data to train
models that can be later used downstream on smaller strongly-supervised
datasets for those tasks. When considering the ontology of pathology as
compared to the field of computer vision, we note that pathology datasets
have far fewer classes than computer vision (e.g. ImageNet-20K contains
20,000 class categories for natural images60 whereas CAMELYON17 has
four annotated classes for breast cancer metastases61), but has much
more variation within each of these classes in terms of representations
and fuzzy boundaries around the grade of cancers which subdivides each
class into many more in reality. There are also very rare classes in the
form of rare diseases and cancers, as presented in Fig. 12 and discussed
in Section 2, which present a class imbalance challenge when compiling
data or training models. If one considers the complexities involved in rep-
resentational learning of related tissues and diseases, it raises the question
of whether there is a clear understanding and consensus in the field of how
an efficient dataset should be compiled for model development. Our sur-
vey analyzes the availability of CPath datasets along with what area of ap-
plication they address and their annotation level in detail in Section 3.3,
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and the complete table of datasets we have covered is available in
Appendix A.9. Section 4 goes into more depth about the various levels of
annotation, the annotation process, and selecting the appropriate annota-
tion level for a task.

The model-centric approach, by contrast, is favoured by computer sci-
entists and engineers, who design algorithmic approaches based on the
available pathology data. Selection of a modelling approach, such as self-
supervised, weakly-supervised, or strongly-supervised learning, is dictated
directly by the amount of data available for a given annotation level and
task. Currently, many models are developed on datasets with strongly-
supervised labels at the ROI, Patch, or Pixel-levels to address tasks such as
tissue type classification or disease detection. However, a recent trend is de-
veloping to apply self-supervised and weakly-supervised learning methods
to leverage the large amount of data with Slide and Patient-level
annotations.62 Models are trained in a self or weakly supervised manner
to learn representations on a wider range of pathology data across organs
and diseases, which can be leveraged for other tasks requiring more super-
vision but without the need for massive labeled datasets.63–65 This trend
points to the future direction of CPath models following a similar trend to
that in computer vision, where large-scale models are being pre-trained
using self-supervised techniques to achieve state-of-the-art performance in
downstream tasks.66,67

Although data and model centric approaches are both important in ad-
vancing the performance of models and tools in CPath, we note a need for
muchmore application centric work in CPath.We define a study to be appli-
cation centric if the primary focus is on addressing a particularly impactful
task or need in the clinical workflow, ideally including clinical validation of
the method or tool. To this end, Section 2 details the clinical pathology
workflow from specimen collection to report generation, major task catego-
ries in CPath, and specific applications per organ. Particularly, we find that
very few works focus on the pre or post-analytical phases of the pathology
workflow where many errors can occur, instead focusing on the analytical
phase where interpretation tasks take place. Additionally, certain types of
cancer with deadly survival rates are underrepresented in CPath datasets
and works. Very few CPath models and tools have been validated in a clin-
ical setting by pathologists, suggesting that there may still be massive bar-
riers to actually using CPath tools in practice. All of this points to a severe
oversight by the CPath community towards considering the actual applica-
tion and implementation of tools in a clinical setting.We suspect this to be a
major reason as towhy there is a slowuptake in adopting CPath tools by pa-
thology labs.

The contributions of this survey include the provision of an end-to-end
workflow for developing CPath work which outlines the various stages in-
volved and is reflected within the survey sections. Further, we propose
and provide a comprehensive conceptual model card framework for
CPath that clearly categorizes works by their application of interest, dataset
usage, andmodel, enabling consistent and easy comparison and retrieval of
papers in relevant areas. Based on our analysis of thefield, wehighlight sev-
eral challenges and trends, including the availability of datasets, focus on
models leveraging existing data, disregard of impactful application areas,
and lack of clinical validation. Finally, we give suggestions for addressing
these aforementioned challenges and provide directions for future work
in the hopes of aiding the adoption and implementation of CPath tools in
clinical settings.

The structure of this survey closely follows the CPath data workflow il-
lustrated in Fig. 1. Section 2 begins by outlining the clinical pathology
workflow and covers the various task domains in CPath, along with organ
specific tasks and diseases. The next step of the workflow involves the pro-
cesses and methods of histopathology data collection, which is outlined in
Section 3. Following data collection, Section 4 details the corresponding an-
notation and labeling methodology and considerations. Section 5 covers
deep learning designs and methodologies for CPath applications.
Section 6 focuses on regulatory measures and clinical validation of CPath
tools. Section 7 explores emerging trends in recent CPath research. Finally,
we provide our perceived challenges and future outlook of CPath in
Section 8.
4

2. Clinical applications for CPath

The field of CPath is dedicated to the creation of tools that address and
aid steps in the clinical pathology workflow. Thus, a grounded understand-
ing of the clinical workflow is of paramount importance before develop-
ment of any CPath tool. The outcomes of clinical pathology are
diagnostics, prognostics, and predictions of therapy response. Computa-
tional pathology systems that focus on diagnostic tasks aim to assist the pa-
thologists in tasks such as tumour detection, tumour grading, quantification
of cell numbers, etc. Prognostic systems aim to predict survival for individ-
ual patients while therapy response predictive models aid personalized
treatment decisions based on histopathology images. Fig. 3 visualizes the
goals pertaining to these tasks. In this section, we provide detail on the clin-
ical pathology workflow, the major application areas in diagnostics, prog-
nostics, and therapy response, and finally detail the cancers and CPath
applications in specific organs. The goal is to outline the tasks and areas
of application in pathology where CPath tools and systems can be devel-
oped and implemented.

2.1. Clinical pathology workflow

This subsection provides a general overview of the clinical workflow in
pathology covering the collection of a tissue sample, its subsequent process-
ing into a slide, inspection by a pathologist, and compilation of the analysis
and diagnosis into a pathology. Fig. 2 summarizes these steps at a high level
and provides suggestions for corresponding CPath applications. The steps
are organized under the conventional pathology phases for samples: pre-
analytical, analytical, and post-analytical. These phases were developed
to categorize quality control measures, as each phase has its own set of
potential sources of errors,68 and thus potential sources of corrections dur-
ing which CPath and healthcare artificial intelligence tools could prove use-
ful. For details about each step of the workflow, please refer to the
Appendix A.1.

Pre Analytical Phase The first step of the pre-analytical phase is a biopsy
performed to collect a tissue sample, where the biopsymethod is dependent
on the type of sample required and the tissue characteristics. Sample collec-
tion is followed by accessioning of the sample which involves entering of
the patient and specimen information into a Laboratory Information System
(LIS) and linking to the ElectronicMedical Records (EMR) and potentially a
Slide Tracking System (STS). After accessioning, smaller specimens that
have not already been preserved by fixation in formalin are fixated. Once
the basic specimen preparation has occurred, the tissue is analyzed by the
pathology team without the use of a microscope; a step called grossing.
Grossing involves cross-referencing the clinical findings and the EMR re-
ports, with the operator localizing the disease, locating the pathological
landmarks, describing these landmarks, and measuring disease extent. Spe-
cific sampling of these landmarks is performed, and these samples are then
put into cassettes for the final fixation. Subsequently, the samples are then
sliced using a microtome, stained using the relevant stains for diagnosis,
and covered with a glass slide.

Analytical Phase After a slide is processed and prepared, a pathologist
views the slide to analyze and interpret the sample. The approach to inter-
pretation varies depending on the specimen type. Interpretation of smaller
specimens is focused on diagnosis of any disease. Analysis is performed in
a decision-tree style approach to add diagnosis-specific parameters, e.g.
esophagus biopsy type of sampled mucosa presence of folveolar-
type mucosa identify Barrett’s metaplasia identify degree of dyspla-
sia. Once the main diagnosis has been identified and characterized, the
pathologist sweeps the remaining tissue for secondary diagnoses which
can also be characterized depending on their nature. Larger specimens
are more complex and usually focus on characterizing the tissue and iden-
tifying unexpected diagnoses beyond the prior diagnosis from a small
specimen biopsy. Microscopic interpretation of large specimens is highly
dependent on the quality of the grossing and the appropriate detection
and sampling of landmarks. Each landmark (e.g., tumor surface, tumor
at deepest point, surgical margins, lymph node in mesenteric fat) is



Fig. 2. Quality assurance and control phases developed by pathologists to oversee the clinical pathology workflow into three main phases of pre-analytical, analytical, and
post-analytica phases. We further show how each of these processes can be augmented under the potential CPath applications in an end-to-end pipeline.
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characterized either according to guidelines, if available, or according to
the pathologist’s judgment. After the initial microscopic interpretation ad-
ditional deeper cuts (“levels”), special stains, immunohistochemistry
(IHC), and/or molecular testing may be performed to hone the diagnosis
by generating new material or slides from the original tissue block.

Post-Analytical PhaseThe pathologist synthesizes a diagnosis by aggre-
gating their findings from grossing and microscopic examination in combi-
nation with the patient’s clinical information, all of which are included in a
final pathology report. The classic sections of a pathology report are patient
information, a list of specimens included, clinical findings, grossing report,
microscopic description, final diagnosis, and comment. The length and de-
gree of complexity of the report again depends on the specimen type. Small
specimen reports are often succinct, clearly and unambiguously listing
5

relevant findings which guide treatment and follow-up. Large specimen re-
ports depend on the disease, for example, in cancer resection specimens the
grossing landmarks are specifically targeted at elements that will guide sub-
sequent treatment.

In the past, pathology reports had no standardized format, usually tak-
ing a narrative-free text form. Free text reports can omit necessary data, in-
clude irrelevant information, and contain inconsistent descriptions.69 To
combat this, synoptic reporting was introduced to provide a structured
and standardized reporting format specific to each organ and cancer of
interest.69,70 Over the last 15 years, synoptic reporting has enabled pathol-
ogists to communicate information to surgeons, oncologists, patients, and
researchers in a consistent manner across institutions and even countries.
The College of American Pathologists (CAP) and the International
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Collaboration on Cancer Reporting (ICCR) are the two major institutions
publishing synoptic reporting protocols. The parameters included in these
protocols are determined and updated by CAP and ICCR respectively to re-
main up-to-date and relevant for diagnosis of each cancer type. For the field
of computational pathology, synoptic reporting provides a significant ad-
vantage in dataset and model creation, as a pre-normalized set of labels
exist across a variety of cases and slides in the form of the synoptic param-
eters filled out in each report. Additionally, suggestion or prediction of syn-
optic report values are a possible CPath application area.

2.2. Diagnostic tasks

Computational pathology systems that focus on diagnostic tasks can
broadly be categorized as: (1) disease detection, (2) tissue subtype classifi-
cation, (3) disease diagnosis, and (4) segmentation. These tasks are visually
depicted in Fig. 3. Note how the detection tasks all involve visual analysis of
the tissue in WSI format. Thus computer vision approach is primarily
adopted towards tackling diagnostic tasks in computer aided diagnosis
(CAD). For additional detail on some previous works on these diagnostic
tasks, we refer the reader to Appendix A.2

Detection We define the detection task as a binary classification prob-
lem where inputs are labeled as positive or negative, indicating the pres-
ence or absence of a certain feature. There may be variations in the level
of annotation required, e.g. slide-level, patch-level, pixel-level detection de-
pending on the feature in question. Although detection tasks may not pro-
vide an immediate disease diagnosis, it is a highly relevant task in many
pathology workflows as pathologists incorporate the presence or absence
of various histological features into synoptic reports that lead to diagnosis.
Broadly, detection tasks fall into two main categories: (1) screening the
Fig. 3. The categorization of diagnostic tasks in computational pathology along with ex
negative classes like malignant from benign, B) Tissue Subtype Classification: classifi
common disease diagnosis task like cancer staging, D) Segmentation: tumor segmenta
months after surgery.

6

presence of cancers and (2) detecting histopathological features specific
to certain diagnoses.

Cancer detection algorithms can assist the pathologists by filtering obvi-
ously normalWSIs and directing pathologist’s focus tometastatic regions.71

Although pathologists have to review all the slides to check for multiple
conditions regardless of the clinical diagnosis, an accurate cancer detection
CAD would expedite the workflow by pinpointing the ROIs and summariz-
ing results into synoptic reports, ultimately leading to a reduces time per
slide. Due to this potential impact, cancer detection tasks have been ex-
plored in a broad set of organs. Additionally, the simple labeling in binary
detection tasks allows for deep learningmethods to generalize across differ-
ent organs where similar cancers form.72–74

Tissue SubtypeClassificationTreatment and patient prognosis can vary
widely depending on the stage of cancer, and finely classifying specific tis-
sue structures associated with a specific disease type provides essential di-
agnostic and prognostic information.75 Accordingly, accurately classifying
tissue subtypes is a crucial component of the disease diagnosis process. As
an example, discriminating between two forms of glioma (a type of brain
cancer), glioblastoma multiforme and lower grade glioma, is critical as
they differ by over 45 in patient survival rates.76 Additionally, accurate
classification is key in colorectal cancer (CRC) diagnosis, as high morpho-
logical variation in tumor cells77 makes certain forms of CRC difficult to di-
agnose by pathologists.78 We define this classification of histological
features as tissue subtype classification.

Disease Diagnosis The most frequently explored design of deep learn-
ing in digital pathology involves emulating pathologist diagnosis. We de-
fine this multi-class diagnosis problem as a disease diagnosis task. Note
the similarity with detection–disease diagnosis can be considered a fine-
grained classification problem which subdivides the general positive
amples A) Detection: common detection task such as differentiating positive from
cation task for tumorous tissue, Stroma, and adipose tissue, C) Disease Diagnosis:
tion in WSIs, and E) Prognosis tasks: shows a graph comparing survival rate and



Fig. 4.Distribution of diagnostic tasks in CPath for different organs fromTable 9.11.
This distribution includes more than 400 cited works from 2018 to 2022 inclusive.
The x-axis covers different organs, the y-axis displays different diagnostic tasks, and
the height of the bars along the vertical axis measures the number of works that
have examined the specific task and organ. Please refer to Table 9.11 in the
supplementary section for more information.
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disease class into finer disease-specific labels based on the organ and pa-
tient context.

Segmentation The segmentation task moves one step beyond classifi-
cation by adding an element of spatial localization to the predicted label
(s). In semantic segmentation, objects of interest are delineated in an
image by assigning class labels to every pixel. These class labels can be
discrete or non-discrete, the latter being a more difficult task.79 Another
variant of the segmentation task is instance segmentation, which aims to
achieve both pixel-level segmentation accuracy as well as clearly defined
object (instance) boundaries. Segmentation approaches can accurately
capture many morphological statistics80 and textural features,81 both of
which are relevant for cancer diagnosis and prognosis. Most frequently,
segmentation is used to capture characteristics of individual glands,
nuclei, and tumor regions in WSIs. For instance, glandular structure is a
critical indicator of the severity of colorectal carcinoma,82 thus accurate
segmentation could highlight particularly abnormal glands to the
pathologist as demonstrated in.82–84 Overall, segmentation provides local-
ization and classification of cancer-specific tumors and of specific histo-
logical features that can be meaningful for the pathologist’s clinical
interpretation.

2.3. Prognosis

Prognosis involves predicting the likely development of a disease based
on given patient features. For accurate survival prediction, models must
learn to both identify and infer the effects of histological features on patient
risk. Prognosis represents a merging of the diagnosis classification task and
the disease-survivability regression task.

Training amodel for prognosis requires a comprehensive set of both his-
topathology slides and patient survival data (i.e. a variant of multi-modal
representation learning). Despite the complexity of the input data, ML
models are still capable of extracting novel histological patterns for
disease-specific survivability.85–87 Furthermore, strong models can dis-
cover novel prognostically-relevant histological features from WSI
analysis.88,89 As the quality and comprehensiveness of data improves, addi-
tional clinical factors could be incorporated into deep learning analysis to
improve prognosis.

2.4. Prediction of treatment response

With the recent advances in targeted therapy for cancer treatment, clini-
cians are able to use treatment options that precisely identify and attack cer-
tain types of cancer cells. While the number of options for targeted therapy
are constantly increasing, it becomes increasingly important to identify pa-
tients who are potential therapy responders to a specific therapy option and
avoid treating non-responding patients who may experience severe side ef-
fects. Deep learning can be used to detect structures and transformations in
tumour tissue that could be used as predictive markers of a positive treat-
ment response. Training such deep learning models usually requires large
cohorts of patient data for whom the specific type of treatment option
and the corresponding response is known.

2.5. Organs and diseases

This section presents an overview of the various anatomical application
areas for computational pathology grouped by the targeted organ. Each
organ section gives a brief overview of the types of cancers typically
found and the content of the pathology report as noted from the corre-
sponding CAP synoptic reporting outline (discussed at 2.1). Fig. 4 high-
lights the intersection between the major diagnostic tasks and the
anatomical focuses in state-of-the-art research. The majority of papers are
dedicated to the four most common cancer sites: breast, colon, prostate,
and lung.90 Additionally, a significant amount of research is also done on
cancer types with highest mortality, brain and liver.90 Note that details of
some additional works that may be of interest for each organ type can be
found in Appendix A.7 (see Fig. 5).
7

Breast Breast cancers can start from different parts of the breast andma-
jorly consist of 1) Lobular cancers that start from lobular glands, 2) Ductal
cancers, 3) Paget cancer which involves the nipple, 4) Phyllodes tumor
that stems from fat and connective tissue surrounding the ducts and lobules,
and 5) Angiosarcoma which starts in the lining of the blood and lymph ves-
sels. In addition, based on whether the cancer has spread or not, breast can-
cers can be categorized into in situ or invasive/infiltrating forms. DCIS is a
precancerous state and is still confined to the ducts. Once the cancerous
cells grow out of the ducts, the carcinoma is now considered invasive or in-
filtrative and can metastasize.91

Synoptic reports for breast cancer diagnosis are divided based on the
type of cancers mentioned above. For DCIS and invasive breast cancers,
synoptic reports focus on the histologic type and grade, along with the nu-
clear grade, evidence of necrosis, margin, involvement of regional lymph
nodes, and biomarker status. Notably, architectural patterns are no longer
a valuable predictive tool compared to nuclear grade and necrosis to deter-
mine a relative ordering of diagnostic importance for DCIS.92 In contrast to
DCIS and invasive cancers, Phyllodes tumours vary due to their differing or-
igin in the fat and connective tissue, focusing on analyzing the stroma char-
acteristics, existence of heterologous elements, mitotic rate, along with the
involvement of lymph nodes. Finally, to determine therapy response and
treatments, biomarker tests for Estrogen, Progesterone93 and HER-294 re-
ceptors are recommended, along with occasional tests for Ki67
antigens.95,96

Most breast cancer-focused works in CPath propose various solutions
for carcinoma detection and metastasis detection, an important step for
assessing cancer stage and morbidity. Metastasis detection using deep
learning methods was shown to outperform pathologists’ exhaustive diag-
nosis by 9 free-response receiver operating characteristic (FROC) in.97

Prostate Prostate cancer is the secondmost prevalent cancer among the
total population and the most common cancer among men (both excluding
non-melanoma skin cancers). However, most prostate cancers are not le-
thal. Prostate cancer can occur in any of the three prostate zones: Central
(CZ), Peripheral (PZ), and Transition (TZ), in increasing order of aggres-
siveness. Prostate cancers are almost always adenocarcinomas, which de-
velop from the gland cells that make prostate fluid. The other types of
prostate cancers are small cell carcinomas, neuroendocrine tumors, transi-
tional cell carcinomas, isolated intraductal carcinoma, and sarcomas
(which are very rare). Other than cancers, there are multiple conditions
that are important to identify or diagnose as precursors to cancer or not.
Prostatic intraepithelial neoplasia (PIN) is diagnosed as either low-grade
PIN or high-grade PIN. Men with high-grade PIN need closely monitored
follow-up sessions to screen for prostate cancer. Similarly, atypical small



Fig. 5.WSI tissue images with different types of histological stains. Each stain highlights different areas and structures of the tissue in order to aid in visualizing underlying
characteristics. Amongst this diversity, there is Hematoxylin and Eosin or H&E which is mainly used in studies as most histopathological processes can be understood from
this stain. All images provided are under a Creative Commons license, specifics on the license can be found in the references.
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acinar proliferation (ASAP) is another precancerous condition requiring
follow-up biopsies.98

To grade and score tumours, pathologists use a Tumor, Nodes, Metasta-
sis (TNM) framework. In the synoptic report, pathologists identify and re-
port the histologic type and grades, and involvement of regional lymph
nodes to help grade and provide prognosis for any tumours. Specifically
for prostate analysis, tumour size and volume are both important factors
in prognosis according to multiple studies.99–102 Similarly, location is im-
portant to note for both prognosis and therapy response.103 Invasion to
nearby (except perineural invasion) tissues is noted and can correlate to
TMN classification.104 Additionally, margin analysis is especially important
in prostate cancers as the presence of a positive margin increases the risk of
cancer recurrence and metastasis.105 Finally, intraductal carcinoma (IDC)
must be identified and distinguished from PIN and PIA; as it is strongly as-
sociated with a high Gleason score, a high-volume tumor, and metastatic
disease.106–110

After a prostate cancer diagnosis is established, pathologists assign a
Gleason Score to determine the cancer’s grade: a grade from 1 to 5 is
assigned to the two most common areas and those two grades are
summed to make a final Gleason Score.111 For Gleason scores of 7, where
survival and clinical outcomes demonstrate large variance, the identifica-
tion of Cribriform glands is key in helping to narrow possible
outcomes.112,113

Ovary Ovarian cancer is the deadliest gynecologic malignancy and ac-
counts for more than 14, 000 deaths each year.114 Ovarian cancermanifests
in three types: 1) epithelial cell tumors that start from the epithelial cells
covering the outer surface of the ovary, 2) germ cell tumors which start
from the cells that produce eggs, and 3) stromal tumors which start from
cells that hold the ovary together and produce the hormones estrogen and
progesterone. Each of these cancer types can be classified into benign, inter-
mediate and malignant categories. Overall, epithelial cell tumors are the
most common ovarian cancer and have the worst prognosis.115
8

When compiling a synoptic report for ovarian cancer diagnosis, pathol-
ogists focus on histologic type and grade, extra-organ involvement, regional
lymph nodes, T53 gene mutations, and serous tubal intraeptithelial
carconma (STIC). Varying histologic tissue types are vital to determine
the pathology characteristics and determining eventual prognosis. For ex-
ample, generally endometrioid, mucinous, and clear cell carcinomas have
better outcomes than serous carcinomas.116 Additionally, lymph node in-
volvement and metastasis in both regional and distant nodes has a direct
correlation to patient survival, grading, and treatment. Determining the
presence of STICs correlates directly to the presence of ovarian cancer, as
60 of ovarian cancer patientswill also have an associated STIC.114 Finally,
T53 gene mutations are the most common in epithelial ovarian cancer;
which has the worst prognosis among ovarian cancers, so determining
their presence is critical to patient cancer risk and therapy response.117,118

There are not a large number of works dedicated to the ovary specifically,
but most works on ovary focus on classification of its five most common
cancer subtypes: high-grade serous (HGSC), low-grade serous (LGSC),
endometriod (ENC), clear cell (CCC), and mucinous (MUC).119,120

Lung Lung cancer is the third most common cancer, next to breast and
prostate cancer.121 Lung cancers mostly start in the bronchi, bronchioles,
or alveoli and are divided into twomajor types, non-small cell lung carcino-
mas (NSCLC) (8085 ) and small cell lung carcinomas (SCLC) (1015 ). Al-
though NSCLS cancers are different in terms of origin, they are grouped
because they have similar outcomes and treatment plans. Common
NSCLS cancers are 1) adenocarcinoma, 2) squamous cell carcinoma
3) large cell carcinoma, and some other uncommon subtypes.122

For reporting, histologic type helps determine NSCLC vs SCLC and the
subtype of NSCLC. Although NSCLC generally has favourable survival
rates and prognosis as compared to SCLC, certain subtypes of NSCLC can
have lower survival rates due to co-factors.123 Histologic patterns are appli-
cable in adenocarcinomas, consisting of favourable types: lepidic, interme-
diate: acinar and papillary, and unfavourable: micropapillary and solid.124
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Grading each histologic type aids in categorization but is differentiated
based on each type, and thus is out of scope for this paper. Importantly
for lung cancers, tumour size is an independent prognostic factor for early
cancer stages, lymphnode positivity, and locally invasive disease. Addition-
ally, the size of the invasive portion is an important factor for prognosis of
nonmucinous adenocarcinomawith lepidic pattern.123,125–129Other impor-
tant lung specific features are visceral pleural invasion, which is associated
with worse prognosis in early-stage lung cancer even with tumors
<3cm,130 and lymphatic invasion which indicates an unfavourable prog-
nostic finding.125,131

Colon and Rectum Colorectal cancers are two of the five most common
cancer types.90 Cancer cells usually start to develop in the innermost layer
of the colon and rectum walls, known as the mucosa, and continue their
way up to other layers. In other layers, there are lymph and blood vessels
that can be used by cancer cells to travel to nearby lymph nodes or other
organs.132 Colorectal cancers usually start with the creation of different
types of polyps, each possessing a unique risk of developing into cancer.
Most colorectal cancers are adenocarcinomas, which are split into three
well-studied subtypes: classic adenocarcinoma (AC), signet ring cell carci-
noma (SRCC), and mucinous adenocarcinoma (MAC). In most cases, AC
has a better prognosis than MAC or SRCC. Other types, albeit uncommon,
of colorectal cancers are: carcinoid tumors, gastrointestinal stromal tumors
(GISTs), lymphomas, and sarcomas.133

As in other cancers, histologic grade is the most important factor in can-
cer prognosis along with regional lymph node status and metastasis. The
tumor site is also important in determining survival rates and prognosis.134

Vascular invasion of both small and large vessels are important factors in
adverse outcomes and metastasis,135–137 and perineural invasion has been
shown inmultiple studies to be an indicator of poor prognosis.137–139 Addi-
tionally, microsatellite instability (MSI) is shown to be a good indicator of
prognosis and is divided into three stages in decreasing adversity of Stable
(MSI-S), Low (MSI-L), and High (MSI-H).140 Finally, some studies have in-
dicated the usefulness of biomarkers in colorectal cancer treatment, with
biomarkers such as BRAF mutations, KRAS mutations, MSI, APC, Micro-
RNA, and PIK3CA.141

Works are relatively well-distributed among various tasks including
disease diagnosis, segmentation, and detection. Expanding on colorectal
cancer detection, work from142 used feature analysis for colorectal and
mucinous adenocarcinomas using heatmap visualizations. They discov-
ered that adenocarcinoma is often detected by ill-shaped epithelial
cells and that misclassification can occur due to lumen regions that
resemble the malformed epithelial cells. Similarly for mucinous carci-
noma, the model again recognizes the dense epithelium, but this time ig-
nores the primary characteristic of the carcinoma (abundance of
extracellular mucin). These findings suggest that a thorough analysis of
class activation maps can be helpful for improving the classifier’s accuracy
and intuitiveness.

Bladder There are several layers within the bladder wall withmost can-
cers starting in the internal layer, called the urothelium or transitional epi-
thelium. Cancers remaining in the inner layer are non-invasive or
carcinoma in situ (CIS) or stage 0. If they grow into other layers such as
the muscle or fatty layer, the cancer is now invasive. Nearly all bladder can-
cers are urothelial carcinomas or transitional cell carcinomas (TCC). How-
ever, there are other types of cancer such as squamous cell carcinomas,
adenocarcinomas, small cell carcinomas, and sarcomas which all are very
rare. In the early stages, all types of bladder cancers are treated similarly
but as their stage progresses, and chemotherapy is needed, different drugs
might be used based on the type of the cancer.143 As with other organs, his-
tologic type and grade also play a role in prognosis and treatment,144 and
lymphovascular invasion is independently associated with poor prognosis
and recurrence.145

Works focusing on the bladder display promising results that could lead
to rapid clinical application. For example, a predictionmethod for four mo-
lecular subtypes (basal, luminal, luminal p53, and double negative) of
muscle-invasive bladder cancer was proposed in,146 outperforming pathol-
ogists by 30 in classification accuracy when restricted to a tissue
9

morphology-based assessment. Further improvements in accuracy could
help expedite diagnosis by complementing traditional molecular testing
methods.

Kidney Each kidney is made up of thousands of glomeruli which feed
into the renal tubules. Kidney cancer can occur in the cells that line the tu-
bules (renal cell carcinoma (RCC)), blood vessels and connective tissue (sar-
comas), or urothelial cells (Urothelial carcinoma). RCC accounts for about
90 of kidney cancers and comes in two types: 1) clear cell renal carci-
noma, which are most common and 2) non-clear cell renal carcinoma
consisting of papillary, chromophobe and some very rare subtypes.147

The CAP’s cancer protocol template for the kidney is solely focused on
RCCs,148 likely due to their high probability. Tumour size is directly associ-
ated with malignancy rates, with 1cm size increase resulting in 16 in-
crease in malignancy chance.149 Additionally, the RCC histologic type is
correlated with metastasis, with clear cell, capillary, collecting ducts (Bel-
lini), and medullary being the most aggressive ones.150

Many works are focused on glomeruli segmentation, as the number of
glomeruli and glomerulosclerosis constitute standard components of a
renal pathology report.151 In addition to glomeruli detection, some works
have also detected other relevant features such as tubules, Bowman’s cap-
sules, and arteries.152 The results display strong performance on PAS-
stained nephrectomy samples and tissue transplant biopsies, and there
seems to be a strong correlation between the visual elements identified by
the network and those identified by renal pathologists.

Brain There are two main types of brain tumors: malignant and non-
malignant. Malignant tumors can be classified as primary tumors (originat-
ing from the brain) or secondary (metastatic).153,154 The most common
type of brain cancers is gliomas, occurring 50 4 of the time, and are clas-
sified into four grades.155 In the synoptic reporting, tumour location is
noted as it has some impact on the prognosis, with parietal tumours show-
ing better prognosis compared to other locations.153 Additionally, focality
of glioblastomas (a subtype of gliomas) is important to determine as multi-
focal glioblastoma is far more aggressive and resistant to chemotherapy as
compared to unifocal.154 A recent summary of the World Health Organiza-
tion’s (WHO) classification of tumors of the central nervous system has in-
dicated that biomarkers as both ancillary and diagnostic predictive tools.156

Additionally, in a recent WHO edition of classification of tumours of the
central nervous system, molecular information is now integrated with his-
tologic information into tumor diagnosis for cases such as diffuse gliomas
and embryonal tumors.157

Accordingly, most works focus on gliomas and more specifically
glioblastoma, the most aggressive and invasive form of glioma. Due to
glioblastoma’s extremely low survival rate of 5 after 5 years, compared
to a low grade glioma’s survival rate of over 50 after 5 years,76,158 it is
critical to distinguish the two forms for improved patient care and
prognosis.

Liver Liver cancer is one of the most common causes of cancer death.159

In particular, hepatocellular carcinoma (HCC) is the most common type of
primary liver cancer and has various subtypes, but they generally have little
impact on treatment.160 Histogolical grade is divided into nuclear features
and differentiation, which directly correlate to tumour size, presentation,
and metastatic rate.161,162 Notably, high-grade dysplastic nodules are in-
cluded in synoptic reports for HCC but are difficult to assess and have
high inter-observer disagreement,163 and thus is an area where CAD sys-
tems could be leveraged to normalize assessments. Current grading of this
cancer suffers from an unsatisfactory level of standardization,164 likely
due to the diversity and complexity of the tissue. This could explain why
relatively low number of works are dedicated to liver disease diagnosis
and prognosis. Instead, most works focus on the segmentation of cancerous
tissues.

Lymph Nodes There are hundreds of lymph nodes in the human body
that contain immune cells capable of fighting infections. Cancer manifests
in lymph nodes in two ways: 1) cancer that originates in the lymph node it-
self known as lymphoma and 2) cancer cells from different origins that in-
vade lymph nodes.165 As mentioned in the prior organ sections,
lymphocytic infiltration is correlated with cancer recurrence on multiple
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organs and lymph nodes are the most common site for metastasis. The gen-
eralizable impact to multiple organs and importance of detecting lympho-
cytic infiltration is why many works focused on lymph nodes address
metastasis detection.166

Organ Agnostic The remaining papers focus on segmentation, diagno-
sis, and prognosis tasks that attempt to generalize tomultiple organs, or tar-
get organ agnostic applications. An interesting approach to increase the
generalization capability of deep learning in histopathology is proposed
in.167 Currently, publicly available datasets with thorough histological tis-
sue type annotations are organ specific or disease specific and thus con-
strain the generalizability of CPath research. To fill this gap, a novel
dataset called Atlas of Digital Pathology (ADP) is proposed.167 This dataset
contains multi-label patch-level annotations of Histological Tissue Types
(HTTs) arranged in a hierarchical taxonomy. Through supervised training
on ADP, high performance onmultiple tasks is achieved even on unseen tis-
sue types.

3. Data collection for CPath

One of the first steps in the workflow for any CPath research is the col-
lection of a representative dataset. This procedure often requires large vol-
umes of data that should be annotated with ground-truth labels for further
analysis.62,64,168 However, creating a meaningful dataset with correspond-
ing annotations is a significant challenge faced in the CPath
community.62,64,168–170

This section outlines the entire process of the data-centric design ap-
proach in CPath, including tissue slide preparation and WSI scanning–the
first two stages in the proposed workflow shown in Fig. 1. Additionally,
the trend in dataset compilation across the 700 papers surveyed is discussed
regarding dataset sizes, public availability, and annotation types; see
Table 9.11 in the Supplementary Material for information regarding the
derivations and investigation of said trends.

3.1. Tissue slide preparation

For the application development stages in CPath, the creation of a new
WSI dataset must begin with selection of relevant glass slides. High quality
WSIs are required for effective analysis, however, considerations must be
made for potential slide artifacts and variations inherently present. As de-
scribed in Section 2.1, pathology samples are categorized as either biopsy
or resection samples, with most samples being prepared as permanent sam-
ples and some intra-operative resection samples being prepared as frozen
samples.

Variations and Irregularities Throughout the slide sectioning process,
artifacts and irregularities can occur which reduce the slide quality,
including: uncovered portions, air bubbles in between the glass seal, tissue
chatter artifacts, tissue folding and tears, ink markings present on the slide,
and dirt, debris, microorganisms, or cross-contamination of slides by
unrelated tissue from other organs.171–173 Frozen sections can present
unique irregularities and variations, such as freezing artifacts, cracks in
the tissue specimen block, or delay of fixation causing drying
artifacts.174,175 Beyond these irregularities, glass slides may vary in stain
colouring, occurring due to differences in slide thickness, tissue thickness,
fixation, tissue processing schedule, patient variation, stain variation, and
lab variation.174,176–180

All such defects and variations are important to keep in mind when
selecting glass slides for the development and application process in
CPath, as they can both reduce the quality of the WSI as well as impact
the performance of developed CAD tools trained with these
WSIs.171,172,177 A more detailed discussion on the surveyed works in
CPath which seek to identify and correct issues in slide artifacts and colour
variation in WSIs is found in Section 3.2. However, prior to digitization, ar-
tifacts, and irregularities can be kept at a minimum by following good pa-
thology practices. While an in-depth discussion of this topic is outside the
scope of this paper, some research provides an extensive list of recommen-
dations for reducing such errors in slide sectioning.173
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3.2. Whole slide imaging (WSI)

WSI ScanOnce a glass slide is prepared, it must be digitized into aWSI.
The digitization and processing workflow for WSIs can be summarized as a
four-step process181: (1) Image acquisition via scanning; (2) Image storage;
(3) Image editing and annotation; (4) Image display.182 As the first two
steps of the digitization workflow are the most relevant for WSI collection
and with regards to the CPath workflow, they are discussed to a greater ex-
tent below.

Slide scanning is carried out through a dedicated slide scanner device. A
plethora of such devices currently exist or are in development; see Appen-
dix Table 1 for a collection of commercially available WSI scanners. Addi-
tionally, some research has investigated and compared the capabilities
and performances of various WSI scanners.183–186

In order to produce a WSI that is in focus, which is especially important
for CPathworks, appropriate focal pointsmust be chosen across the slide ei-
ther using a depthmap or by selecting arbitrarily spaced tiles in a subset.187

Once focal points are chosen, the image is scanned by capturing tiles or lin-
ear scans of the image, which are stitched together to form the full
image.180,187 Slides can be scanned at various magnification levels depend-
ing on the downstream task and analysis required, with the vast majority
being scanned at 20 (∼0 5μm/pixel) or 40 (∼0 25μm/pixel)
magnification.180

WSI Storage and Standards WSIs are in giga-pixel dimension
format.30,188 For instance a tissue in 1cm 1cm size scanned 0 25μm/
pixel resolution can produce a 4 8GB image (uncompressed) with
50, 000 50, 000 pixels. Due to this large size, hardware constraints may
not support viewing entire WSIs at full resolution, thus WSIs are most
often stored in a tiled format so only the viewed portion of the image
(tile) is loaded into memory and rendered.189 When building CAD tools
for CPath, this large WSI dimensionality must be taken into account in de-
termining how much compute is required to analyze a WSI. Alongside the
WSI, metadata regarding patient, tissue specimen, scanner, and WSI infor-
mation is stored for reference.30,188,190 Due to their clinical use, it is impor-
tant to develop effective storage solutions for WSI images and metadata,
allowing for robust data management, querying of WSIs, and efficient
data retrieval.191,192 Further details on WSI image formats and storage
methods are discussed in Appendix A.6.

To develop CPath CAD tools in a widespread and general manner, a
standardized format for WSIs and their corresponding metadata is
essential.188 However, there is a general lack of standardization forWSI for-
mats outputted by various scanners, as shown in Table 1, especially regard-
ing metadata storage. The Digital Imaging and Communications in
Medicine (DICOM) standard provides a format for CPath image formatting
and datamanagement through Supplement 145,190,193 and has been shown
in research to allow for efficient access and interoperability of data between
varying medical centers and devices.188 However, few scanners are
DICOM-compliant and thus there are challenges to using different models
of scanners, thus different image formats and metadata structures, in the
context of dataset aggregation and processing.

Apart from storage format, a general framework for storing and distrib-
uting WSIs is also an important pillar for CPath. In other medical imaging
fields such as radiology, images are often stored in a picture archiving
and communications systems (PACS) in a standardized DICOM format,
with DICOM storage and retrieval protocols to interface with other
systems.189 The need for standardization persists in pathology for WSI stor-
age solutions; few works have proposed solutions to incorporate
DICOM-based WSIs in a PACS, although some research has successfully
implemented a WSI PACS consistent using the DICOM standard using a
web-based service for viewing and image querying.189

WSI Defects and Variations Certain aspects of the slide scanning pro-
cess can introduce unfavorable irregularities and variations.194 A major
source of defects is out-of-focus regions in a generated WSI; often caused
by glass slide artifacts, such as air bubbles and tissue folds, which interfere
with selection of focus points for a slide.171,195 Out-of-focus regions degrade
WSI quality and are detrimental to the performance of CAD tools developed
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with theseWSIs, presenting concerns for performancewith studies showing
high false-positive errors.196,172 Additionally, as WSIs are scanned in strips
or tiles, any misalignment between sections can introduce striping/
stitching errors in the final image.197 Another source of error may appear
during tissue-background segmentationwhere the scannermaymisidentify
some tissue regions as background, potentially missing crucial tissue areas
on the glass slide from being digitized.198

Variations in staining refers to differences in colour and contrast of the
tissue structures in thefinalWSI occurring due to differences in the staining
process, staining chemicals, and tissue state. Variations in colour can lead to
difficulty in generalizing CAD tools toWSIs from different labs, institutions,
and settings.199,200 Even identical staining techniques can yield different
WSIs due to scanner differences in sensor design, light source and
calibration,180,201 creating challenges for cross-laboratory dataset genera-
tion. These additional sources of variation add layers of complexity to the
WSI processing workflow, and must be kept in mind during slide selection
and dataset curation for CAD tool development and deployment.

Addressing Irregularities and Variations Much work has gone into
identifying areas of irregularities within WSIs, most notably blur and tissue
fold detection.195,196 Some research has explored automated deep learning
tools to identify these irregularities at a more efficient pace than manual
inspection.195,196 Developing techniques for addressing staining variation
has also been a significant research area177,202–207 as the use of techniques
addressing stain variation is important for all future works. We list some
computational approaches proposed to address these issues: An example
method proposed in202 uses a stain normalization technique, attempting
to map the original WSI onto a target color profile. In this technique, a
color deconvolution matrix is estimated to convert each image to a target
hematoxylin and eosin (H&E) color space and each image is normalized
to a target image colour profile through spline interpolation.202 A second
approach applies color normalization using the H channel with a threshold
on the H channel on a Lymphocyte Detection dataset.205 Recent studies
have shown promise in having deep neural networks accomplish the stain
normalization in contrast to the previous classical approaches,203,208–210

commonly applying generative models such as generative adversarial net-
works (GANs) to stain normalization. Furthermore, Histogram Equalization
(HE) technique for contrast enhancement is used in,211where novel prepro-
cessing technique is proposed to select and enhance a portion of the images
instead of the whole dataset, resulting in improved performance and com-
putational efficiency.

An alternative approach to address the impact of stain variation on
training CAD tools is data augmentation. Such methods augment the data
with duplicates of the original data, containing adjustments to the color
channels of the image, creating images of varying stain coloration, and
training train models that are accustomed to stain variations.200 This
method has been frequently used as a pre-processing step in the develop-
ment of training datasets for deep learning.212–214 A form of medically-
irrelevant data augmentation based on random style transfer, called
STRAP, was proposed by researchers and outperformed stain
normalization.206 Similar to style transfer,215 proposes stain transfer
which allows one to virtually generatemultiple types of staining from a sin-
gle stained WSI.

3.3. Cohort selection, scale, and challenges

The data used to create/train CPath CAD tools can greatly impact the
performance and success of the tool. Curating the ideal dataset, and thus
selecting the ideal set of WSIs for the development of a CAD tool is a non-
trivial task. Several works suggest that datasets for deep learning in CPath
should include a large quantity of data with a degree of variation and arti-
facts in the WSIs.62,172 Some works also recommend the inclusion of diffi-
cult or rarely diagnosed cases; other works indicate that inclusion of
extremely difficult cases may decrease the performance of advanced
models.172,216

A study highlighting the results of the 2016 Dataset Session at the first
annual Conference on Machine Intelligence in Medical Imaging outlines
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several key attributes to create an ideal medical imaging dataset,217 includ-
ing: having a large amount of data to achieve high performance on the de-
sired task, quality ground truth annotations, and being reusable for further
efforts in thefield.While the scope of this conference did not include CPath,
many of the points made regarding medical imaging datasets are also rele-
vant to the development of CPath datasets. The session also outlined the im-
pact that class imbalances can have onMLmodels, an issue also prevalent in
CPath as healthy or benign regions often outnumber diseased regions by a
significant margin.218

Our survey of past works in the literature reveals some trends in CPath
datasets. Currently, the majority of datasets presented in the literature for
CAD tool development are small-scale datasets,62 using a small number of
images, and/or images from a small number of pathology laboratories. Ex-
amples of these smaller datasets include a dataset with 596WSIs (401 train-
ing, 195 testing) from four centres for breast cancer detection219 and the
Breast Cancer Histology (BACH2018) dataset, which has 500 ROI images
(400 training, 100 testing) and 40 WSIs (30 training, 10 testing).220 Al-
though curating a dataset from fewer pathology laboratories may be sim-
pler, these smaller scale datasets may not be able to effectively generalize
to data from other pathology centres.199,120 An example of this can be
seen in which data from different pathology centres are clustered disjointly
in a t-distributed stochastic neighbor embedding (t-SNE) representation
demonstrated in.172 Another alternative was proposed in221: using a
swarm learning technique multiple AI models were trained on different
small data sets separately and then unified into one central model.

Additionally, stain variations, slide artifacts, and variation of disease
prevalencemay sufficiently shift the feature space such that a deep learning
model may not sustain high performance on unseen data in new
settings.120,222 As artifacts in WSIs are inevitable, with some artifacts,
such as ink mark-up on glass slides, being an important part of the pathol-
ogyworkflow,223 the ability of CAD tools to become robust to these artifacts
through exposure to a diverse set of images is an important consideration.

Compared to the number of studies conducted on small-scale datasets,
relatively fewer studies have been performed using large-scale, multi-
centre datasets.62,224,172 One study uses over 44,715 WSIs from three
organ types, with very little curation of theWSIs for multi-instance learning
detailed in.62 Stomach and colon epithelial tumors were classified using
8,164 WSIs in.224 A similar study uses 13,537 WSIs from three laboratories
to test a machine learning model trained on 5,070 WSIs and achieves high
performance.62

Despite some advancements, there exist major barriers to using such
large, multi-centre datasets in CAD development. Notably, for strongly su-
pervised methods of learning, an immense amount of time is needed to ac-
quire granular ground truth annotations on a large amount of data.224 To
combat this, some researchers have implemented weakly-supervised learn-
ing by harvesting existing slide level annotations to forego the need for fur-
ther annotation.62 Additionally, it may be difficult to aggregate data from
multiple pathology centres due to regulatory, privacy, and attribution con-
cerns, despite the improvements that diverse datasets offer. Section 5 dis-
cusses model architectures and training techniques that harness curated
datasets of various annotation levels.

Dataset Availability In general computer vision, progress can be
tracked by the increasing size and availability of datasets used to train
models, e.g. ImageNet grew from 3.2 million images and 5000 classes in
2009 to 14million images and 21,000 classes in 2021.225We infer a similar
trend in dataset growth and availability indicates progress in CPath. In our
survey of over 700 CPath papers, we determine the current landscape by
noting the dataset(s) used in work, along with dataset details such as the
organ(s) of interest, annotation level, and stain type, tabulating the results
into Table 9.11 of the supplementary materials, with summarized findings
from Table 9.11 are shown in Fig. 6.

From Fig. 6 we can clearly see that the majority of datasets used for re-
search developments in computational pathology are privately sourced or
require additional registration/request. With organs represented in a
small number of datasets, such as the liver, thyroid, brain, etc, having a
smaller proportion of freely accessible datasets as compared to the Breast,



Fig. 6. (left) shows the distribution of datasets per organ as a capture of the current trend in datasets, although the number of datasets can change over time an understanding
ofwhat organs havemore available data is important for developing CAD tools. Along the vertical axis, we list different organs, while the horizontal axis shows the number of
datasets; wherein the darker color denotes public availabilitywhile the light color includes unavailable or by request statuses. (right) Distribution of staining types, annotation
levels, andmagnification details per organ color coded consistently with the bar graph. Organs have been sorted based on the abundance of datasets. Formore details, please
refer to Table 9.11 in the supplementary section.
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Colon, or Porstate. This can be problematic when trying to create CAD tools
for cancers in these organs due to a lack of accessible data. We additionally
note that although data sets requiring registration/request for access can be
easily accessible, as in the case of Breast Cancer Histopathological Database
(BreakHis)226 being used in multiple works,227–229 the need for registration
presents a barrier to access as requests may go unanswered or take much
time to review.

In our categorization of CPath datasets, we find that a few prominent
datasets have been released publicly for use by the research community.
Many such datasets are made available through grand challenges in com-
putational pathology,230 such as the CAMELYON16 and CAMELYON17
challenges for breast lymph node metastases detection,61,231,232 and the
Gland Segmentation in Colon Histology Images Challenge (GLaS) compe-
tition for colon gland segmentation in conjunction with Medical Image
Computing and Computer Assisted Intervention (MICCAI) 2015.233,234

Notable amongst publicly available data repositories is the cancer genome
atlas (TCGA),235 a very large-scale repository of WSI-data containing
many organs and diseases, along with covering a variety of stain types,
magnification levels, and scanners. Data collected from TCGA has been
used in a large number of works in the literature for the development of
CAD tools.200,236,237 As such, TCGA represents an essential repository for
the development of computational pathology. While patient confidential-
ity is a general concern when compiling and releasing a CPath dataset,
large-scale databases such as TCGA prove that it is possible to provide rel-
atively unrestricted data access without compromising patient confidenti-
ality. Further evaluating public source datasets, it seems that the majority
of them use data extracted from large data repositories, such as TCGA,
without specifying the IDs of the images used, which provides a
challenge in comparing datasets or CAD tool performance across works.
However, there are a few datasets that are exceptions to that
phenomenon.64,238–240

Fig. 6 also provides some insights on the dataset breakdown by organ,
stain type, and annotation level. Per organ, it can be seen that the breast,
colon, prostate/ovary, and lung tissue datasets are amongst the most com-
mon, understandably since cancer occurrence in these regions is the most
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frequent90–complying with cancer statistics findings in 9.5. Multi-organ
datasets are the other most common type, where we have designated a
dataset to be multi-organ if it compiles WSIs from several different organs.
To note, multi-organ datasets are especially useful for the development of
generalized image analysis tools in computational pathology. The annota-
tion level provided in the datasets did not indicate any pattern across
most organs.

Dataset Bias It is also important to note the potential for bias in datasets
that may influence the ability of any deep learning algorithm to generalize
on unseen data.241,242 This problem is a prevalent issue in general machine
learning applications,243–246 and CPath is not immune to it. The survey re-
view in247 reviews a large number of other examples in machine learning
that exhibit such bias, both from a dataset-standpoint and an algorithm-
standpoint.

Such a lack of generalizability in CPath can impact the ability of ma-
chine learning models trained on biased data to meet the needs of patients.
As noted in,241 minority groups may be disproportionately negatively im-
pacted if care is not taken in curating a diverse dataset that adequately re-
flects the relevant demographics for the problem to be solved.

Several works have delved into the issue of dataset bias in CPath
specifically.248,249 A notable example is in,249 where the study was able
to demonstrate that deep learning models trained on WSIs from TCGA
were able to infer the organization that contributed the slide sample. Nota-
bly, some features, such as genetic ancestry, patient prognosis, and several
key genomic markers were significantly correlated with the site the WSI
was provided from. As the vast majority of data in TCGA is acquired from
24 origin centers,248 such site-specific factors may impact the ability of a
DL model to perform well on patient data from different sites.

As discussed previously, having a large set of diverse data may help to
mitigate generalization issues.120,199,241 Additionally, the study249 makes
the suggestion that training data should be from separate sites than valida-
tion data, and that per-site performance of a model should be reported
when validating a model. In doing this, the robustness of the model to
site-specific variation, including both stain and demographic related
variation, can be evaluated.
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4. Domain expert knowledge annotation

A primary goal of CPath is to capture and distill domain expert knowl-
edge, in this case the expertise of pathologists, into increasingly efficient
and accurate CAD tools to aid pathologists everywhere. Much of the do-
main knowledge transfer is encompassed within the process of human ex-
perts, in this case pathologists, generating diagnostically-relevant
annotations and labels for WSIs. It must be emphasized, that without
some level of label, a WSI dataset is not directly usable to train a model
for most CAD tasks that involve the generation of diagnoses, prognoses,
or suggestions for pathologists. Thus, the process of obtaining and/or
using annotations at the appropriate granularity and quality is paramount
in the field. This section focuses on describing various types of ground-
truth annotation to cover the spectrum of weak to strong supervision of la-
bels, discussing the practicality of labeling across this supervision spectrum,
and how a labeling workflow can be potentially designed to optimize re-
lated annotation tasks.

4.1. Supervised annotation

In contrast to general computer vision, computer scientists do not have
expert-level knowledge of histopathology and thus they are not as efficient
at generating annotations or labels of pathology images. Further, labels can-
not be easily obtained by outsourcing the task to the general public. As a re-
sult, pathologists must be leveraged to obtain labels at some stage of the
data collection and curation process, and in many annotation pipelines
the first step involves recruiting the help of pathologists for their expertise
in labelling.

Obtaining Expert Domain Knowledge The knowledge of pathologists
is essential in the development of accurate ground truth annotations–a
process most commonly completed by encircling ROI.219 However, there
are studied instances of inter-observer variance between pathologists
when determining a diagnosis.250–252 As obtaining the most correct label
is essential when training a model for CAD, this issue must be addressed
and a review of the data by several pathologists can result in higher qual-
ity ground truth data as compared to that of a single pathologist. As a re-
sult, most datasets are curated by involving a group of pathologists in the
annotation process. If there exists a disagreement between the expert pa-
thologists on the annotation of a ground truth, one of several methods is
usually employed to rectify the discrepancy. A consensus can be reached
on the annotation label through discussion amongst pathologists, as is
Fig. 7.Details of thefive different types of annotations in computational pathology. From
the patient like status of cancer, test results, etc. b) Slide-level: are annotations associat
annotations: are more focused on diagnosis and structure details d) Patch-level: ar
computational requirements for processing, and finally e) Pixel-level: includes informa
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done in the triple negative breast cancer (TNBC-CI) dataset,253 the Breast
Cancer Surveillance Consortium (BCSC) dataset254 and the minimalist his-
topathology image analysis dataset (MHIST) dataset.255 Alternatively, im-
ages, where disagreements occur, can be discarded, as is done in some
works.256,257 Further, the disagreement between annotators can be re-
corded to determine the difficulty level of the images, as is done in the
MHIST dataset.216 This extra metadata aids in the development of CAD
tools for analysis.

Pathologists can also be involved indirectly in dataset annotation. Both
the Multi-organ nuclear segmentation dataset (MoNuSeg)258 and ADP167

have non-expert labelers annotate their respective datasets. A board-
certified pathologist is then tasked with reviewing the annotations for cor-
rectness. Alternatively, some researchers have employed a pathologist in
performing quality control on WSIs for curating a high-quality dataset
withminimal artifacts.87,259 To enable the large scale collection of accurate
annotated data, Lizard260 was developed using a multi-stage pipeline with
several significant “pathologist-in-the-loop” refinement steps.

Existing pathological reports, along with the metadata that comes from
public large-scale databases like TCGA, can also be leveraged as additional
sources of task-dependent annotations without the use of further annota-
tion. For example, TCGA metadata was used to identify desirable slides
in,26 while pathological diagnostic reports were used for breast ductal car-
cinoma in-situ grading in.261

To note, there are some tasks where manual annotation by pathologists
can be bypassed altogether. For instance, IHCwas applied to generatemito-
sis figure labels using a Phospho-Histone H3 (PHH3) slide-restaining ap-
proach in,262 while immunofluorescence staining was used as annotations
to identify nuclei associated with pancreatic adenocarcinoma.263 These
works parallel the techniques that pathologists often use in clinical practice,
such as the use of IHC staining as a supplement toH&E stained slides for dif-
ficult to diagnose cases.264 They demonstrate high performance on their re-
spective tasks wherein the top-performing models on the Tumor
Proliferation Assessment Challenge 2016 (TUPAC16)265 dataset were
achieved.262 Importantly, these techniques still utilize supervision, albeit
weakly, by leveraging lab techniques that have been developed and refined
to identify the desired regions visually.

Ground-Truth Diagnostic InformationUnderstanding different annota-
tion levels and their impact on the procedural development of ML pipelines
is an important step in solving tasks within CPath. There are five possible
levels of annotation, in order of increasing granularity (from weakly-
supervised to fully-supervised): patient, slide, ROI, patch, and pixel. Fig. 7
left to right: a)Patient-level annotations: can include high level information about
ed with the whole slide, like a slide of normal tissue or a diseased one c) ROI-level
e separated into Large FOV (field of view) and small FOV, each having different
tion about color, texture and brightness



Fig. 8. A snapshot of the distribution of different annotation levels based on the
CPath task being addressed in the surveyed literature for the purposes of
highlighting the trend of datasets. The x-axis displays the different annotation
levels studied in the papers (from left to right): Patient, Slide, ROI, Patch, and
Pixel. The y-axis shows the different tasks (top to bottom): Detection, Diagnosis,
Classification, Segmentation, and Prognosis. The height of the bars along the
vertical axis measures the number of works that have examined the specific task
and annotation level.
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overviews the benefits and limitations of each level. For additional informa-
tion regarding each annotation level please refer to Appendix A.8.

Picking the Annotation Level Selecting an annotation level depends
largely on the specific CPath task being addressed, as shown in Fig. 8. For
example, segmentation tasks tend to favor pixel-level annotations as they
require precise delineation of a nucleus or tissue ROI. Conversely, disease
diagnosis tends to favor datasets with ROI-level annotations, as diagnosis
tasks are predominantly associated with the classification of diseased tis-
sue, the higher-level annotations may provide a sufficient level of detail
and context for this task.266

Fig. 8 shows that tasks that use stronger supervision are more likely to
be used in CAD tool model development. However, due to the high cost
of pixel-level annotation, fully supervised annotations are challenging to
develop. Even patch-based annotations often require the division and anal-
ysis of a WSI into many small individual sub-images resulting in a similar
problem to pixel-based annotations.63,212 In contrast, WSI data is most
often available with an accompanying slide-level pathology report regard-
ing diagnosis thus making such weakly labeled information at the WSI
level significantly more abundant than ROI, patches, or pixel-level
data.267,268 Different levels of annotation can be leveraged together, as
demonstrated by a framework to use both pixel and slide level annotations
to generate pseudo labels in.269 Additionally, it is common in CPath to fur-
ther annotate the slide-level WSIs on an ROI or patch level
structure.32,85,270,271

Active Learning Tools Active learning annotation tools bridge the gap
between the need for highly supervised labels and the current abundance
of less informative annotations. Suchworks seek to ease the annotation pro-
cess by using computational approaches to assist the human annotator. For
example, in,168 a platformwas developed for creating nuclei and gland seg-
mentation ground truth labels quickly and efficiently. A convolutional neu-
ral network (CNN), trained on similar cohort data, was used to segment
nuclei and glands with different mouse actions.168 Alternatively, Awan
et al.169 presented the HistoMaprTM platform to assist in diagnosis and
ground truth data collection. Through this tool, a pathologist selects one
of several proposed classes for each given ROI, thus mitigating the need
for hand-drawn annotations ormanual textual input.169 Similarly, an active
learning model called the Human-Augmenting Labeling System (HALS)272

was developed to increase data efficiency by guiding annotators to more
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informative slide sections. Quick Annotator (QA)273 is another tool which
provides an easy-to-use online interface for annotating ROIs and was de-
signed to create a significant improvement in the annotation efficiency of
histological structures by several orders of magnitude. There are other ac-
tive learning annotation tools proposed for different applications in com-
puter vision that can be investigated for use in the pathology datasets.
Such examples include methods to produce object segmentation masks
for still images274,275 as well as video.276 One notable example is
DatasetGAN275; the model is proposed as a training data creator, and it is
shown that the model can produce segmentation masks with a small num-
ber of labelled images in the training data. While these systems are for gen-
eral computer vision, they may be adoptable in computational pathology,
and would facilitate the necessary relationship between pathologists and
computer scientists in the development of CAD tools. As such, they may
prove to be a valuable contributor to the CAD system development
workflow.

Tissue-Class and Disease Complexity Much of the current CPath re-
search operates under the umbrella of supervised learning tasks, and corre-
spondingly uses labeled data to develop automated CAD tools. We refer to
supervised learning to include a diverse spectrum of annotation i.e. weak-
supervision (e.g. patient-level) all the way to strong-supervision (e.g.
pixel-level). Classes within a dataset can be task-dependent, for example
as shown in Table 9.11 of the supplementary material, datasets primarily
used for segmentation such as MoNuSeg258 and CPM-17277 have classes
for each annotated pixel indicating the presence or absence of nuclei. How-
ever, classes need not be task-dependent; datasets such as
CAMELYON16231 outline metastases present in WSIs that can be used for
a variety of applications, including disease detection231 and segmentation
tasks.278

The current paradigm for dataset compilation in computational pathol-
ogy, particularly for disease detection and diagnosis, treats different disease
tissue types as separate independent classes. For example, BreakHis divides
all data into benign/malignant breast tumours.226 At the ROI level, GLaS di-
vides colon tissue into five classes: healthy, adenomatous, moderately dif-
ferentiated, moderately-to-poorly differentiated, and poorly
differentiated.233 So far, this approach to class categorization has resulted
in high-performing CAD tools.80,83,84,228,229,279 However, the treatment of
different disease tissue types as an independent class is perceived differ-
ently in computer vision domain where the representation learning of nor-
mal objects is done differently compared to anomalies. A similar synergy
can be found by differentiating healthy tissue classes from diseased ones
and one should be mindful about defining meaningful tissue ontology for
annotation and labeling.

4.2. Optimum labeling workflow design

This section focuses on the steps required for compilation of a CPath
dataset which is broken into three main sub-tasks: Data Acquisition, Data
Annotation, and DataManagement, as per Fig. 9. Each sub-task is discussed
belowwith reference to its individual components in the hierarchical struc-
ture in Fig. 9.

Data Acquisition Database compilation starts from data acquisition.
When collecting data, it is vital that there are large amounts of data,280

along with having sufficient diversity.62,172 Specifically, diversity in
CPath data occurs in multiple ways, such as staining methods, tissue types
and regions, laboratory processes, and digital scanners. We advise that
CPath researchers consult expert pathologists on the diversity of data re-
quired for various tasks. Ideally, all the data acquired in pathology should
be perfect without any irregularity and artifacts. However, some level of ar-
tifacts and irregularity are unavoidable and introducing realistic artifacts
that are representative of real-world scenarios into the data increases the
robustness and generalizability of CAD tools.

Data Annotation After collecting sufficient data, the next task is anno-
tation of the data. Data annotation is a costly process in both time and
money, thus a budget and schedule should always be established when



Fig. 9. Tree diagram for the optimum labeling workflow, where a CPath dataset is divided into tasks and sub-tasks based on its initial characteristics.
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generating labels. There are often various approaches for annotating differ-
ent structures,281 so a specific labelling taxonomy should be defined a priori.
As mentioned previously, annotation should involve expert pathologists
due to the domain knowledge requirement and importance of label correct-
ness. A table of commonly used commercially available annotation soft-
ware for annotating different slide formats are show in Table 2, along
with their compatible image formats which is important to note when try-
ing to build compatible and accessible datasets.

Once the ontology of class-definitions is defined (in collaboration with
expert pathologists), there will be two ways to generate labels or annota-
tions in general: domain expert labelling or non-expert labelling. The do-
main expert labelling refers to having pathologists annotate data that they
are specialized at, which is labor-extensive. On the other hand, non-
expert labelling can use crowdsourcing techniques to generate weak labels
or have non-experts, such as junior pathologists or students, label the data.
This process is cheaper and quicker, but it may be harder to maintain the
same level of quality as domain expert labeling.281 Regardless of the label-
ling methodology used, labels generated from both should be validated. Fi-
nally, to determine the sufficiency of label quantity, one should consider
the balance between the number of classes, representation size of each
class, and complexity of class representation. Techniques from active-
learning could be also leveraged to compensate for lack of resource man-
agement as well as maintain the quality of labeling as discussed above.

Data Management Data management is an important aspect of any
dataset creation process, and is the one that is most likely to be overlooked.
Proper data management should have considerations for reusability, medi-
cal regulations/procedures, and continuous integration and development.

Reusability can be broken down into detailed documentation of the
data, accessible and robust hosting of data, and consideration for image
standards. Poor cross-organizational documentation can lead to missing
metadata, ultimately resulting in discarding entire datasets.282 Adherence
to an established image standard, such as DICOM, can help resolve some
of these issues in reusability.Medical regulations/procedures can be broken
down into the construction of a Research Ethics Board (REB) and proper
consideration for whom is curating the data. Through incentives for data
excellence for medical practitioners, the issue of misaligned priorities
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between data scientists, domain experts, and field partners can be
resolved.282 To ensure that models used on actual patients remain relevant
and hidden errors do not propagate, continuous integration/development
(CI/CD) must be implemented. These systems must include at least two
components, a method to audit predictions from the model, as well as a
way to refine the training data accounting for discrepancies found through
auditing. Several algorithms deployed in high-risk environments, including
medical diagnosis, proved to only work well when data was updated after
initial deployment.283,282 Throughout the data management process, con-
sultation with domain experts is a vital step in ensuring the success of
data compilations.284

5. Model learning for CPath

Once an application domain and corresponding dataset have been cho-
sen, the next step of developing a CPath tool involves designing of an appro-
priate model and representation learning paradigm. Representation
learning refers to a set of algorithmic techniques dedicated to learning fea-
ture representations of a certain data domain that can be used in down-
stream tasks.285 In CPath, the amount of data available for a given
annotation level and task are the key determinants to designing a model
and learning technique. The last decade has shown neural network archi-
tectures to become the dominant method in many machine-learning do-
mains because they are rich enough to avoid handcrafted features and
offer superior performance.286 The annotation level of the data pertaining
to the task corresponds to the level of supervision for the learning technique
applied. This relationship between data annotation level and learning su-
pervision level is surveyed in Fig. 11.

This section details the various types of models and learning techniques,
along with the tasks they have been applied to in CPath. Fig. 10 highlights
the most common backbone architectures used for feature encoding in
SOTA research, based on the corresponding tasks. More details are pro-
vided in Table 9.11 from the supplementary materials. The selection of ar-
chitectures is then compared to draw useful insights into accuracy,
computational complexity, and limitations. Lastly, existing challenges in
model design are investigated.



Fig. 10. Distribution of the most common Neural Network architectures used in the
surveyed literature, based on theCPath task. The x-axis displays theNeural Network
architectures used in the papers (from left to right): CustomCNN, Inception, ResNet,
VGG, U-Net, and AlexNet. The y-axis shows the different tasks (top to bottom):
Detection, Classification, Disease Diagnosis, Segmentation, WSI Processing,
Patient Prognosis, and Others. For more details, please refer to Table 9.11 in the
supplementary section.
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5.1. Classification architectures

In CPath, general classification architectures are themost prevalent due
to their straightforward applicability to a wide range of tasks including
tissue subtype classification, disease diagnosis and detection (more details
in Section 2 and Fig. 4). Architectures commonly used for natural images,
in particular CNNs, are widely adopted for CPath. To maximize model
performance, it is a common approach to pre-train the model on
large datasets like ImageNet before subsequent fine-tuning them to
perform well for the specific CPath task, a task known as transfer
learning.64,86,87,206,250,261,267,287–312 Transfer learning for CPath allows
for: 1) improved generalizability, particularly for tasks with limited amount
Fig. 11.Details of types of learning using varying levels of supervision. Note that the type
noted in the Example Task portion of the figure. However, from left to right, models train
used to fine-tune models for tasks requiring more supervision. In that sense, for CPath th
well with the annotation levels shown in Fig. 7.
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of data; and 2) improved ease in finetuning a model compared to training
from scratch.313

Graph Convolutional Neural Networks (GCN)314,315 is an alternative ar-
chitecture that can be used to improve the learning of context-aware fea-
tures across the WSI. GCNs typically consist of nodes representing
elements and edges defining relationships between nodes. In,316 a GCN
was defined on a WSI, where the nodes represent patches and edges repre-
sent the connections among patches; this work obtained remarkable results
on cancer prognosis task outperforming the SOTA in four out of five cancer
types.316

Vision Transformers (ViT),317 have recently emerged as a direct applica-
tion of Transformer models318 to the image domain. In ViT, images are sub-
patched and flattened into a 1D embedding along with a positional
encoding which is then classified by an MLP head. By using the positional
encoding, the model’s attention mechanism can focus computation on the
most relevant areas of the image. ViT models have been applied with
great success to CPath tasks, especially in conjunction with pre-trained
CNN models.319 We refer the reader to a comprehensive survey of trans-
former methods in medical image analysis for more details.320

General classification architectures are also commonly used as a
foundation for novel architectural designs. For example, Squeeze-and-
Excitation (SE) modules were introduced to reduce the number of parame-
ters in ResNet and DenseNet blocks whilemaintaining high accuracy.321,229

A fully-connected conditional random field (CRF) was incorporated on top
of a CNN encoder to improve performance while maintaining the same
level of computational complexity.322 Lastly, patch sampling and pooling
were used with AlexNet to perform slide-level disease diagnosis and
segmentation.142

Finally, in order to achieve superior performance, many researchers
often rely on ensemble or multi-stage techniques which combine the pre-
dictive power or feature extraction abilities of multiple models to form a
final output. These approaches have shown performance improvements
compared to traditional single model classifiers.323–328 However, this
often comes at the expense of higher computational requirements.

5.2. Segmentation architectures

Segmentation is widely used in CPath, as shown in Fig. 4, and enable lo-
calizing the area of interest at the pixel level.329 U-Net was initially devel-
oped for neuronal structure segmentation in electron microscopy image
s of tasks each type of learning can address vary based on the data that is available, as
ed with less supervision can still learn salient representations of the data that can be
ere is a spectrum of supervision from self to strongly supervised learning that aligns
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stacks,329 but has become one of the most common architectures for seg-
mentation in CPath.152,205,207,237,273,278,304,323,330–349 U-Net has an
encoder-decoder structure: an encoder to contract features spatially and a
decoder to expand them again to capture semantically related context and
generate pixel-level predictions.329 The U-Net model has been used to seg-
ment nuclei for creating a novel dataset with unsupervised learning,237 but
it should be noted that this process also relies on the Mask R-CNN frame-
work and pathologists for quality-checking purposes.

Another common approach for segmentation is to use fully
convolutional networks (FCNs),80,84,198,258,270,349–355 customized architec-
tures constructed by combining multiple components of various architec-
tures, or introducing new components to pre-existing
architectures.84,168,234,259,266,269,300,309,343,344,356–369 For example, one
work used a custom CNN to predict whether each pixel was benign or ma-
lignant, while a second CNN was used to refine the initial prediction
through probability fusion.84

5.3. Object detection architectures

In this section, we specifically focus on architectures that are used for
object detection in CPath, where bounding boxes are predicted around re-
gions of interest. A major CPath application for object detection is mitosis
detection with the primary goal for counting the number of mitosis in-
stances. To this end, a large number of studies has been dedicated to this
application.199,200,218,262,337,343,370–379 Object detection has been addition-
ally applied for nuclei,77,380–385 colorectal gland80,341,386 and glomeruli
detection387–389; however, it can also be applied to the detection of a vari-
ety of histopathological objects including tumor-infiltrating
lymphocytes390 or keratin pearls.364

In CPath, object detection employs a combination of pre-existing off-
the-shelf architectures and customized neural networks to perform object
detection tasks, as shown in Fig. 10. A model called CircleNet, which uses
a deep layer aggregation network as a backbone, was proposed to detect
round objects.388 Their approach involves using an anchor-free “center
point localization” framework in order to output a heatmap with center
points followed by a conversion into a bounding circle for the detection
of kidney glomeruli. A multi-stage deep learning detection model based
on Fast R-CNN was proposed in.372 First, a modified Fast R-CNN generated
region proposals, then a ResNet-50 model eliminated false positives, and a
Feature Pyramid Network detected mitosis in sparsely annotated images
using a ResNet backbone.378

5.4. Multi-task learning

Multi-task models are individual models predicting for multiple tasks at
once (e.g. classification and segmentation), as defined in Section 2. Multi-
task learning (MTL) can be beneficial over independent task learning
because sharing representations between related tasks can createmore gen-
eralizable representations and encourage the task heads to make logically
consistent predictions. This type of model, however, is uncommon in
CPath, as it requires annotating multiple tasks for each
image.32,82,120,377,391–393 We discuss some of these papers in further detail
below.

In one work, a ResNet-50 backbone followed by independent decoders
(a pyramid scene parsing network for segmentation and a fully-connected
layer for classification) was used to solve 11 different tasks (4 segmentation
based and 7 classification based).120 With significantly less computation,
theMTLmodel achieved comparable or better results to single task learning
in classification, but comparatively worse results in segmentation. Simi-
larly, in,82 a ResNet-50with two parallel branches to perform segmentation
and classification, was able to achieve comparable results on both tasks
through an MTL approach.

While the results are impressive, there is still work to be done in this
field. Onework found thatmodel performancemay be sensitive to the num-
ber and type of tasks used during training.391 If the tasks are unrelated, this
could deteriorate the performance compared to a single-task setting. How
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to weigh different task objectives and select optimal tasks to be trained to-
gether is yet an active area of research.394,395 MTL represents an interesting
field of research in CPath as it may reduce the necessity to train multiple
deep neural networks to perform different tasks.

5.5. Multi-modal learning

As opposed to multi-task networks where multiple tasks are learned si-
multaneously, the multi-modal approach involves using network input
features from multiple domains/modalities at once.396 In the case of
CPath, modalities can be represented as pathologists’ reports, gene expres-
sion data, or even WSI images. Most commonly, immunohistochemistry
(IHC) stains alongside the H&E stain to better visualize specific
proteins.397–399 As a result, models can learn better unified/shared latent
representations which capture correlations from multiple indicators, since
some information may not be captured by individual indicators.400 This
approach can be viewed as adding hand-crafted features to boost perfor-
mance. While the use of deep learning normally implies using learned fea-
tures to replace hand-crafted ones, using hand-crafted features can
nonetheless improve performance compared to strictly deep learning ap-
proaches when data is limited.401 Indeed, many works have obtained
best performance by combining manual and learned features.371,383,402

This was demonstrated in the case of mitotic cell classification when an
ensembled classifier model using hand-crafted features set a new record
for the MITOS-ATYPIA 2014 challenge with an F-score of 86 .

403 How-
ever, where data is plentiful, CNNs alone can outperform all other hand-
crafted features. In the same MITOS-ATYPIA 2014 challenge, the previous
record was broken this way with a new F-score of 96 .

404 Although one
cannot compare these two works directly as they use different classifier
heads and dataset balancing methods, one can argue that the optimal
choice of approaches from deep learning, classical ML, and different mo-
dalities should depend on the situation. Multi-modal approaches are
gaining traction in CPath for specific problems, especially where useful
additional data is available.405,406 For example, gene expression data
and WSI images are often combined to improve cancer prognosis
prediction.407,408

5.6. Vision-language models

Following its successful use in the natural image domain, vision-
language data (consisting of histopathology images paired with relevant
natural language text) is becoming increasingly prominent in CPath.
Whether it be the development of foundational models409 extending to
CPath, or fine tuning state-of-art large large models for use in downstream
tasks,410–412 leveraging the semantic information embedded in the natural
language data is becoming more evidently beneficial. It was only recently
that foundational language models advanced enough to become useful in
CPath, and this has triggered an explosion of interest into building models
at the intersection of visual and language information. At the moment, lan-
guage data is primarily used to address Multi-Instance Learning, although
this is still an extremely new field and we anticipate that future works
will surely address more advanced tasks (see Section 7.4 for further
discussion).

5.7. Sequential models

Recurrent Neural Networks (RNNs) are typically used in tasks with
temporally-correlated sequential data, such as speech or time series.413

Since RNNs consider the past through the hidden state, they are suited for
handling contextual information. While images are the default data format
in CPath (and hence poorly-suited for RNNs), some works opt to combine
RNNs with CNNs as a feature extractor,62,88,414,213,224,257,259,415–420

most commonly by aggregating patches or processing feature
sequences.62,224,259,418,421 Another application of RNNs is to consider
spatial relations between patches, which can be lost after extracting from
the slide.213,257
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A particularly exciting use of RNNs is in deciding which region within
an image should be examined next.417,422 In the “Look, Investigate, and
Classify” 3-stage model, an long short-term memory (LSTM) was used to
classify the ROI cropped from the current patch and predict the next region
to be analyzed, and achieved good performance while only using 15 of
pixels from the original image.417 Similarly, an LSTM network was used
to better predict ROIs by treating state features similar to time-series data,
thus identifying only relevant examples to use for training.422 And an
LSTM transformer with “Feature Aware Normalization” (FAN) units for
stain normalization was used in parallel with a VGG-19 network.318 More
recently, transformers using attention mechanisms have been used to
allow parallelization and better sequence translation compared to older
RNNs or LSTM networks.423

5.8. Synthetic data and generative models

With annotated data difficult to obtain in CPath, especially with granu-
lar labels (see Section 3.3 for more discussion), this is problematic for train-
ing generalizable models. Hence, generating synthetic data from a
controlled environment (either via simulation or a trained model) for aug-
menting the available training set of annotated data shows much promise.
Originally developed for visual style transfer in general computer vision,
generative models learn to create novel instances of samples from a given
data distribution - they form the dominant approach in CPath.

Initial works primarily utilized Generative Adversarial Networks
(GANs) for patch synthesis,330,424–426 stain normalization,206,208–210,427,428,

style transfer,206,429–431 and various other tasks.212 One unsupervised pipe-
line relied on a non-GAN model to create an initial patch that was refined
by a GAN.330 In another work, one CycleGAN generated tumor images
and another non-tumor, in order to train a classification network.432 One
work used neural image compression to learn the optimal encoder to map
image patches to spatially consistent feature vectors.212 Another work
first classified bone marrow cell representations and then used an unsuper-
vised GAN to generate more instances from each cluster.433 A self-
supervised CycleGAN was also used for stain normalization, and shown to
improve model performance in subsequent detection and segmentation
tasks.210 Similarly, a CycleGAN pipeline was applied to perform artificial
IHC re-staining.434 Recent works in GANs attempt to model spatial aware-
ness of tissues and improve the realism of the generated samples.435

Lately, diffusionmodels have become the SOTA in general computer vi-
sion and now produce far more semantically plausible and noise-free im-
ages than GANs. These improvements promise to make synthetic data
finally accepted by pathologists and the broader CPath community as reli-
able training data and significantly improve the generalizability of models
trained on them.436

5.9. Multi-instance learning (MIL) models

Multi-instance learning (MIL) involves training from data that is la-
belled as high-level bags consisting of numerous unlabelled instances. In
the context of CPath, these labelled bags often represent annotated slides
of far more unlabelled patch instances.437 As labels at the WSI level are
much easier to obtain (and hence more prevalent) than patch-level annota-
tions, MIL has been applied to CPath by a significant number of
papers.62–64,267,268,308,316,418,437–456 Since both utilize coarser annotations
for training on massive images, MIL is similar to weakly-supervised learn-
ing. However, weak supervision predicts at a finer level (e.g. pixel segmen-
tation from labelled patches) than the provided annotation while MIL
prediction is typically at the same level.

One notable work used a two stage approach to first encode patches
with a CNN from a slide into feature vectors and then pass the most
cancer-likely ones to an slide-level classification RNN. A similar work first
detected abnormal regions in the WSI before adaptively fusing the
instance-level features with an importance coefficient.439 Adding addi-
tional instance-specific attributes tends to improve MIL performance. One
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work applied a nuclei grading network to provide a cell-level prediction
for each patch, and demonstrate this out-performs hand-crafted cell fea-
tures for overall slide classification.319 Recent works explore the morpho-
logical and spatial relationships between instances, which conforms with
pathologist diagnostic intuitions and have demonstrably improved perfor-
mance, especially with unbalanced data.456

As not all instances are equally relevant to the bag label, many works
focus on building attention mechanisms to adaptively focus on more rele-
vant instances. One work used such a mechanism to highlight regions of in-
terest and improve localization relative to other SOTA CNNs.437 MIL
models can be improved by considering multi-scale information: one
work notably used embeddings from different magnification levels and
self-supervised contrastive learning to learn WSI classifiers.268 Some
works explicitly encode the patient-slide-patch hierarchy in the attention
mechanism,457,458 with one work using a cellular graph for top-down
attention.459 Graph Neural Networks (GNNs) have been explored to lever-
age intra- and inter-cell relationships, enabling cancer grading,460

classification,461 and survival prediction.462,463 These hierarchy- and
morphology-aware models are the current SOTA and pave the way for fu-
ture improvements.

One persistent challenge with using MIL in CPath, compared to natural
image computer vision, is the lack of large-scale WSI datasets.464 One re-
cent work addressed issues related to small sample cohorts by splitting up
large bags (and their labels) into smaller ones through pseudo-bags.465

5.10. Contrastive self-supervised learning for few-shot generalization

The idea of using contrastive learning (CL) for self-supervised learning
(SSL) dates back to 2005, yet only recently gained momentum in
CPath.268,306,466–471 By using a contrastive loss, a feature embedding is
learned to ensure similar (positive) examples are close in vector space,
while dissimilar (negative) examples are distant.466,467 Contrastive learn-
ing is an attractive approach for CPath because when used as self-
supervision for few-shot learning,268,306,468 it does not require labelling
the massive self-supervision image set but only labelling the small subset
used for training on the downstream task, an approach that has recently
achieved SOTA performance in a wide array of tasks in CPath.306 SimCLR
was originally proposed to learn representations invariant to different aug-
mentation transforms (such as crop, noise) for natural images,66 and when
applied to CPath, was found to match or outperform SOTA supervised
techniques.306 Self-supervised pre-training has been shown to perform
best against fully-supervised pre-training when applied to small but
visually-diverse datasets.306 Recent works have focused on transferring
the self-supervised representations to the downstream task more intelli-
gently: through latent space transfers,472 with an awareness of the
patient-slide-patch hierarchy,473,474 or with semi-supervised pseudo-label
guidance.475

5.11. Novel CPath architectures

In this section, we discuss papers that made significant changes to the
model design or completely designed an architecture from scratch for
CPath tasks.64,277,357,361,382,476–479 Typically, model architectures are
adapted from the natural image domain and minor changes applied for
CPath tasks, rather than being designed from scratch for CPath directly. Un-
fortunately, general computer vision architectures typically require large
computational resources not necessarily available in clinical settings and
are prone to overfitting on smaller CPath training sets.476

More importantly, CPath tasks often comprise of multiple specialized
sub-tasks not addressed by common architectures - in such cases, CPath-
specific architectures perform better. “PlexusNet” achieved SOTA perfor-
mance with significantly fewer parameters476 and “Hover-Net” used a
three-branched architecture for nuclei classification and instance
segmentation.277 Path R-CNN similarly used one branch to generate epithe-
lial region proposals and another to segment tumours.382
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In other cases, custom architectures are designed to obtain better perfor-
mance with respect to certain metrics85,295,338,377,388 or improve computa-
tional efficiency and speed,196 where since model inference can be a
bottleneck for WSI processing. To automate architecture design, neural ar-
chitecture search (NAS) is often used. This is an umbrella term covering
evolutionary algorithms (EA), deep learning (specifically Reinforcement
Learning), and gradient-based NAS searches. There are two approaches to
EA: (1) Neuroevolution, which more generally optimizes at the neuron-
level to find optimal weights, and (2) Evolutionary-Algorithms based NAS
(EANAS),which searches for optimal combinations of mid-sized neural net-
work blocks and conducts training after this architectural search.480,481 In
CPath, reinforcement learning-based NAS has designed models for cancer
prediction which were found to train faster, have fewer parameters, and
perform comparably with manually designed models.482 Another work
demonstrated that a significantly smaller model can outperform existing
SOTA models on a variety of CPath tasks using an adaptive optimization
strategy.479

We hypothesize that NAS has yet to be explored significantly in CPath
due to the lack of annotated data (see Section 3.3) and its relative recency
as a research area. According to the “no free lunch theorems”,483,484 no sin-
gle model can perform best on all tasks. However, computationally efficient
but performant models are crucial for CPath applications, and NAS is the
most promising approach to computationally design such architectures
without manual engineering.

5.12. Model comparison

The various model architectures and types discussed above can and
should be compared on common benchmarks to determine the best models
for a given task.485 Numerous papers have conducted such benchmarking
work on CNNs. One work comparing GoogLeNet, AlexNet, VGG16, and
FaceNet on breast cancer metastasis classification found that deeper net-
works (i.e. GoogLeNet) predictably performed better.199 Another work
found that using ResNet-34 with a custom gradient descent performed
best.387 Finally, VGG-19 performed best in colorectal tissue subtype
clasification, showing that deeper SOTA networks do not necessarily per-
form better universally. Which CNN performs best depends on the task,
the nature of the data, the metrics used, training time, hyperparameters,
and/or hardware constraints.

Likewise, third parties have organized “grand-challenges” to facilitate
the fair comparison of different techniques on a common CPath task and
dataset. In some cases, SOTA CNNs achieve the best results, such as the
adapted GoogLeNet that obtained the highest AUC231 and the AlexNet
that achieved highest accuracy486 for breast cancer detection in the
CAMELYON16 challenge. Likewise, SqueezeNet, which is an existing
SOTA network performs best in colorectal tissue subtype classification.487

On the contrary, the best performing models for mitosis detection in the
TUPAC16199 and MITOS12338 challenges both relied on custom CNN ar-
chitectures. For breast cancer diagnosis, a novel Hybrid CNN achieved
the best results in the BACH18 (ICIAR18) dataset488 while the two
teams achieving the best classification accuracy in the BreakHis dataset
used differing approaches: one directly used ResNet-50291 and the other
used an ensemble of VGG networks.489 For nuclei segmentation on the
Kumar-TCGA dataset, a novel framework using ResNet and another
existing model achieved the highest F1-score.357 Lastly, a custom
CNN achieved the best results for gladn segmentation on the GLaS
dataset.168

However, as mentioned in Section 3.3, many grand challenges use pri-
vate datasets or even extract data from larger public repositories without
referencing the original WSIs used. Furthermore, benchmark datasets ad-
dress different tasks and lack standardization. As models that are hyper-
optimized to for specific sets of data continue to be released, the lack of
more standardized benchmark datasets and model comparison studies
make it impossible to systematically compare new models against existing
ones or assess their robustness in clinical settings, thus impeding model
development in CPath.
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6. Evaluation and regulations

6.1. Clinical validation

Within the domain of CPath, clinical validation is essential for substan-
tiating the decisions produced by deep learning models so that they are
more readily accepted by the medical community. Generally, acceptable
clinical criteria are determined by authoritative professional guidelines,
consensus, or evidence-based sources. However, in CPath, prediction re-
sults are generated by the computer scientists and engineers who build
the model, and may not be completely aware of where their work fits into
the clinical pathology workflow–the clinical implications of this arrange-
ment are often unknown.169 By incorporating pathologist expertise, clinical
validation can better align the technical work with clinical objectives.

Despite the importance of this step for real-world deployment, very few
works have performed clinical validation with expert pathologists. We
identify three prominent types of clinical validation in the CPath literature:
(1) direct performance comparison of CAD tools with pathologists on a sim-
ilar task, (2) impact of CAD tool assistance on pathologist performance, and
(3) pathologist validation of CAD tool outputs. Each topic is further dis-
cussed in the sections alongside notable results.

Direct Performance Comparison with Pathologists To validate the
benefits of deep learning methods, it is desirable that they equal or surpass
the performance humans to gain the trust of pathologists in their decisions
and their willingness to use them as a second opinion.490 With this in mind,
many papers directly compared theirmodels with pathologists in tasks such
as prognosis and diagnosis.

One study on cancer detection found that the top computational models
from the CAMELYON16 challenge out-performed the 11 pathologists with
a two-hour time constraint and performed similarly to the expert patholo-
gist without a time constraint.231 This suggests that deep learning models
could be particularly useful in clinical scenarios with excessive numbers
of time-critical cases to diagnose. Similarly, for tissue subtype classification,
another study performed similarly to, or slightly better than individual pa-
thologists. The proposed model agreed with all pathologists 66 6 of the
time and agreedwith two-thirds of pathologists 76 7 of the time.75 An ad-
ditional study claimed their deep learning model outperformed patholo-
gists without gynecology-specific training in ovarian carcinoma
classification.119 This pushes the idea that CAD predictions can be used
as a second opinion due to the potential for human error by individual
pathologists.

One paper on diagnosis256 demonstrated that deep learning models can
correctly classify images that even individual pathologists failed to cor-
rectly identify. However, another paper found that 50 of the examples
misclassified by their model were also misclassified by at least one
pathologist.491 This suggests that deep learningmodels can aid pathologists
in decision-making, but as they tend to achieve a specificity and sensitivity
similar to pathologists, theymust be applied cautiously to avoid reinforcing
the biases or errors of individual pathologists.

Deep learning models for prognosis have been shown to achieve perfor-
mance similar to or better than experts as well.238,289,381 In one study, the
best model for renal clear cell carcinoma classification achieved 83 accu-
racy, outperforming the inter-pathologist accuracy of 80 .

289 This shows
that deep learning models and pathologists may perform similarly on pa-
tient prognosis.

Overall, AI approaches are not perfect but have approached expert-level
ability in a variety of tasks. Deep learning could play an important role as a
second opinion and in democratizing the knowledge distilled from many
pathologists to other pathology centres. Specifically, deep learning models
appear to be best used as a tool to enhance the pathologist workflow, and
could provide aid in making quick decisions with high accuracy.14

Impact of CAD Tool Assistance Much of CPath research is conducted
under the assumption that the resulting AI tools will be intuitive, usable,
and beneficial to pathologists and patients. However, CAD tools that are de-
velopedwithout feedback frompathologists could fail to integrate into a re-
alistic pathologist workflow or impact the most significant diagnostic tasks.
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Thus, a valuable validation experiment is to compare and comprehend the
performance of expert pathologists in clinical tasks before and after being
given the assistance of a CAD tool.

In one study, a CAD system called Paige Prostate Alpha leveraged a
weakly-supervised algorithm to highlight patches in aWSI with the highest
probability of cancer.62 When used by pathologists, the model significantly
improved sensitivity, average review time, and accuracy over unaided diag-
nosis. Likewise, another study using the LYNA algorithm examined the per-
formance of six pathologists on breast cancer tumor classification before
and after being able to see the LYNA-predicted patch heatmaps. The results
indicate using LYNA substantially improved sensitivity, average review
time, and the subjective “obviousness” score for all breast cancer types.72,27

These studies suggest that integrating CAD tools into the clinical
workflow will greatly improve pathologist efficiency. However, there is a
general lack of research on the impact of CAD tools on pathology efficiency.
Such studies would shedmore light on the impact of CAD tools and identify
approaches for implementation in clinical settings.

6.2. FDA regulations

Despite the ongoing development of CAD tools in CPath and its poten-
tial for triaging cases and providing second opinions, the regulations re-
garding this technology pose an obstacle to the testing and deployment of
these devices. The FDA currently provides three levels of clearance on AI/
ML-based medical technologies: 510(k) clearance, premarket approval,
and the De Novo pathway. While one source lists 64 AI/ML-based medical
solutions that are currently FDA-approved or cleared, none of these are in
the field of CPath.492 A few companies, such as Paige AI, hold the 510
(k) clearance for their digital pathology image viewer; however, an auto-
mated diagnostic system has yet to be approved. This may indicate a reluc-
tance to change, and the lack of clarity in the process of FDA approval has
prevented numerous impactful technologies from being deployed. There
is a need for collaboration between researchers, doctors, and governmental
bodies to establish a clear pathway for these novel technologies to be vali-
dated and implemented in clinical settings.

7. Emerging trends in CPath research

Computational pathology research has seen a sudden shift of focus in
the past year of 2023. Driven by recent technological advances in the
field of computer vision for natural images and the release of capable foun-
dational models in natural language processing, formerly difficult research
problems in CPath have been solved, opening up exciting new avenues of
research, especially the difficulty of trainingmodels on adequate annotated
data. We will discuss the main research trends below in further detail and
make simple predictions of where the field is headed.

7.1. Contrastive self-supervised learning becomes mainstream

Data annotation for CPath is a persistent problem - it is easy to collect
large amounts of visual data but much harder to annotate them. Transfer
learning can help but it is difficult to transfer amodel trained on one dataset
to generalize to another. Whereas past efforts focused on carefully
engineered methods, the recent development of contrastive self-
supervised learning66 means that it has become the mainstream approach
in CPath.268,306,468 Not only does it utilize the massive amounts of
unlabelled images typically available in CPath, but it also as a result only re-
quiresfinetuning on a small set for the downstream task. We anticipate that
this will lead to the development of general-use foundational models in the
future to perform themost common CPath tasks, as more pathology images
are collected and models become more advanced.

7.2. Prediction becoming increasingly high-level

We noticed that recent research works are increasingly addressing
higher level prediction tasks than before. Whereas patch
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classification267,287–290 or pixel segmentation237,329–333 was formerly
mainstream, these problems appear to have been largely solved, and
now there is far more research into higher-level problems dominate,
such as multiple-instance learning.62,437,457–459 As computational methods
continue to improve, it is natural that they are applied not merely as at-
tention aids for pathologists (i.e. at the pixel or patch level), but further-
more are used to make intelligent slide- and patient-level decisions on
their own. Indeed, they promise to vastly improve pathologist efficiency
when used with human pathologists in the loop to validate the automated
decisions, especially when paired with modern natural language
capabilities.

7.3. Spatial and hierarchical relationships receiving attention

Inspired by the approach taken for natural image computer vision, the
mainstream approach in CPath currently requires breaking up large WSIs
into smaller patches and perceiving them independently (see Fig. 7). How-
ever, this ignores the spatial relationships between cells and tissues or be-
tween the patches and their parent slides in histopathology images, which
are often relevant or even crucial when making decisions. Many works
have recently found success in explicitly encoding an awareness of these
inter-cell relationships460,462,463 and the patch-slide-patient
hierarchy,457–459 especially using Graph neural networks, but these suffer
from higher latency than conventional CNNs. We anticipate future works
will seek to speed upGNNs for taskswhere spatial and hierarchical relation-
ships are important and continue developing hierarchy-aware attention for
MIL techniques.

7.4. Vision-language models for explainable predictions

One persistent problem in CPath has been developing models that can
explain their decisions for human validation. One obvious route is to de-
velop models that produce natural language output (and even converse
with the human user to explain their decisions), but until recently, this
would have required collecting massive amounts of pathology text paired
with images. With foundational vision-language models widely available
and able to generalize to great effect in the natural image domain,493–495 re-
cent works have shown that they perform excellently when applied with
minimal re-training to CPath images.410–412 Further advances require col-
lectingmore pathology-specific data, but we anticipate that crowd sourcing
of public pathology annotations will become mainstream and this will lead
to the development of foundational vision-languagemodels. As natural lan-
guage capabilities continue improving, we also anticipate that synoptic re-
port automation will become feasible and reinforcement learning from
human feedback (RLHF)496 will become common for improving CPath lan-
guage models.

7.5. Synthetic data now realistic enough

Whereas one way to combat the difficulty of annotating CPath data is
to develop models that require fewer annotations, another trend is to gen-
erate more annotated data for training. Whereas concerns were previously
raised about their realism, new advances in generative image models have
now been leveraged to produce realistic histopathology images and pixel-
accurate annotations simultaneously. However, current works are limited
by specific tissues, organs, diseases,212,330,432,433 or stains210,434 and are
limited by their inability to easily expand to other histopathology content.
We note that generating synthetic data via game engines and 3D model
assets is a recent trend in the natural image domain,497–499 but visual
modelling of histopathology entities is little explored. We anticipate that
future works will attempt to improve synthetic histopathology image gen-
eration by: (1) attempting to create generative models that can generalize
to a broad variety of histopathology images and (2) create simulation
software to generate realistic histopathology images without learned
models.
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8. Existing challenges and future opportunities

8.1. CPath as anomaly detection

Typically in computer vision, the various classes represent distinct nor-
mative entities, such as airplanes or bears.500,501 There exist abundant “nor-
mal” samples and potentially few “anomalous” samples, which are
considered data points significantly dissimilar to the majority within a
given class.502 These anomalies are not only out of distribution from the
samples in a dataset, there is also a lack of consensus on understanding
anomalous representations as effectively identifying anomalies requires
ML models to learn a feature space encompassing all “normal” samples
within each class.502

In other words, in general computer vision, each class cannot simply be
considered as an anomalous version of any other class. However, in CPath,
since each class is often considered a different disease state on a single tis-
sue type, diseased classes are essentially extensions of the “normal” healthy
class into the “anomalous” zone. From a pathologist’s perspective, similar
to the general computer vision approach, the curriculum learning process
of a resident pathologist first involves training on histology and gaining a
mastery of normal tissue identification, and then train on diseased tissues,
so they are able toflag the sample as anomalous and followupwith possible
diagnosis.

In light of this, it may be illuminating to approach the problem from an
anomaly detection viewpoint: provided a model has sufficient variety of
healthy tissue, any anomalies must then be diseased. The output of such
an anomaly detection algorithm is dependent on the task at hand. One
source describes several meaningful output types that may be produced502:
an anomaly score which describes how anomalous a sample is and a binary
label indicating whether a sample is normal or anomalous. If only identify-
ing anomalous samples is enough, a binary classification procedure may be
sufficient. However, if it is necessary to identify the particular stage of pro-
gression of a disease type, then amore granular approach in assigning some
anomaly scoremay be more appropriate as explored in a previous work.503

This work found that the confidence score in tissue classification was in-
versely correlated with disease progression, thus the confidence score
may act as a proxy for an anomaly score. Theoretically, such approaches
may better replicate the behaviour of pathologists. While several works
have used an anomaly detection approach on medical image data outside
of CPath,504–506 few works tackle the problem for WSI data in CPath.

8.2. Leveraging existing datasets

As mentioned in Section 3.3 of this paper, a minority of datasets in
CPath are available to be freely used by the public. Additionally, the level
of annotations varies for each dataset. However as can be noted in
Table 9.11 of the supplementary material, for prominent public datasets
such as CAMELYON16, CAMELYON17, GlaS, BreakHis, and TCGA, there
is far more available data annotated at the slide level as opposed to more
granular predictions. For example, considering breast datasets, there are
399 WSIs annotated at the Slide and ROI levels in CAMELYON16507 and
1399 WSIs annotated at the Patient, Slide, and ROI levels in
CAMELYON17,61 in contrast, the TCGA-BRCA dataset contains 1163 diag-
nostic slides and 1978 tissue slides that are accompanied with labels at the
Patient and Slide levels and diagnostic reportswith labels for tissue features
and tumor grades.235

The lack of publicly available datasets with granular annotations is a
major challenge in CPath. To address this lack some training data, tech-
niques have been proposed to efficiently obtain labels, such as an active
deep learning frameworks that use a small amount of labelled data to sug-
gest the most pertinent unlabelled samples to be annotated.508 Alterna-
tively, other works propose models to synthetically create WSI patches,
usually with the use of GANs. For example, Hou et al.330 introduced an un-
supervised pipeline that was capable of synthesizing annotated data at a
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large scale, noting that even pathologists had difficulty distinguishing be-
tween real and synthesized patches. However, despite these promising re-
sults, the issue of acquiring accurate and large datasets remains a
prevalent issue within CPath.

Generally, tasks such as tissue classification or gland segmentation re-
quire labels at the ROI, Patch, or Pixel levels. However, existing data anno-
tated at the patient and slide levels can be used for these tasks by leveraging
weakly supervised techniques such as MIL,64,437 or by learning rich repre-
sentations using self-supervised techniques such as DINO65,509 and contras-
tive learning306 that can be used in downstream tasks. Specifically, work is
being done to develop training methodologies and architectures that are
more data efficient for patient- and slide-level annotations, such as CLAM,
which is a MIL technique that is used to train a performant CPath model
with as little as 25 of the training data to get over 0 9 AUC.64 Another re-
cent work used self-supervised learning onWSIs without labels to train a hi-
erarchical vision transformer and used the learned representations to fine-
tune for cancer subtyping tasks. This finetuned model outperformed other
SOTA methods that used supervised learning methods on both the full
training set and when all models used only 25 of the training set. These
examples demonstrate a recent trend in the application of weakly and
self-supervised learning techniques to leverage pre-existing and available
data with weak labels, showcasing that a large amount of granular labels
are not necessarily required for achieving SOTA performance. We urge re-
searchers in the CPath field to follow this trend and focus on how to lever-
age existing weakly labelled datasets, especially to learn rich
representations as a pre-training step for learning on smaller strongly la-
belled datasets.

8.3. Creating new datasets

Althoughwemention the availability ofmany datasets and comment on
how to leverage this existing data, there is still a need for new CPath
datasets that address overlooked clinical and diagnostic areas. Therefore,
creation of new CPath datasets should focus on addressing two main
goals: (1) tasks that are not addressed adequately by existing datasets and
(2) accumulating as large a dataset as possible with maximal variety.

Regarding the first goal, there are still organs, diseases, and pathology
tasks without freely available data or sufficient annotations to develop
CAD tools. For example, in Fig. 6, we see that whereas breast tissue datasets
are abundant, there are few public datasets for the brain and none for the
liver. Collecting and releasing datasets for these organs would have signifi-
cant impact in enabling further works focusing on these applications. Fur-
ther, analysis of specific organ synoptic reports can guide CPath
researchers to build CAD tools to identify or discriminate the most impact-
ful diagnostic parameters. In the case of the prostate, which is discussed in
Section 2.5, the synoptic report requires distinguishing IDC from PIN and
PIA as it correlates to high Gleason scores. This is important, as high-
grade PIN is a cancer precursor requiring follow-up sessions for screenings.
These parameters are identified and noted in the report by the pathologist
and factor into the final diagnosis and grading. Thus, collecting annotated
datasets for such parameters can be crucial to developing CAD tools that
are relevant to clinical workflows and can enrich learned representations.

The second goal is concerned with the scaling laws of deep learning
models with respect to the amount of data available and their application
to diverse clinical settings. As seen in the general computer vision domain,
larger datasets tend to improve model performance, especially when used
to learn rich model representations through pre-training that can be used
for downstream tasks such as classification and semantic segmentation.510

Additionally, ensuring that datasets capture the underlying data distribu-
tion and thus sufficiently encompass the test distribution has been shown
to be especially important in the medical domain.511 For CPath, this
means ensuring a dataset captures the expected variations in tissue struc-
ture, disease progression, staining, preparation artifacts, scanner types,
and image processing. Collecting a sufficiently large dataset continues to
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be problematic, however, so recent works have focused on using crowd
sourcing to annotate histopathology data posted publicly on Twitter and
YouTube,409,411 a practice that is similar to that commonly used for natural
images.

8.4. Pre- and post-analytical CAD tools

In recent years, advances in image analysis, object detection, and seg-
mentation have motivated new approaches to support the analytical
phase of the clinical workflow, especially in the two steps where CAD
tools could significantly increase efficiency and accuracy: (1) specimen reg-
istration and (2) pathology reports. This need is highlighted by a study de-
termining that the pre-analytical and post-analytical phases (as shown in
Fig. 2 account for up to 77 of medical errors in pathology.512 Likewise,
Meier et al. classify 14 of medical errors as diagnostic errors, with an
even smaller proportion being misinterpreted diagnoses in their study.513

Other authors attribute approximately 1525 of diagnostic errors to slide
interpretation.514–518 These results reinforce the need for CPath applica-
tions that address more than just the analytical phase.519 Considering
post-analytical step of compiling a pathology report, a fewnatural language
processing efforts have been used to analyze completed pathology
reports,520–522 extract primary site codes from reports,523 and generate of
captions or descriptive texts for WSI patches.415 However, to the best of
our knowledge, there are no works that reliably extract clinical data from
service requests and electronic medical records to automatically generate
synoptic or text reports. Developing such a tool that could explicitly identify
the most significant parameters for its decisions would directly improve
clinical workflow and increase the interpretability of the results at the
same time. We encourage the field of CPath to expand its efforts in creating
tools for the pre- and post-analytical steps in order to reduce the large pro-
portion of clinical errors attributed to those phases, and suggest some po-
tential applications in Fig. 2.

8.5. Multi domain learning

Despite being particularly well-suited for CPath, multi-domain learn-
ing (MDL) is still a relatively unexplored topic. MDL aims to train a uni-
fied architecture that can solve many tasks (e.g. lesion classification,
tumour grading) for data coming from different domains (e.g. breast,
prostate, liver). During inference, the model receives an input image
and the corresponding domain indicator and is able to solve the corre-
sponding task for the given domain. There are two reasons that make
MDL attractive for CPath. The first is that the additional information
from a source domain (coming from a related organ such as the stomach)
can be informative for improving performance in the target domain (e.g.
colon). By sharing representations between related domains, the model is
enabled to generalize to other domains. The second motivation is to alle-
viate the data sparsity problem where one domain has a limited number
of labeled data. Through MDL, the domain with limited data can benefit
from the features that are jointly learned with other related tasks/
domains.524,525

8.6. Federated learning for multi-central CPath

Data-driven models require a large amount of data to yield strong per-
formance. In CPath, this requires incorporating diverse datasets with vary-
ing tissue slide preparations, staining quality, and scanners. An obvious
solution to train such models is to accumulate the data from multiple med-
ical centers into a centralized repository. However, in practice, data privacy
regulations may not permit such data sharing betweenmedical institutions,
especially between countries. A possible solution lies in privacy-preserving
training algorithms, such as federated learning,526,527 which can make use
of decentralized data frommultiple institutions while maintaining data pri-
vacy. In federated learning, training starts with a generic machine learning
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model in a centrally located server. But instead of transferring data to a
centralized server for training, copies of the model are sent to individual in-
stitutions for training on their local data. The learning updates are
encrypted and sent to the central server and then aggregated across the
institutions. Ming Lu et al.447 demonstrated the feasibility and effectiveness
of applying federated, attention-based weakly supervised learning for
general-purpose classification and survival prediction on WSIs using data
from different sites. Using such algorithms for CPath can facilitate cross-
institutional collaborations and can be a viable solution for future commer-
cial solutions that need to continuously augment and improve their ML
models using decentralized data.

8.7. CPath-specific architecture designs

Many deep learning architectures are not designed for CPath specifi-
cally, which raises a serious question about the optimality of using
“borrowed” architectures from general computer vision. For instance,476

notes that traditional CV architectures may not be well suited for CPath
due to a large number of parameters that risk overfitting. Additionally,
the field of pathology has much domain-specific knowledge that should
be taken into account before choosing an ML model. For example, under
varying magnifications different morphological patterns are captured,
from cellular-level details to tissue architecture features.328 Naively apply-
ing an architecture without considering such details could discard key vi-
sual information and lead to deteriorated performance.

Unlike natural images, WSIs exhibit translational, rotational, and re-
flective symmetry528 and CNNs for general vision applications do not ex-
ploit this symmetry. The conventional approach to overcome this issue is
to train the model with augmented rotations and reflections, but this in-
creases training time and does not explicitly restrict CNN kernels to ex-
ploit those symmetries. Rotation-equivariant CNNs, which are inherently
equivariant to rotations and reflections were introduced for digital
pathology,528 significantly improving over a comparable CNN on slide
level classification and tumor localization. Similarly, Lafarge et al.376 de-
signed a group convolution layer leveraging the rotational symmetry of
pathology data to yield superior performance in mitosis detection, nuclei
segmentation, and tumor classification tasks. These results motivate
the application and further research of rotation-equivariant models for
CPath.

In general, we note that the SOTA computer vision architectures used in
computational pathology have tended to lag behind those used for natural
images by a couple of years. This delay in knowledge propagation from the
mainline computer vision research in natural images may be due to the
data-centric nature of the CPath field. As data labelling is specialized and
expensive to conduct, annotating more data or clever training tweaks to
finetune established architectures is more attractive than developing ad-
vanced, specialized architectures. However, we recommend that CPath re-
searchers should still use the most powerful relevant models available for
the simple reason that they tend to perform best given the computational
resources available. While computational efficiency is generally not as im-
portant during training, it is imperative at inference time if models are to
be run in real-time on medical devices with limited computational re-
sources.

8.8. Digital and computational pathology adoption

Despite the numerous advantages to the clinical workflow and applica-
tions offered by using digital pathology and CPath, the adoption of digital
pathology remains the first barrier to clinical use. A major reason for
adoption hesitancy is the common opinion that digital slide analysis is
an unnecessary step in a pathologist’s workflow which has been refined
over decades to produce reproducible and robust diagnoses without
digitization.9,18–20 In terms of clinical efficiency, studies have shown
mixed results, with two finding that digitization actually decreased
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efficiency (by increasing turnaround time by 19 ).529,530 However, an-
other study demonstrated a clear increase in productivity and reduction
of turnaround-time.24 One of the co-authors (B.N.) has implemented digi-
tal pathology at a public tertiary institution, which began as a pilot study
over three years including three experienced academic pathologists and
showed that digitization reduced turnaround time by 18 for biopsies
and 25 for resections, and increased case output by 17 . These trial re-
sults led to all pathologists not retiring within two years to transition to a
digital pathology workflow in 2019. Due to the varied nature of results
and outcomes in studies analyzing the effectiveness of digital pathology
there is more work to be done to have a multi-institution and lab analysis
for more general and concrete results.

A major factor in the adoption of digital or computational pathology
practices is the source of funding and the pay structure of pathologists. A
few cost-analysis studies show that the transition to digital pathology be-
comes financially advantageous in 2 years, with savings projected to be
up to $5M after 5 years in a sizeable tertiary center.9,531–533 The financial
impact will also be viewed differently in public vs private healthcare set-
tings. Public healthcare is primarily limited by funding and universal access
to healthcare whereas for private lab networks improvements in processes
and services are directly linked to the prospects of obtaining additional con-
tracts and increased profitability. However, studies consideringmultiple in-
stitutions and funding settings are still required to fully characterize the
financial impact compared to clinical benefit. Additionally, on an individ-
ual pathologist level, compensation structures can affect buy in for imple-
mentation. For example, at our co-authors’ B.N. and V.Q.T institution, a
fee-for-service structure is used to compensate pathologists thus an increase
in throughput and productivity has a direct correlation to increased pay.
We propose that this fee-for-service model contributes to the widespread
embracement of DP at this institution. In contrast, pathologists in a
salary-based environment are paid based based on a combined package of
services which includes diagnostics, research, teaching, administration,
quality control, etc. An increase in clinical productivity would technically
not benefit themdirectly, as itwould translate to a high number of rendered
diagnostics over the same amount of time.

Integration CPath into the clinical workflow is relatively understudied
as few papers have actually deployed, or performed clinical validation of
their results. Works in this area have either proposed methods to deploy
their models in the clinic or developed tools to enable the use of their re-
search in the clinic.287,490,534 However, as a primary goal of CPath is the
use of CAD tools in clinical settings, more works should consider how to in-
tegrate models and tools into the clinical workflow, especially in conjunc-
tion with expert clinicians.

8.9. Institutional challenges

Several institutional challenges may affect the implementation of CPath
tools, and similar challenges in implementing digital pathology workflows
at medical institutions have been well-described bymany studies.535–539 As
noted by multiple studies considering the digital transition of pathology
laboratories,535–539 the importance of a common shared goal and frequent
communication between the involved parties is necessary to successfully
deploy a digital system. These lessons are likely extendable in the context
of CPath and CAD development as well. Specifically, Cheng et al.538 re-
ported on their experiences and lessons learned as a 7-point-based system
to efficiently deploy a digital pathology system in a large academic center.
We believe similar systematic approaches will need to be developed to im-
plement CPath applications in a clinical setting.

Another institutional challenge concerns the regulatory oversight at the
departmental, institutional, accrediting agencies, pathology association,
state/provincial, and federal levels. Regulatory measures underlying WSI
scanners arewell established, as well as the technical and clinical validation
of their use.540–542 On the other hand, patient confidentiality, ethics,
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medical data storage regulations, and data encryption laws are equally, if
not more, time-consuming and intensive to comply with. These issues can
bemitigated by deploying a standardized digital pathology system through-
out multiple institutions at the state/provincial level. For example, our co-
author (B.N.) has obtained governmental approval and funding to distrib-
ute a set of digital pathology systems throughout the province’s public ana-
tomical pathology laboratories. Similarly, a unified set of standards for
processing and digitizing slides, along with unifying storage and access to
WSIs for research use in collaborative efforts is paramount in moving for-
ward in both the development and implementation of CAD systems.

8.10. Clinical alignment of CPath tasks

Researchers in the CPath field must ensure that the CAD tools they cre-
ate are clinically relevant and applicable to pathology so that effort and re-
sources are not allocated towards extraneous or clinically irrelevant tasks.
For example, certain CADs have been proposed to facilitate case triaging
and reduce turnaround time for critical diagnoses.72–74,543,544 However,
several regulatory agencies in pathology aim for 90 of cases to be com-
pleted within a timeframe of 72 hours for signing-out resection specimens
and up to 48 hours for biopsies.545,546 In this context, triaging becomes ex-
traneous, as signing out cases faster than 48-72 hours has no clinical im-
pact. However, in the context of an institution operating at longer
turnaround times or struggling to keep up with the caseload, this method
could be lifesaving. Alternatively, identifying mitotic figures and counting
positive Ki-67 nuclei are appreciated tools already in use in multiple digital
pathology settings, despite these tools being seldom applied to the large
caseload proportion of most practicing pathologists.

As noted previously, the overall number of pathologists in the USA has
decreased 17 from 2007 to 2017 and caseloads have increased by
41 7 .

547 This trend places further emphasis of developing CAD tools to-
wards specific challenges encountered by pathologists and where sub-
specialists may not be readily available. For example, a large consortium
generated a prostate cancer CAD that achieved a 86 8 concordance with
expert genitourinary pathologists,548 a significant breakthrough for
healthcare settings where prostate biopsies are not signed out by sub-
specialists. Additionally, targeting specific diagnoses with high rates of
medical errors and inter-observer variance, notably in dermatological, gy-
necological, and gastrointestinal pathology, should be prioritized and inte-
grated into practice quickly to support patient care.549 Finally, advanced
CAD tools capable of diagnosing features out of reach by conventional pa-
thology could have a great impact. For example, identifying the origin of
metastases from morphological cues on the WSIs without added IHC448 or
CADs capable of calculating the exact involvement of cancer on a biopsy
core for prognostic purposes.548

8.11. Concluding remarks

Bringing pathologists and computer scientists together and initiating
meaningful collaborations with shared gains between all parties is likely
the most efficient path forward for CPath and CAD integration. Opportuni-
ties to facilitate collaborations should be promoted by parties such as the
Pathology Innovation Collaborative Community and the Digital Pathology
Association. Furthermore, we encourage involved pathologists and com-
puter scientists to communicate and collaborate on studies towards the
common goal of providing patients with fast, reproducible, and high-
quality care.
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Appendix

A.1. Clinical pathology workflow

Sample Collection Tissue samples are categorized into two general types a) small specimens, normally obtained to diagnose disease and guide subsequent

treatment and b) large specimens, surgically removed to treat the disease after diagnosis. Small specimen biopsies are performed by different specialties in dif-
ferent settings, which can vary from family doctors sampling skin lesions to head and neck specialists performing panendoscopic biopsies under anesthesia.
Based on the type of sample required and its originating site, small specimen samples are obtained by differentmethods: 1) core biopsies, 2) cytological spec-
imens, 3) small excisions, and 4) pincer biopsies. In contrast, large specimens are mostly resections performed by surgeons for treatment purposes once the
diagnosis has already been obtained. Large specimens are significantly more complex than small specimens and require a high-level of expertise to process
before reaching the microscopic interpretation step.

Accessioning The patient-care team fills out request forms which are tagged to the pathology specimen and sent along with the sample to the pathol-
ogy department to enter the specimen and patient information into the laboratory information system (LIS). Depending on the institution, the LIS can then
be linked to the electronic medical records (EMR) system to populate basic demographic data, and to a slide tracking system (STS) to locate and time each
event in pathology. Ensuring that accessioning is done correctly is essential, as specimen mix-ups or incorrect data entry from request forms are a large
source of errors in the worfklow.512

Specimen PreparationMost samples arrive at the pathology lab having already been preserved in a 4% formalin solution. Other preservation media
are used for specific pathology objectives; notably using Roswell Park Memorial Institute medium (RPMI) to preserve cells for flow cytometry and glutar-
aldehyde preservation for electronic microscopy.550 Sometimes, the samples are sent to the pathology lab without a preservation medium, and in this
“fresh” state the tissue will undergo cold ischemia changes until the pathologist can assess the sample, perform specimen preparation, and fix the tissue
in the preservation media. Indeed, each of these events has an impact on the quality of the tissue, which in turn significantly affects the quality of the
final WSI. Specifically, large specimens are almost always processed by a pathologist who will open the container, take basic measurements, and open
the organ to ensure uniform formalin penetration.

At some medical centers, intra-operative consultations for resection samples are processed in a frozen section procedure, which allows for more rapid
diagnosis of the tissue specimens while trading off diagnostic accuracy when compared to fixation in formalin.551,552 Frozen section samples will be rapidly
frozen after the proceeding grossing step, therefore they arrive in the lab unprocessed and remain unprocessed until after grossing, undergoing the aforemen-
tioned cold ischemia changes in the meantime.

Grossing Once the basic specimen preparation has occurred, the tissue is analyzed by the pathology team without the use of a microscope; a step
called grossing. Smaller specimens are often grossed by technicians who fill out a template-based description notably highlighting the number, size, and
appearance of the fragments. After grossing, the tissue fragments are placed into tissue cassettes for final fixation. Grossing larger specimens is much
more complex, and is usually performed by pathologists, pathologist-assistants, medical residents, or fellows who have undergone extensive training.
The grossing starts by orienting the specimen according to the surgical procedure. By cross-referencing the clinical findings and the EMR reports, the oper-
ator will localize the disease, locate the pathological landmarks, describe these landmarks, and measure the extent of the disease. Specific sampling of these
landmarks is performed, and these samples are then put into cassettes for the final fixation.

Final Tissue and Slide Preparation For non-frozen section samples, the final fixation stepwill accrue all the samples put into cassettes and will add a
last phase of fixation in formalin. Afterwards, the tissue cassettes are removed from formalin and inserted into a tissue processor which dehydrates the tissue
through alcohol gradients, subsequently replacing the liquidwithmelted paraffinwax. These samples are removed from the tissue processor and placed into
a mold filled with paraffin which solidifies into a block. A technician then cuts the blocks with a microtome into 4μm slices and places them onto positively
charged slides. Slides are then deparaffinized, rehydrated by an inverse alcohol gradient, and stained with pigments such as Hematoxylin and Eosin (H&E),
or further processed for ancillary testing by immunohistochemistry. Once these steps are complete, the tissue is dehydrated, cleared, and mounted with a
coverslip. Note that significant variations will affect the final quality of the slides based on the performance of the prior steps, the experience of the techni-
cian who cut the slides, and batch effects from the reagentswhich are often reused formultiple slides prior to being replaced–known as cross-contamination.

Frozen section samples are rapidly frozen using a freezing medium such as liquid nitrogen, dry ice, or isopentane.174,175,551,552 After freezing, the
tissue is cut using a microtome and fixed immediately, most often with formalin.174,175 Slides are then stained and covered with a glass coverslip and stored
at 80°C.175

Slide Scanning and ImageProcessingThe stained slides are cleaned of excessmountingmedia and scannedwith awhole-slide scanner. They are then
loaded onto the image management software, which has previously been linked to the LIS and the STS.553

Interpretation After a slide is processed and prepared, a pathologist views the slide to analyze and interpret the sample. The approach to interpreta-
tion varies depending on the specimen type. Interpretation of smaller specimens is focused on diagnosis of any disease. Analysis is performed in a decision-
tree style approach to add diagnosis-specific parameters, e.g. esophagus biopsy type of sampledmucosa presence of folveolar-type mucosa identify
Barrett’s metaplasia identify degree of dysplasia. Once the main diagnosis has been identified and characterized, the pathologist sweeps the remaining
tissue for secondary diagnoses which can also be characterized depending on their nature. Larger specimens are more complex and focus on the focus is
on characterizing the tissue and identifying unexpected diagnoses beyond the prior diagnosis from a small specimen biopsy. Microscopic interpretation
of large specimens is highly dependent on the quality of the grossing and the appropriate detection and sampling of landmarks. Each landmark
(e.g., tumor surface, tumor at deepest point, surgical margins, lymph node in mesenteric fat) is characterized either according to guidelines, if available,
or according to the pathologists’ judgment. After the initial microscopic interpretation additional deeper cuts (“levels”), special stains, immunohistochem-
istry, and/or molecular testing may be performed to hone the diagnosis by generating new material or slides from the original tissue block.

Pathology Report The pathologist synthesizes a diagnosis by aggregating their findings from grossing and microscopic examination in combination
with the patient’s clinical information, all of which are included in afinal pathology report. The classic sections of a pathology report are patient information,
a list of specimens included, clinicalfindings, grossing report,microscopic description,final diagnosis, and comment. The length and degree of complexity of
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the report again depends on the specimen type. Small specimen reports are often succinct, clearly and unambiguously listing relevant findings which guide
treatment and follow-up. Large specimen reports depend on the disease, for example, in cancer resection specimens the grossing landmarks are specifically
targeted at elements that will guide subsequent treatment.

In the past, pathology reports had no standardized format, usually taking a narrative-free text form. Free text reports can omit necessary data, include
irrelevant information, and contain inconsistent descriptions.69 To combat this, synoptic reporting was introduced to provide a structured and standardized
reporting format specific to each organ and cancer of interest.69,70 Over the last 15 years, synoptic reporting has enabled pathologists to communicate in-
formation to surgeons, oncologists, patients, and researchers in a consistent manner across institutions and even countries. The College of American Pathol-
ogists (CAP) and the International Collaboration on Cancer Reporting (ICCR) are the two major institutions publishing synoptic reporting protocols. The
parameters included in these protocols are determined and updated by CAP and ICCR respectively to remain up-to-date and relevant for diagnosis of
each cancer type. For the field of computational pathology, synoptic reporting provides a significant advantage in dataset and model creation, as a pre-
normalized set of labels exist across a variety of cases and slides in the form of the synoptic parameters filled out in each report. Additionally, suggestion
or prediction of synoptic report values are a possible CPath application area.
A.2. Diagnostic tasks

Here we provide some examples of diagnostic tasks where CPath has been applied, for the reader to understand the variety of diagnostic problems that

CPath can be used to address.

Detection A machine learning framework for detecting cancerous tissue regions and predicting scan-level diagnosis is proposed in,266 wherein
thresholding and statistical analysis used to abstain from making a decision in uncertain cases.In contrast to directly predicting the presence of cancers,
feature-focused detection tasks can be highly useful in patient diagnosis and treatment planning. For example, identifying microsatellite instability is a cru-
cial factor in determining if immunotherapy will be effective on a patient, and deep learning methods were shown to be effective at detecting microsatellite
instability in.287 Similarly, the detection of fibrous regions in liver WSIs is a precursor step to liver tumor classification and a computational approach to
detection was demonstrated in.554 Furthermore, the first automatic detection algorithm for keratin pearls, which are valuable biomarkers for oral squamous
cell carcinoma grading is presented in.364 Future research into automated detection methods for similar cancer biomarkers could be a valuable step towards
developing AI-based pathologist support tools. As an example, lymphocytes, a type of white blood cell, can be detected and quantified to assess the overall
health of the immune system. However, manually detecting these cells is a time-consuming task and pathologists rarely identify and count lymphocytes.
Thus several computational approaches, including open source tools such as QuPath555 and deep learning based approaches, are used to provide lymphocyte
counts to pathologists.205 Likewise, counting nuclei can contribute towards diagnoses, however, nuclei detection is a difficult task because of the large var-
iations in the shape of different types of nuclei, such as nuclear clutter, heterogeneous chromatin distribution, and irregular and fuzzy boundaries. Address-
ing these issues, for example, spatially constrained context-aware correlation filters with hierarchical deep features extracted frommultiple layers of a pre-
trained network were proposed to accurately detect nuclei in.385

Tissue Subtype ClassificationDeep neural networks have been shown to be effective at extractingmolecular tumor features from histopathology im-
ages, opening newavenues for deep learning applications in computational pathology.556 As an extension of the tissue subtype classification task,MLmodels
are often able to identify important correlations between tissue structures and disease. Work on nuclei classification suggests that features regarding the nu-
clear inner texture are most relevant for high classification accuracy.554 Additionally, a classifier discovered unique chromatin patterns associated with spe-
cific types of thyroid follicular lesions in.557 The potential discovery of similar associations makes tissue subtype classification a relevant task to pursue.
Another work presented a computational pathology framework that can localize well-known morphological features on WSIs without the need for spatial
labels for each feature using attention-based multiple-instance learning on WSI classification.64 This method outperforms standard weakly-supervised clas-
sification algorithms and is adaptable to independent test cohorts, biopsy/resection samples, and varying tissue content. Additionally, the co-representation
learning for classification (CoReL) framework is proposed in379 to improve state-of-the-art classification performance for nuclei classification, mitosis detec-
tion, and tissue type classification with less data.379

Disease Diagnosis As stated in 2, disease diagnosis can be considered a fine-grained classification problemwhich subdivides the general positive dis-
ease class into finer disease-specific labels based on the organ and patient context. Under this paradigm, research tends to be focused on maximizing perfor-
mance for reliable clinical applications.415,490,558 Recently, works have begun implementing different emulations of pathologist behaviour in their proposed
models. For instance, multi-scale receptive fields were proposed for use in networks to simulate the pathologist viewing process of slides at varying zoom
levels.328 Alternatively, weighted slide-level features were used to classify Barett’s esophagus and esophageal adenocarcinoma, similar to a pathologist
assessing the overall impact of various cancer biomarkers.288 To emulate how pathologists isolate and focus on salient regions of the slide, the concept of
visual attention can be applied to identify the most important regions of tissue slides, thus ignoring diagnostically-irrelevant image regions.417,422,437

Such methods indicate a positive step towards the clinical implementation of AI-based CAD tools by reinforcing and emulating tested methodologies in pa-
thology. Further, differential diagnoses in complicated cases of metastatic tumors and cancer of unknown primary (CUPs) can require many clinical tests to
narrow a differential diagnosis, and a method called Tumor Origin Assessment via Deep Learning (TOAD) is introduced as an assistive tool to assign a dif-
ferential diagnosis.302 This work uses digitized H&E slides of tumors with known primary origins to train a model with transfer learning and weakly super-
vised multitask learning to simultaneously identify the tumorous or metastatic regions and predicts the site of origin.

Segmentation Segmentation CAD tools can capture characteristics of individual glands, nuclei, and tumor regions. The wide generalizability of this
task to various disease types makes it a particularly suitable tool for computational pathology, on which many studies have been conducted.277,330–332,350

For example, models that use segmentation to determine nuclear characteristics including size and shape can help pathologists distinguish between var-
ious cell types and consequently, disease severity.207,234 In,349 a generalized deep learning-based framework was proposed which uses a sequence of
novel techniques forin the preprocessing, training, and inference steps which in conjunction improve the efficiency and the generalizability of model.
Similarly, a new framework for WSI analysis in colonoscopy pathology, including lesion segmentation and tissue diagnosis was developed and includes
an improved U-Net with a VGG net as the backbone, as well as two training and inference schemes to address the challenge of high resolution images
analysis.304

There are also some instances of segmentation in different organs. For example, an interactive segmentation model was proposed in which the user-
provided squiggles guide the model toward semantic segmentation of tissue regions.367 Also, they proposed four novel techniques to automatically extract
minimalistic and human-drawn-like guiding signals from Ground Truth (GT) masks so that they can be used during the model’s training. Similarly for the
25
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eye, macular edema (ME) is a common disease where analyzing the fluid lesions is a critical stage of the diagnostic process. The optical coherence tomog-
raphy (OCT) technique can potentially investigate three fluid types and a novel pipeline for segmentation of the three types of fluid lesions in OCT was pro-
posed in.355 They presented a multi-layer segmentation to detect the ROI and presented an FCN architecture with attention gate (AG) and spatial pyramid
pooling (SPP)module to improve the feature extraction. To predict cellular composition from images, ALBRT is proposed in,470 using contrastive learning to
learn a compressed and rotation-invariant feature representation which first detects the presence of different cell types in an image patch and then provides
cell counts for each type. Another novel deep learning model was developed for simultaneous nuclei instance segmentation in.369 The model is based on an
encoder-decoder architecture design that performs nuclei segmentation by predicting the distance of pixels from their nuclei centers along with the nuclei
probability masks and predicts nuclei classes when nuclei type annotations are available. Another work in nuclei segmentation is the hard-boundary atten-
tion network (HBANet), which identifies hard-boundaries between nuclei, a difficult problem due to overlapped nuclei.559 It presents a background weaken
module (BWM) to improve the model’s attention to the foreground, and integrates low-level features containing more detailed information into deeper fea-
ture layers. Furthermore, a gradient-based boundary adaptive strategy (GS) is designed to generate boundary-weakened data as extra inputs and train the
model in an adversarial manner. Finally, segmentation has also been applied to delineate tumorous tissue regions for a variety of cancer types, such as
breast,278,560 colorectal,142,363 and prostate cancer.476,561 Such works assist in the efficient isolation of tumor tissue, which is a crucial task for making ac-
curate disease predictions.
A.3. Prognosis

Prognostic models must predict the likely development of a disease based on patient features. For instance, a prognostic model was developed by
534
adjusting a tumor microenvironment-based spatial map with clinical variables such as patient age, gender, health history, and cancer stage. This

multi-domain data analysis approach is advanced by another work, which uses both histopathological image data and cancer genomic data in their novel
deep learning framework.477,562 In,563 the authors discussed the correlation between platelets and other haematological measures to cancer by assessing
patient status and considering the patient features in the primary care dataset, such as age and sex. They demonstrate the model performance with the
plot of survival analysis per age group for platelets. Experiments on the publicly available TCGA data demonstrates that prognostic accuracywas maximized
when both forms of data were simultaneously considered. Merging information from multiple WSIs of a patient allowed a hybrid aggregation network
(HANet), consisting of a self-aggregation module and a WSI-aggregation module, to predict survival risks.564
A.4. Prediction of treatment response

Oral epithelial dysplasia (OED) segmentation is critical for early identification and effective treatment and HoVer-Net+ is a model to simultaneously

perform nuclear instance segmentation (and classification) and semantic segmentation of epithelial layers based on H&E stained histopathology slides of
the oral mucosa.365 This model achieves the state-of-the-art performance in both tasks (0 839 dice score) and is the first method for simultaneous nuclear
instance segmentation and semantic tissue segmentation.
A.5. Cancer statistics

Cancer remains the leading cause of global mortality in 2020, claiming nearly 10 million lives or approximately 1 in 6 deaths.583 The grey circle in
Fig. 12 illustrates the prominence of Breast, Prostate, Colon, and Rectum, as well as Lung cancers, which collectively account for half of all diagnosed cases.
Themounting volume of pathology cases poses a significant challenge in clinical workflows. This underscores the pivotal role of computational pathology in
streamlining processes, aiding pathologists in coping with overwhelming workloads. Notably, certain cancers not only exhibit high prevalence but also con-
tribute substantially to the overall mortality rates. Lung cancer, for instance, represents approximately 12 of cancer cases in theUnited States,with its prog-
nosis fallingwithin the lowest range, as depicted in Fig. 12 (030 ). Computational pathology proves instrumental, particularly in lung cancer, by facilitating
classification and prognosis tasks due to distinct variations among its types in terms of presentation, prognosis, and treatment strategies. Conversely, there
are less prevalent cancers like liver cancer characterized by poor prognoses. CPath’s ability to compile specialized datasets for such cancers not only aids
pathologists but also supports clinicians in devising personalized treatment plans. Understanding disease statistics and severity is paramountwhendesigning
a Computer-Aided Diagnosis (CAD) tool in Computational Pathology (CPath) or curating datasets. By factoring in disease prevalence, mortality rates, and
severity across various cancer types, CAD tools can be optimized to prioritize detection, prognosis, and treatment planning for themost prevalent and severe
cases, aligning computational pathology advancements with the urgent needs of patients and healthcare practitioners.
A.6. Whole slide imaging

Generally, aWSI scanning device is composed of four major components180: (1) a light source; (2) a slide stage; (3) an objective lens; and (4) a digital
camera. In order to produce a WSI that is in focus, which is especially important for CPath works, appropriate focal points must be chosen across the slide
either using a depthmap or by selecting arbitrarily spaced tiles in a subset.187 Once focal points are chosen, the image is scanned by capturing tiles or linear
scans of the image, these individual components are then stitched together to form the full image known as the big flat TIFF image.180,187 To reduce the area
needed to be scanned, a segmentation algorithm can be usedwithin the scanner to separate tissue regions from extraneous background regions.198 Addition-
ally, slide can also be scanned at various magnification levels depending on the downstream task and analysis required. The vast majority of WSIs are
scanned at 20 (∼0 5μm/pixel) or 40 (∼0 25μm/pixel) magnification as these are the most useful in practice for general pathologist.180

WSI Storage and Standards
WSIs are in giga-pixel dimension format.30,188 For instance a tissue in 1cm 1cm size scanned 0 25μm/pixel resolution can produce a 4 8GB image

(uncompressed) with a 50, 000 50, 000 pixels. Due to this large size, hardware constraints may not support viewing entire WSIs at full resolution.189

Therefore, WSIs are most often stored in a tiled format, so that only the viewed portion of the image (tile) is loaded into memory and rendered.189
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Fig. 12. Demonstration of the cancer statistics, featuring both the 5-Year Survival Rate and Incidence of each cancer in addition to incidence percentage of each subtype. The
grey inner circle shows the incidence percentage of the respective cancer. The colored circle around each cancer corresponds to the respective 5-Year Survival Rate bin, show-
casing the severity of the cancer. Darker shades (lower survival rate)means fewer peoplewill survive the cancer after 5 years period and the cancer has poor prognosis. On the
other hand, lighter shades (higher survival rates) mean more people will survive after 5 years and the cancer has good prognosis.98,565–582

Table 1
The following table lists commercially available WSI Scanners grouped by manufacturing
company and their respective available compression slide formats.

Company: Scanner Model (Slide Format)
Leica Biosystems: Aperio AT2 / CS2 / GT450 (TIFF (SVS))
Hamamatsu: Nanozoomer SQ / S60 / S360 / S210 (JPEG)
F. Hoffmann-La Roche AG: Ventana DP200 / iScan HT / iScan Coreo (BIF, TIFF, JPG2000,
DICOM)

Huron Digital Pathology: TissueScope IQ / LE / LE120 (BigTIFF, DICOM compliant)
Philips: Ultra-Fast Scanner(iSyntax Philips proprietary file)
3DHistech: Pannoramic Series (MRXS, JPG, JPG2000)
Mikroscan Technologies: SL5 (TIFF)
Olympus: SL5 (JPEG, vsi, TIFF)
Somagen Diagnostics: Sakura VisionTek (BigTIFF, TIFF, JPG2000)
Akoya Biosciences: Vectra Polaris (JPEG, single-layer TIFF, BMP, or PNG)
Meyer Instruments: EASYSCAN PRO 6 (SVS, MDS, JPEG, JPEG2000)
Kfbio: KF-PRO (JPEG, JPEG2000, BMP, TIFF)
Motic: EasyScan Pro (JPEG, JPEG2000, Aperio Compatible)
Precipoint: PreciPoint O8 (GTIF)
Zeiss: Zeiss Axio (Not specified)
Objective Imaging: Glissando (SVS, BigTIFF)
Microvisioneer: manualWSI (Not specified)
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Additionally, to support efficient zooming,WSIs are stored in a pyramidal structure,where higher levels of the pyramid represent lowermagnification levels.
The highest level of the pyramid is generally a very low resolution thumbnail snapshot of the WSI, while the lowest is the full resolution image (i.e. big-flat
TIFF). In this way, different zoom levels can be captured and displayed in a WSI format efficiently–artificially replicating different zooming levels from op-
tical microscopy.189,193 Additionally, WSIs can be compressed before storage to reduce their filesize, often using JPEG, JPEG 2000, or LZW algorithms,
which can reduce an image size bymore than seven times.180 Alongside theWSI, metadata regarding patient, tissue specimen, scanner, andWSI information
is stored for reference.30,188,190 Due to their clinical use and importance, it is important to develop effective storage solutions for these WSI data files and
metadata, allowing for robust data management, querying of WSIs, and efficient data retrieval.191,192

To develop CPath CAD tools in a widespread and general manner, a standardized format for WSIs and their corresponding metadata is essential.188

However, there is a general lack of standardization for WSI formats outputted by various scanners, as shown in Table 1, especially regarding metadata stor-
age. TheDigital Imaging and Communications inMedicine (DICOM) standard provides a framework for biomedical image format and datamanagement and
has been extended to the CPath field through Supplement 145.190,193 Some research has shown that the use of the DICOM standard allows for efficient data
access and greater interoperability between different centres and different CPath-related devices.188 However there is currently a lack of widespread
adoption,30,188,190,584 reflected in Table 1 where only two recorded scanners are DICOM-compliant. Notably, with regards to metadata, DICOM provides
a systematic format detailing a variety of relevant medical information, consistent with DICOM standards in other medical imaging fields.190 The expansion
through Supplement 145 also adds pyramid-tiling forWSIs, a format that is directly beneficial to creation of CPath and CAD tools.Whilemany scanners have
adopted the pyramid-type scheme for image data, they have not fully adopted the DICOM image format, outputting in either TIFF, BigTIFF format, or in
TIFF-derivatives such as SVS or GTIFF. While the TIFF format allows for semi-structured metadata,189 the consistency in metadata structure offered by
DICOM is an advantage over the former.190

Apart from storage format, a general system for storing and distributingWSIs is also an important pillar for CPath. Whereas in othermedical imaging
fields such as radiology, images are often stored in a picture archiving and communications systems (PACS) in a standardized DICOM format, with DICOM
storage and retrieval protocols,189 the need for standardization persists in pathology for WSI storage solutions. Fewworks have proposed solutions to incor-
porate DICOM-basedWSIs in a PACS, although some research has successfully implemented aWSI PACS consistent using the DICOM standard using a web-
based service for viewing and image querying.189
A.7. Organs and diseases

The following Appendix section is a supplement to Section 2.5. Details are provided for several notable works in CPath for the organ types listed in the

subsection.

Breast

• A subset of breast-focused research studies the correlation between tissue morphology andmolecular differences. Molecular testing can often be preferred
over tissuemorphology assessments when selecting breast cancer treatments as it provides objective and reproducible disease classifications. For instance,
the connection between epithelial patterns with various molecular predictions and heatmaps was used to clearly visualize this correlation in.429

• In342 a proposed U-NET based architecture called piNET is used for cell detection and classification in order to calculate the proliferation index (PI) of the
Ki67 biomarker. The network classifies cells as Ki67+/Ki67- and uses this classification to calculate the PI. The architecture is able to achieve a PI accuracy
of 85 2 , higher than the accuracies of other models.342

• A two-stage CNN, one for patch-level feature extraction and the other for classification, was proposed and achieved 95 accuracy for classifying normal,
benign, in situ carcinoma, and invasive carcinomas.585

• In,586 several well-known models (DenseNet121, ResNet50, VGG16, and Xception), are compared with their own CNN model named lightweight
convolutional neural network (LCNN) for the detection of breast cancer metastasis to axillary lymph nodes (ALN).

• Further research has proposed an automated patient-level tumor segmentation and classification system that takes full use of diagnosis information hints
from pathologists.366 A multi-level view DeepLabV3+ (MLV-DeepLabV3+) was created to investigate the differentiating aspects of cell characteristics
between tumor and normal tissue for tumor segmentation. Furthermore, expert segmentation models were chosen andmerged using Pareto-front optimi-
zation to mimic expert consultation and provide a flawless diagnosis.

Prostate

• Most works focus on prostate aim to classify cancer based on Gleason scoring. To aid in that effort, a U-Net model for object semantic segmentation is cre-
ated in,347 with the goal of precisely labeling each pixel in an image as belonging to either foregrounds, which may contain glands, or background.

• A method is proposed in382 that trains a model on both epithelial cell detection and Gleason grade prediction tasks to achieve better performance in both
tasks than models trained on either of the tasks alone. Further, some works have investigated epithelial cell detection to explore data augmentation and
stain/color normalization techniques199,204 which demonstrates the importance of epithelial cell features as an indicator for prostate cancer detection.

• Work in587 focused on classifying glands, gland boundary regions, and stroma. The authors opted for two classic classifiers: support vectormachines (SVM)
and Convolutional Neural Networks (CNNs), finding the SVM to perform best by offering high accuracy and good indicators of regions which are present
with high probability. The output of the SVM classifier could help pathologists locate existing glands, saving them a significant amount of time from ac-
tively searching for them.

Lung

• To further aid diagnosis, prognosis, and treatment decisions, a novel method for nuclei detection and characterization is introduced in234 using an unsu-
pervised autoencoder network to learnwithout the use of any annotations. The unsupervised autoencoder is used to construct a CNN that only requires 5
of training data to generate comparable results to the SOTA on supervised lymphocyte and nuclei tasks, thereby reducing the need for extremely large
annotated datasets.

• In,491 the work not only classifies adenocarcinoma and squamous cell carcinoma, but also predicts the 10 most commonly mutated genes in adenocarci-
noma. The findings indicate the presence of genotype-phenotype correlations for lung cancer tissues, and paves the way for cancer classification and mu-
tation predictions of other types of less common lung cancers.
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Colon and Rectum

• An interesting detection application for MSI is implemented in.287 In this work, ResNet-18 is used to predict MSI from H&E slides with an AUC of 0 84,
although performance was reduced with tissue samples from different ethnicities. As MSI requires extensive additional testing which is not always
performed,287 the study highlights the applicability of deep learning in detecting this important prognosis indicator.

• The work in428 presents a weakly-supervisedmodel named the Slide Level AnnotationModel (SLAM) based on ShuffleNet588 that can be trained to detect
genetic/molecular changes, including MSI or BRAF mutation, in colorectal WSIs. The results show improvement over SOTA models, and a visualization
heatmap is generated which allow for improved result interpretability and analysis.

Bladder

• In,415 bladder cancer grade classification is explored using a large dataset of 915WSIswhich ends up outperforming 17 pathologists by an average of 10 .
The model in this study has been integrated into an end-to-end diagnostic tool that provides interpretable cellular-level ROI visualization and natural lan-
guage descriptions of histology slides. However, therewas also a diagnostic disagreement of 23 between the systemand pathologists, which could hinder
the diagnostic process and consequently limit the overall productivity.

Kidney

• For effective patient prognosis, tissue microarray analysis is typically used to identify biomarkers. Currently, this process is time-consuming and prone to
error, especially due to the heterogeneity of nuclei. A random forest classifier was proposed to more efficiently detect cancerous nuclei in MIB-1 stained
tissuemicro-array spots and predict the survival rate for renal cell carcinoma (RCC) patients in.381 The results show that there is a significant difference in
survival times for patients with high and low proliferating tumors, and further state MIB-1 staining as a key prognostic factor for the survival chance of
RCC.

• To aid in determing donor organ acceptance in kidney transplants,84 uses frozen kidney sections as input data to identify the percentage of
glomerulosclerosis.

Brain

• The achieved state-of-the-art SOTA classification accuracy on the 2014 MICCAI Grand Challenge dataset was achieved in.76 However, on completely un-
seen datasets, performance varied from 84 to 93 . This shows the complexity of the diseases; low grade glioma (LGG) versus glioblastoma multiforme
(GBM) classification is not a trivial task. Not only do their appearances vary in pathological samples, the diagnosis is often made from a few distinct fea-
tures in a small slide region.76

Liver

• A notable work for liver cancer classification evaluates a pathologist’s performance using a liver cancer diagnostic tool for the diagnosis of HCC and
cholangiocarcinoma.490 Despite lower performance than pathologists, the tool’s decisions directly affected pathologists’ decisions. Correct model predic-
tions increased pathologists’ average accuracy, while incorrect predictions lowered average accuracy. Furthermore, pathologists frequently consulted the
model’s predictions for difficult cases. This confirms the potential use of deep learning models as an AI diagnostic tool to provide knowledgeable second
opinions.

Lymph Nodes

• One of the earliest histopathology challenges, ICPR2010, targets lymphocyte and centroblast counting.589

• The importance of the lymph nodes in cancer diagnosis is notably addressed in the CAMELYON16 and CAMELYON17 Challenges, in which participants
classify lymph node metastases.264 Metastases in breast regional lymph nodes are classified based on size: micrometastasis, macrometastasis, and isolated
tumour cells (ITCs). The ITC classification accuracy was less than 40 for all top teams. This indicates that there was extreme difficulty in detecting ITCs,
most likely due to the small size and variability. These results suggest that further improvements can be made by introducing more true positives of ITC
data, or incorporating IHC stain information as an additional layer of information to improve detection robustness.

Organ Agnostic

• Nuclei segmentation of epithelial, inflammatory, fibroblast and miscellaneous tissues is performed across seven different organs in.277 The method at-
tempts to generalize across a large variety of datasets for increased usability and scalability in a clinical setting.

A.8. Ground truth labelling and annotation

Patient-level Annotation Patient-level annotations assign a single label to a single patient and come from case reports that can address multiple WSIs

from a primary organ site. In addition to the WSIs, the Laboratory Information System (LIS) may also contain additional metadata, diagnostic information,
and analytical or synoptic report information.590 Notably, the LIS can store specimen type, molecular and genetic tests, patient medical history, and clinical
variables such as the patient’s age and gender.591,592

Slide-level Annotation Slide-level annotations designate labels for a singleWSI, which encompasses diagnosis and cancer information.268,302 In compar-
ison to the patient-level, this level of focus provides a more precise tissue location for the provided diagnosis.316,450,593

ROI-level Annotation ROI-level annotation identifies regions within a slide that can be of either diagnostic or analytical relevance to a pathologist. Re-
gions themselves can be designated using two methods: (1) bounding boxes169,213,219 or (2) pixel-wise masks that are augmented on the WSIs.61,220,594
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Importantly, each ROI is considered to be a single class,595 but the labels represent more detailed tissue structures providing more specific and detailed di-
agnostic information than patient and slide levels,64 ultimately being more applicable in disease diagnosis tasks.365

Patch-level Annotation Patch-level annotation is done onmosaic tiles (usually in a square shape) extracted from theWSI/ROI with a given field of view
(FOV). Most deep-learning models are trained at the patch level, which contains anatomical structures of tissues and cells. Patches are either single-labeled
or multi-labeled according to the taxonomical labeling workflow.380 One key aspect for patch-level annotation is determining the optimum FOV to encom-
pass enough tissue classes,596 as considering smaller or bigger FOV can provide different advantages, as demonstrated in Fig. 7 for the patch-level.

Patch-Size Selection The choice of the patch size is limited by the computational complexity of the hardware that is used for training CAD tools. For
instance, the majority of deep learning pipelines accept image sizes of less than 300 300 pixels.64,468,597–599, The size of the FOV needs to be determined
such that acceptable levels of morphological tissues will be covered within that patch. Accordingly, the pixel resolution is determined given a certain FOV
and patch size. Given the above factors, if a larger FOV is required, then pixel resolution is limited which translates to information loss. In comparison, if
higher pixel resolution is required, then the FOVwill be limited accordinglywhichmay exclude cellular/architectural relevance pertaining to the underlying
class representation.379 Tomitigate this tradeoff, larger image dimensions are required which consequently increases the computational power required for
patch processing (e.g. high RAM GPU memory or parallelized multi-GPU processing).596

Pixel-level Sizing Pixel-level annotation requires labelling each pixel as a specified class. In this level, features are simple to extract and sufficient for
describing the images as they encompass color and texture information.600 However, there is a lack of biological interpretability as the other levels of an-
notation more appropriately describe characteristics of the cellular and tissue structures.269 A solution based on human-interpretable image features can in-
clude histological knowledge and expert annotations that can describe different cell anatomies such as the stroma, the nuclei of the cells, and the size and
shape of tumor regions, as well as the texture of the tissues and the location of tumor-infiltrating lymphocytes.601
Table 2
Commercially available annotation software along with their manufacturing
company and available input slide formats.

Company: Annotation Tool (Input Format)
Leica Biosystems: Aperio eSlide Manage (JFIF, JPEG2000, PMM)
Pathcore: Sedeen Viewer (Aperio SVS, Leica SVN, TIFF, JPEG2000)
Indica: Halo (TIFF/SVS)
Objective Pathology: MyObjective (Scanner-wide compatibility)
ASAP: ASAP (Multiple formats through OpenSlide)
SiliconLotus: SiliconLotus (Not specified)
Augmentiqs: Annotation Software Suite (Not specified)
QuPath: QuPath (Multiple formats, Bio-formats and OpenSlide)
Proscia: Concentriq (Not specified)
Visiopharm A/S: VisioPharm (Not specified)
Hamamatsu: NDP (JPEG)
Roche: Ventana Companion Image Analysis (BIF, TIFF, JPG2000, DICOM compliant)
Huron: HuronViewer (BigTIFF, FlatTIFF, DICOM compliant)
Philips: Intellisite (iSyntax Philips proprietary file)
3DHistech: CaseViewer (JPG, PNG, BMP, TIFF)
AnnotatorJ269: AnnotatorJ (JPG, PNG, TIFF)
NuClick347: NuClick (Not specified)
Pixel-wise masks are differentiated from pixel-level annotations in that when an ROI mask of this type is tiled into multiple instances (i.e. patches),
each sample is considered a single class. The ROI-level is in contrast to the pixel-level annotations, wherein the latter is defined to include all annotations
where each patch can contain several class types.

A.9. Surveyed datasets

A.9.1. Table creation details

For each dataset recorded in the literature, a collection of informationwas collected. This informationwas organized into 10 categories, listed below. The
full table is given in Table 9.11:

1. Dataset Name: The name of the dataset, if given. If no name is given, then a name was given for book-keeping purposes.
2. References: The works that use this dataset are listed.
3. Availability: A hyperlink to the dataset, when publicly available or available for request directly is provided.
4. Stain type: The type of stain used.
5. Size: Describes the number of WSIs, where this information is available, or the number of patches present in the dataset.
6. Resolution (μm)/ Magnification: Presents the resolution, in micrometers along with the magnification in the format μm/Magnification. If a piece of in-

formation is unavailable (either resolution or magnification) this information is omitted from the table.
7. Annotation Type: Describes the annotation granularity present in the dataset (patient, slide, ROI/ROI mask, patch, pixel) where available.
8. Label Structure: Whether each image in the dataset has a single label associated with it, or multiple. Datasets, where each image has only a single label

associated with it, are labeled with S, whereas those with multiple labels are labeled withM.
9. Classes: The number of classes available, where this count is meaningful. Where it is more helpful to describe the format of ground truth (ex. nucleus

pixel locations), this is written instead.
10. Class Balance (CB): Datasets which are balanced are marked with a B, whereas those which are imbalanced are marked as I. Those where this informa-

tion is unavailable are marked with an U.
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A.10. Organ overview

For each paper recorded in the literature, a collection of information about their specific goal was collected. This information was categorized by organ
and arranged into a table, the organs being: Basal/Epithelium, Bladder, Brain,Mouth/Esophagus, Breast, Liver, LymphNode, Prostate/Ovary, Kidney, Lung,
Pancreas, Thyroid, Stomach/Colon. Below will be the explanation of each column in Table 9.11:

1. References: Reference number of the paper that involved the specified task.
2. Tasks: Specific target goal that the work wanted to achieve, this range from different types of detection, classification, and segmentation to prognosis and

diagnosis.
3. Disease Specification: Describes the pathology of the target goal of the paper.
4. Methods: Define the different machine learning methods used to achieve the proposed target task of the paper.

A.11. Technicalities by task

For each paper recorded in the literature, a collection of information on the Neural Network architectures used was organized and categorized by its
specific task. It was found that across the majority of papers, the following five tasks were the most prevalent: Detection, Disease Diagnosis, Segmentation,
WSI Processing, and Patient Prognosis. At the end of the table, an Other Task section was added to attach other works that don’t follow the selected tasks.
Below will be the explanation of each column in Table 9.11:

1. References: Reference number of the paper that involved the specified task.
2. Tasks Specification: Describes the pathology of the target goal of the paper.
3. Architecture: Defines the different Neural Network architectures used to achieve the proposed target task of the paper.
4. Datasets: Name of the datasets used for the specified task (see Table 9.11 for information on datasets).
Compilation of all the datasets carefully studied in this survey with its respective information (see Table Creation Details).

Dataset Name References Availability Stain Type Size Res(μm)/ Mag Annotation Label Class CB

Basal/Epithelium
NKI-VGH 602 Link H&E 158 ROIs N/A Pixel S 2 U
AJ-Epi-Seg 543 Link H&E 42 ROIs 20× Pixel S 2 U
TCGA-Phil 270 TCGA H&E 50 WSIs 40× Pixel S 4 I
MOIC 594 N/A N/A 6 610 MOIs 10× Slide S 2 U
MOIS 594 N/A N/A 1 436 MOIs 10× Pixel S 2 U
Jiang et al. 594 N/A N/A 128 WSIs 40× Pixel S 2 U
MIP 603 N/A H&E 108 Patients 40× Patient S 2 I
YSM 603 N/A H&E 104 Patients 40× Patient S 2 I
GHS 603 N/A H&E 51 Patients 40× Patient S 2 I
DKI 297 N/A H&E 695 WSIs 40× Slide S 2 I
Y/CSUXH-TCGA 604 N/A H&E 2 241 WSIs 0.275/40×, 0.5/20×,

1/10×, 5/4×
Slide S 4 U

BE-Hart 605 N/A H&E 300 WSIs 40× Patch S 2 I
BE-Cruz-Roa 606 N/A H&E 308 ROI, 1 417

Patches
10× Patch S 2 U

DLCS 172 N/A H&E 5 070 WSIs 0.25/40× Slide S 4 U
BE-TF-Florida-MC 172 N/A H&E 13 537 WSIs 0.24/20×, 0.5/20×,

0.55/20×
Slide S 4 U

Bladder
TCGA+UFHSH 415 By Req. H&E 913 WSIs 40× Slide, ROI S 2 I
TCGA-Woerl 146 TCGA H&E 407 WSIs 40× ROI S 4 I
Bla-NHS-LTGU 380 N/A IF 75 ROIs N/A Pixel S 2 U
CCC-EMN MIBC 146 N/A H&E 16 WSIs 40× ROI S 4 I
UrCyt 607 N/A ThinStrip 217 WSIs 40× Pixel S 3 U
AACHEN-BLADDER 485 N/A H&E 183 Patients N/A Patient S 2 I

Brain
TCGA-Shirazi 85 N/A H&E 654 WSIs, 849

ROIs
0.5 ROI M 4 I

TCGA-GBM-Tang 608 TCGA N/A 209 Patients,
424 WSIs

0.5/20× Patient S 2 I

MICCAI14 76,609 N/A H&E 45 WSIs N/A Slide S 2 B
M-Qureshi 341 N/A H&E 320 ROIs N/A ROI S 4 B
Lai et al. 592 N/A Amyloid-β antibody 30 WSIs 20× Slide, Pixel S 2, 3 I, U
Vessel 610 Link H&E, PAS-H, Masson tri-chome, Jones 226 WSIs 0.25/40× ROI M 3 I
WCM 611 N/A H&E 87 WSIs N/A Patch S 2 U

Esophagus
ESO-DHMC 288 N/A H&E 180 WSIs, 379

ROIs
20× ROI S 4 U

Kidney
AIDPATHA 389,612 Link PAS 31 WSIs 20× Pixel S 3 U
AIDPATHB 389,612 Link PAS 2 ∼ 340

Patches
20× Patch S 2 B

(continued on next page)
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Dataset Name References Availability Stain Type Size Res(μm)/ Mag Annotation Label Class CB

M-Gadermayr 613 N/A PAS 24 WSIs 20× ROI S 2 U
TCGA-RCC-Lu 64 TCGA H&E 884 WSIs 20×, 40× Slide S 3 I
BWH-CRCC 64 N/A H&E 135 WSIs 10×, 20× Slide S 3 I
BWH-BRCC 64 N/A H&E 92 WSIs 40× Slide S 3 I
BWH-RCC 64 N/A H&E 135 WSIs 40× Slide S 3 I
Kid-Wu 387 N/A N/A 1 216 Patients,

60 800 Patches
N/A Patch S 2 U

UHZ-Fuchs 381 N/A MIB-1 133 Patients 0.23/40× Patient S 9 I
WUPAx 84 N/A H&E 48 WSIs 0.495 ROI S 2 I
Pantomics 614 N/A H&E 21 349 Patches 0.5/20× Patch S 2 U
RUMC 152 N/A PAS 50 WSIs 0.24/20× Pixel S 10 I
Mayo 152 N/A PAS 10 WSIs 0.49/20× Pixel S 10 I
UHZ-RCC 289 N/A MIB-1 1 272 Patches N/A Patch S 2 I
Kid-Cicalese 615 N/A PAS 1 503 ROIs N/A ROI S 2 I
Kid-Yang 388 N/A H&E, PAS, Jones 949 WSIs 0.25 ROI S 2 U
Kid-BWH-TCGA 447 N/A H&E 1 184 WSIs 20× Slide S 3 I
WTH 421 N/A N/A 3 734 Patients N/A Patient S 3 I
TCGA-RCC-Chen 616 N/A N/A 45K ROIs 20× ROI S 3 B
BWH-RCC-Chen 616 N/A N/A 1 661 ROIs 20× ROI S 3 I
MC-Gallego 344 N/A H&E, PAS 20 WSIs, 1 184

ROIs
20×, 40× ROI S 2 I

AACHEN-RCC 485 N/A H&E 249 Patients N/A Patient S 3 I
ANHIR 617 Link H&E, MAS, PAS, and PASM 50 WSIs 0.1 to 0.2/40× Slide S 8 I
Glomeruli renal biopsies 618 N/A H&E, PAS or Jones 42 WSIs 0.25 ROI S 2 I
Hubmap Glom 619 Link H&E, PAS, PAS-H, Silver, Jones, Van Gieson,

etc
3712 WSIs 0.13 to 0.25/40× ROI S 2 U

KPMP 619 Link PAS-H 26 WSIs 0.25/40× ROI M 2 U

Breast
BreakHis 226,228 By Req. H&E 82 Patients, 7

909 ROIs
40×, 100×, 200×, 400× ROI S 2 I

CAMELYON 16 61,231,507 link H&E 399 WSIs 0.243/20×, 0.226/40× Slide, ROI S 3 I
BACH18 220,585 Link H&E 40 WSIs, 400

Patches
0.42, 0.467 Patch,

Pixel
S 4 B

TUPAC16 265 Link H&E 821 WSIs 40× Slide S 3 I
TUPAC16-Mitoses 265 Link H&E 73 WSIs 0.25/40× ROI S 2 U
TUPAC16-ROIs 265 Link H&E 148 WSIs 40× ROI S 2 U
CAMELYON 17 61,232,620 Link H&E 1 399 WSIs 0.23, 0.24, 0.25 Patient,

Slide,
S 5, I

ROI 4, 3
BioImaging 256,621 N/A H&E 285 WSIs 0.42/200× Slide S 4 B
Ext-BioImaging 257 N/A H&E 1 568 WSIs 0.42/200× Slide S 4 I
MITOS-ATYPIA14 374,622 Link H&E 1 696 HPFs 40× Pixel S 2 U
MITOS12 374,623 Link H&E 50 HPFs 0.185/40×, 0.2273/40×,

0.22753/40×,
0.2456/40×

Pixel S 2 U

AJ-Lymphocyte 390,543 Link H&E 100 ROIs 40× Pixel S 2 U
MSK 62,624,625 Link H&E 130 WSIs 0.5/20× Slide S 2 I
CCB 350 Link H&E 33 Patches 40× Pixel S 2 U
BIDMC-MGH 26 Link H&E 167 Patients,

167 WSIs
0.25/40× Patient S 4 I

PUIH 213 N/A H&E 4 020 WSIs 100×, 200× Slide S 4 I
HASHI 219 Link H&E 584 WSIs 0.2456/40×, 0.23/40× ROI S 2 U
TNBC-CI 253 Link H&E 50 Patches 40× Pixel S 2 U
AP 626,627 Link H&E 300 ROIs 40× ROI S 3 I
KIMIA Path24 628 Link N/A 28 380 Patches 0.5/20×, 0.25/40× Patch S 24 U
BCSC 254,438 By Req. H&E 240 WSIs 40× Slide, ROI M 14 I
AJ-IDC 295,543,629 Link H&E 162 WSIs, 277

524 Patches
40× Patch S 2 I

PCam 528 Link H&E 327 680
Patches

10× Patch S 2 I

AJ-N 630 N/A H&E 141 ROIs 40× Pixel S 2 U
TCGA-Cruz-Roa 631 TCGA H&E 195 WSIs 0.25/40× ROI M 5 U
TCGA-Jaber 632 TCGA H&E 1 142 WSIs 20× Patch S 2 I
TCGA-Corvò 633 TCGA H&E 91 WSIs N/A ROI S 4 U
TCGA-Lu-Xu 390 TCGA H&E 1K WSIs N/A ROI S 2 I
AMIDA13 373,634 N/A H&E 606 ROIs 0.25/40× Pixel S 2 U
MICCAI16/17 330 N/A H&E 64 WSIs N/A Pixel S 2 U
MICCAI18 330 N/A H&E 33 WSIs N/A Pixel S 2 U
RUMC-Litjens 71 N/A H&E 271 WSIs 0.24/20× ROI S 2 U
ABCTB 429 N/A H&E 2 531 WSIs 20× Patient S 3 U
NHO-1 97 N/A H&E 110 WSIs 40× Slide S 2 I
RUMC-Bejnordi 635 N/A H&E 221 WSIs 0.243/20× Slide, ROI S 3 I
UVLCM-UVMC 636 N/A H&E 2 387 WSIs 0.455/20× Slide S 6 I
HUP 631 N/A H&E 239 WSIs 0.25/40× ROI M 5 U
UHCMC-CWRU 631 N/A H&E 110 WSIs 0.23/40× ROI M 5 U
CINJ 631 N/A H&E 40 WSIs 0.25/40× ROI M 5 U
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Dataset Name References Availability Stain Type Size Res(μm)/ Mag Annotation Label Class CB

Bre-Steiner 27 N/A H&E, IHC 70 WSIs 0.25 Slide S 4 I
NMCSD 72 N/A N/A 108 WSIs 0.24 Slide S 4 I
BC-Priego-Torres 560 N/A H&E 12 WSIs 0.2524/40× Pixel S 2 U
BIRL-SRI 637 N/A H&E 65 WSIs, 5 151

Patches
2/5 ×, 1/10× ROI S 2 U

BWH-Lymph 64 N/A H&E 133 WSIs 40× Slide S 2 B
NHS-Wetstein 340 N/A H&E 92 WSIs 0.16/40× ROI S 3 U
BRE-Parvatikar 252 N/A H&E 93 WSIs, 1 441

ROIs
0.5/20× ROI S 2 I

BWH-TCGA-Breast 447 N/A H&E 2 126 WSIs 20× Slide S 2 I
Bre-Brieu 380 N/A H&E 30 ROIs N/A Pixel S 2 U
Duke 591 N/A H&E 140 WSIs 0.5/20× ROI S 2 U
TransATAC 591 N/A H&E 30 WSIs 0.45/20× ROI S 2 U
BRACS 638–640 By req. H&E 547 WSIs, 4

539 ROIs
0.25/40× Slide, ROI S 7 I

Post-NAT-BRCA 641 Link H&E 138 Patients 40× Patient S 3 I
BCSS 642 Link H&E 151 WSIs, 20K

ROIs
0.25 ROI M 20 I

Amgad et al. 367 N/A H&E 151 WSIs, 20
340 ROIs

0.25/40× ROI S 5 U

SMH+OVC 342 N/A Ki67 30 TMAs, 660
Patches

20× Pixel S 2 U

DeepSlides 342 Link Ki67 452 Patches 40× Pixel S 2 U
Protein Atlas 342,643 Link Ki67 56 TMAs 20× Slide S 3 U
Yale HER2 342 N/A H&E 188 WSIs 20× ROI S 3 U
Yale Response 342 N/A H&E 85 WSIs N/A ROI S 2 U
TCGA-Farahmand 342 N/A H&E 187 WSIs N/A ROI S 2 U
Breast Histopathology
Images

644 Link H&E 162 WSIs 40× Patch S 2 I

Colsanitas 645 N/A H&E 544 WSIs 0.46/40× ROI M 4 I

Pancreas
Pan-Bai 334 N/A Ki67 IHC 203 TMAs Ma×. of 20× Pixel S 3 I

Liver
SUMC 490 N/A H&E 80 WSIs 0.25/40× Slide S 2 B
MGH 646 N/A H&E 10 WSIs 0.46/20× ROI S 4 U
Liv-Atupelage 554 N/A H&E 305 ROIs 20× ROI S 5 I
IHC-Seg 336 N/A H&E, PD1, CD163/CD68, CD8/CD3, CEA,

Ki67/CD3, Ki67/CD8, FoxP3, PRF/CD3
77 WSIs 20× Pixel S 4 I

Lung
TCGA-Gertych 240 IDs H&E 27 WSIs, 209

ROIs
0.5/20×, 0.25/40× ROI, Pixel S 4 I

TCGA-Brieu 380 TCGA H&E 142 ROIs N/A Pixel S 2 U
TCGA-Wang 534,625,647 TCGA H&E 1 337 WSIs 20×, 40× ROI S 3 U
NLST-Wang 534,648 By Req. H&E 345 WSIs 40× ROI S 3 U
TCGA-Wang-Rong 214,625,647 TCGA H&E 431 WSIs 40× ROI S 6 U
NLST-Wang-Rong 214,648 By Req. H&E 208 WSIs 40× Pixel S 7 U
SPORE 534,649 N/A H&E 130 WSIs 20× ROI S 3 U
CHCAMS 534 N/A H&E 102 WSIs 20× ROI S 3 U
TCGA-Hou-2 234 TCGA H&E 23 356 Patches 0.5/20× Patch S 2 I
TCGA-LUSC-Tang 608 TCGA N/A 98 Patients,

305 WSIs
0.5/20× Patient S 2 I

TCGA-CPTAC-Lu 64 TCGA,
CPTAC

H&E 1 967 WSIs 20×, 40× Slide S 2 I

DHMC 75 N/A H&E 422 WSIs, 4
161 ROIs, 1
068

20× Slide, M, 6 I

Patches ROI, Patch S, S
Lung-NHS-LTGU 380 N/A IF 29 ROIs N/A Pixel S 2 U
CSMC 240 N/A H&E 91 WSIs, 703

ROIs
0.5/20× ROI, Pixel S 4 I

MIMW 240 N/A H&E 88 WSIs, 1 026
ROIs

0.389/20× ROI, Pixel S 4 I

NSCLC-Wang 89 N/A H&E 305 Patients 20× Patient S 2 I
ES-NSCLC 650 N/A H&E 434 Patients,

434 TMAs
20× Patient S 2 I

BWH-NSCLC-CL 64 N/A H&E 131 WSIs 20× Slide S 2 I
BWH-NSCLC-BL 64 N/A H&E 110 WSIs 40× Slide S 2 B
BWH-NSCLC-RL 64 N/A H&E 131 WSIs 20×, 40× Slide S 2 I
VCCC 563 N/A N/A 472 Patients N/A Patient S 3 I
Dijon+Caen 651 N/A HES 197 WSIs 20× ROI S 2 U
PKUCH+TMUCH 345 N/A IHC 239 WSIs, 677

ROIs
20× ROI S 2 U

(continued on next page)
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Dataset Name References Availability Stain Type Size Res(μm)/ Mag Annotation Label Class CB

Lymph Nodes
LYON19 168,652,653 Link IHC 441 ROIs 0.24 Pixel S 2 U
AJ-Lymph 543,654 Link H&E 374 WSIs 40× Slide S 3 I
TUCI-DUH 558 N/A H&E 378 WSIs 0.24/20× Slide S 2 I
Thagaard-2 655 N/A H&E, IHC 56 Patches 20× Patch S 2 I
Thagaard-3 655 N/A H&E, IHC 135 Patches 20× Patch S 2 B
Thagaard-4 655 N/A H&E, IHC 81 Patches 20× Patch S 2 I
Thagaard-5 655 N/A H&E, IHC 60 Patches 20× Patch S 2 I
Zhongshan Hospital 166 N/A H&E 595 WSIs 0.5/20× ROI M 2 I

Mouth/Esophagus
SKMCH&RC 656 N/A H&E 70 WSIs, 193

ROIs
0.275/40× ROI S 2 I

SKMCH&RC-M 656 N/A H&E 30 WSIs 0.275/40× ROI S 4 U
ECMC 210 N/A H&E 143 WSIs 0.172/40×, 0.345/20×,

0.689/10×
Pixel S 7 U

BCRWC 364 N/A N/A 126 WSIs 1.163/50× Pixel S 4 U
LNM-OSCC 32 N/A H&E 217 WSIs 0.2467/20×, 0.25/40× ROI S 2 U
OP-SCC-Vanderbilt 650 N/A H&E 50 Patients 40× Patient S 2 B
Sheffield University 365 N/A H&E 43 WSIs 0.4952/20× Slide S 4 I

Prostate/Ovary
PCa-Bulten 657 Link H&E, IHC 102 WSIs, 160

ROIs
0.24/20× Pixel S 2 U

OV-Kobel 658 Link H&E, Ki-67, Mammoglobin B, ER,
Mesothelin, MUC5, WT1, p16, p53,
Vimentin, HNF-1b

168 WSIs, 88
TMAs

N/A Slide S 6 I

TCGA-Tolkach 659 TCGA H&E 389 WSIs 0.25/40× ROI S 3 U
UHZ 660 Link H&E 886 TMAs 0.23/40× ROI S 5 U
SMS-TCGA 476 N/A H&E 310 WSIs 20×, 40× ROI S 2 U
TCGA-Arvaniti 661 TCGA H&E 447 WSIs 20×, 40× Slide S 2 I
TCGA-Yaar 443 TCGA H&E 220 Patients 20× Patient S 2 I
Pro-RUMC 71 N/A H&E 225 WSIs 0.16/40× ROI S 2 B
UHZ-PCa 289 N/A MIB-1 826 Patches N/A Patch S 2 I
SUH 208 N/A H&E 230 WSIs, 1

103 160
Patches

10× ROI S 4 I

CSMC 382,442 N/A H&E 513 Patches 0.5/20× Pixel S 4 U
HUH 73 N/A H&E 28 WSIs 0.22 Pixel S 2 U
RCINJ 662 N/A H&E 83 WSIs 20× Slide S 2 I
Pro-Raciti 418 N/A H&E 304 WSIs 0.5/20× Slide, ROI S 2 I, U
VPC 663 N/A H&E 333 TMAs 40× Pixel S 4 U
Pro-Campanella 195 N/A H&E 137 376

Patches
20× Patch S 6 U

UPenn-Yan 664 N/A H&E 43 WSIs 40× ROI S 2 U
Pro-Doyle 665 N/A H&E 12K ROIs 0.25/40× ROI S 2 U
UPenn-Doyle 666 N/A H&E 214 WSIs 40× ROI S 7 U
RUMC-Bulten 267 N/A H&E 1 243 WSIs 0.24 Slide S 2 U
VGH 119 N/A H&E 305 WSIs N/A ROI S 5 U
NMCSD+MML+TCGA 667 N/A H&E 1 557 WSIs 0.25/40×, 0.5/20× Slide, ROI S 4 I, U
OVCARE 668 N/A H&E 354 WSIs 40× ROI S 5 U
CWU 669 Link H&E 478 WSIs,

120K Patches
0.504/20× Patch S 3 I

UHC 669 Link H&E 157 WSIs,
120K Patches

0.231/40× Patch S 3 I

HWN 669 Link H&E 51 WSIs, 120K
Patches

0.264/40× Patch S 3 I

CSMC 347 N/A N/A 625 Patches N/A Pixel S 4 U
DiagSet-A 266 By Req. H&E 2 604 206

Patches
5×, 10×, 20×, 40× Patch S 9 I

DiagSet-B 266 By Req. H&E 4 675 WSIs 0.25/40× Slide S 2 I
DiagSet-C 266 By Req. H&E 46 WSIs 0.25/40× Slide S 3 U
SICAPv2 384,670 Link H&E 182 WSIs 40× Slide, Pixel S 4 I, U
OVCARE-Farahani 671 N/A H&E 485 Patients,

948 WSIs
40× Patient,

Slide
S 5 I

University of Calgary 671 N/A H&E 60 Patients, 60
WSIs

40× Patient,
Slide

S 5 I

PANDA 672 Link H&E 11 000 WSIs 40× ROI S 5 I
Thyroid
UPMC 557 N/A Feulgen 10-20 WSIs 0.074 Pixel S 3 U
Chen et al. 346 N/A N/A 600 WSIs 40× Slide S 3 I
TCGA-Hoehne 454 TCGA H&E 482 WSIs 40× Slide S 4 I
DEC 454 N/A H&E 224 WSIs 40× Slide S 4 I
ACQ 454 N/A H&E 100 WSIs 40× Slide S 4 I

Stomach & Colon
UMCM 220,673 Link H&E 5K Patches 0.495/20× Patch S 8 B
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Dataset Name References Availability Stain Type Size Res(μm)/ Mag Annotation Label Class CB

GLaS 83,674 Link H&E 165 WSIs 0.62/20× ROI S 5 I
CRCHistoPhenotypes 77,277 Link H&E 10 WSIs, 100

Patches
0.55/20× Pixel S 4 I

DACHS 428 N/A H&E 3 729 WSIs 20× Slide S 3 I
NCT-CRC-HE-100K 86,468,673 Link H&E 86 WSIs, 100K

Patches
0.5 Patch S 9 I

NCT-CRC-HE-7K 86,468,673 Link H&E 25 WSIs, 7 180
Patches

0.5 Patch S 9 I

CoNSeP 277 Link H&E 16 WSIs, 41
Patches

40× Pixel S 7 I

OSU 432 Link H&E, Pan-Cytokeratin 115 WSIs 0.061/40× ROI S 2 U
Warwick-CRC 169,675 Link H&E 139 ROIs 20× ROI S 3 I
HUH 676 Link EGFR 27 TMAs, 1 377

ROIs
20× ROI S 2 I

CRAG 169 N/A H&E 38 WSIs, 139
Patches

0.275/20× Patch S 3 I

ULeeds 677,678 Link H&E 27 WSIs N/A Slide S 3 B
Kather et al. 287 Link H&E 11 977 Patches 0.5 Patch S 3 U
ZU 142 By Req. H&E 717 ROIs 0.226/40× ROI S 6 I
KCCH 287 N/A H&E 185 Patients N/A Patient S 3 I
SC-Takahama 278 N/A H&E 1 019 WSIs Ma×. of 20× Pixel S 2 U
HUCH 88 N/A H&E 420 Patients 0.22 Patient S 2 I
RC-Ciompi 679 N/A H&E 74 WSIs 0.455/200× ROI S 9 U
DHMC-Korbar 78 N/A H&E 1 962 WSIs 200× Slide S 6 U
CRC-TP 279 N/A H&E 20 WSIs, 280K

Patches
20× ROI S 7 U

CRC-CDC 279 N/A H&E 256 Patches 20× Pixel S 5 I
SC-Xu 440 N/A N/A 60 WSIs N/A ROI S 2 U
FAHZU-Xu 441 N/A H&E 13 838 WSIs 40× Slide S 2 I
Bilkent 83,680 N/A H&E 72 Patches 20× Pixel S 2 U
DHMC-Wei 293 N/A H&E 1 230 WSIs 20× Slide S 3 I
Warwick-UHCW 363 N/A H&E 75 WSIs 0.275/40× ROI S 2 U
Warwick-Osaka 363 N/A H&E 50 WSIs 0.23/40× Slide S 6 I
GNUCH 328 N/A H&E 94 WSIs, 343

ROIs
N/A Slide, ROI S 4, 2 I

SPSCI 681 N/A H&E 55 WSIs, 251
ROIs

0.19/40× ROI S 5 I

WSGI 439 N/A H&E 608 WSIs 0.2517/40× Slide, Pixel S 3, 2 I, U
TBB 682 N/A H&E 44 TMAs N/A Slide S 3 I
UV 683 N/A H&E 456 WSIs 40× Slide S 4 U
SC-Sali 684 N/A H&E 1 150 WSIs N/A Slide S 7 I
SC-Holland 296 N/A H&E 10 WSIs, 1K

Patches
40×, 100× Slide S 2 B

SC-Kong 685 N/A H&E 272 WSIs 40× ROI S 2 U
SSMH-STAD 236 N/A H&E 50 WSIs N/A Slide S 2 B
HIUH 224 N/A H&E 8 164 WSIs 20× Slide, ROI S 3 I
HAH 224 N/A H&E 1K WSIs 20× Slide S 3 I
SC-Galjart 391 N/A H&E 363 Patients, 1

571 WSIs
0.25 Slide S 2 U

SC-Zheng 420 N/A H&E 983 WSIs, 10
030 ROIs

0.96/10× ROI S 5 U

CRC-I-Chikontwe 445 N/A H&E 173 WSIs 40× Slide S 2 I
CRC-II-Chikontwe 445 N/A H&E 193 WSIs 40× Slide S 2 I
PLAGH 686 N/A H&E 2 123 WSIs 0.238/40× Pixel S 4 U
QUASAR 687 N/A H&E 106 268 ROIs 0.5 ROI S 2 U
CGMH 303 N/A H&E 297 WSIs 0.229/40× ROI S 2 U
AOEC-RUMC-I 453 N/A H&E 2 131 WSIs 5×-10× Slide M 5 I
AOEC-RUMC-II 453 N/A H&E 192 WSIs 5×-10× Slide, ROI M, S 4 I, U
Lizard 260 Link H&E 291 WSIs, 0.5/20× Pixel S 6 I
YCR-BCIP 428 N/A H&E 889 WSIs 20× Slide S 2 I
MHIST 255 By Req. H&E 3 152 Patches 40× Patch S 2 I
YSMH 368 N/A H&E 390 WSIs 20× Slide, ROI S 5 I, U
ColonPredict-Plus-2 343 N/A H&E 200 Patients, 2

537 Patches
N/A Pixel S 2 U

PAIP 688 By Req. H&E 47 WSIs N/A ROI S 2 U
Li et al. 269 N/A N/A 10 894 WSIs,

200 Patches
0.5/20× Slide, Pixel S 2 I

Stanford Hospital 311 Link H&E, p53 IHC 70 WSIs 20× Slide S 2 U
IMP Diagnostics Lab. 689,690 By Req. H&E 1133 WSIs 40× Slide S 3 I
Chaoyang 691 Link H&E 6 160 patches N/A Patch S 8 I
BERN-GASTRIC-MSI 485 N/A H&E 302 Patients N/A Patient S 2 I
BERN-GASTRIC-EBV 485 N/A H&E 304 Patients N/A Patient S 2 I

Bone Marrow
BM-MICCAI15 692 Link H&E 11 WSIs N/A Pixel S 3 U
MICCAI15-Hu 433 N/A H&E 11 WSIs, 1 995 N/A Patch S 4 I
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Dataset Name References Availability Stain Type Size Res(μm)/ Mag Annotation Label Class CB

Patches
FAHZU-Hu 433 N/A H&E 24 WSIs, 600

Patches
N/A Patch S 3 B

BM-Hu 433 N/A H&E 84 WSIs N/A Slide S 2 I
RUMC-Eekelen 354 N/A PAS 24 WSIs 0.25 Pixel S 6 U
MSKCC 339 N/A H&E 1 578 WSIs 0.5025, 0.5031/20× Pixel S 7 I
EUH 693 N/A Wright’s Stain 9 230 ROIs 0.25/40× ROI S 12 I
Frankel et al. 694 N/A H&E 424 WSIs 40× Slide S 9 I
Internal-STAD 695 N/A H&E 203 WSIs 0.25/40× ROI S N/A U
MultiCenter-STAD 695 N/A H&E 417 WSIs 0.46/40× ROI S N/A U

Cervix
TCGA-Idlahcen 261 TCGA H&E 10 WSIs 2.5×-40× Slide S 2 B
XH-FMMU 696 N/A H&E 800 WSIs 4×-40× ROI S 2 U
Pap-Cytology 168 N/A N/A 42 ROIs 20× Pixel S 2 U
Chen et al. 346 N/A N/A 372 WSIs 40× Slide S 2 I
OAUTHC 451 N/A H&E 1 331 ROIs N/A ROI S 2 I

Multi-organ
MoNuSeg 258 Link H&E 30 WSIs 40× Pixel S 2 U
UHN 250 Link H&E 1 656 WSIs,

838 644
Patches

0.504/20× Slide,
Patch

S 74 I

CPM-15 277 Link H&E 15 Patches 20×, 40× Pixel S 2 U
CPM-17 277 Link H&E 32 Patches 20×, 40× Pixel S 2 U
ADP 167,300 By Req. H&E 100 WSIs, 17

668 Patches
0.25/40× Patch M 57 I

Bándi-Dev-Set 198 Link H&E, Sirius Red, PAS, Ki-67, AE1AE3,
CK8-18

100 WSIs 0.2275, 0.2278, 0.2431,
0.25, 0.2525, 0.5034

Pixel S 6 U

Bándi-Dis-Set 198 Link H&E, Alcian Blue, Von Kossa, Perls, CAB,
Grocott

8 WSIs 0.2431 ROI S 4 U

PanNuke 697,698 Link H&E 20K WSIs, 205
343 ROIs

40× ROI S 5 I

Salvi-SCAN 656 Link H&E 270 ROIs 10×, 20×, 40× Pixel S 2 U
TCGA-Nuclei 330,625,699 Link H&E 5 060 WSIs, 1

356 Patches
0.25/40× Pixel S 14 U

MO-Khoshdeli 356 Link H&E 32 WSIs, 32
Patches

0.5 Pixel S 2 U

FocusPath 196 Link H&E, Trichrome, IRON(FE), Mucicarmine,
CR, PAS, AFB, Grocott

9 WSIs, 8 640
Patches

0.25/40× Patch S 15 U

Cheng-Jiang 700 Link H&E, TCT, IHC 20 521 WSIs 10× Slide 4 S I
Stanford-TMA 290,701 By Req. H&E, IHC 6 402 TMAs N/A Slide S 4 I
TCGA-Courtiol 87 TCGA H&E 56 Patients, 56

WSIs
N/A Patient,

Slide
S 3 I

BreCaHAD 74 link H&E 170 ROIs 40× ROI S 2 U
TCGA-Hegde 702 TCGA H&E 60 WSIs 10× ROI S 10 U
TCGA-Diao 703 TCGA H&E 2 917 WSIs 20×, 40× ROI, Pixel S 4, 6 I
TCGA-Levine 668 TCGA H&E 668 WSIs N/A ROI S 5 U
TCGA@Focus 196 Link H&E 1K WSIs, 14

371 Patches
N/A Patch S 2 I

TCGA-Shen 704 TCGA H&E 1 063 WSIs 20× Patch S 3 U
TCGA-Lerousseau 444 TCGA H&E 6 481 WSIs 20× Pixel S 3 U
TCGA-Schmauch 705 TCGA H&E 10 514 WSIs N/A Slide S 28 I
MO-Khan 202 N/A H&E 60 WSIs 20×, 40× Pixel S 3 U
MESOPATH/MESOBANK 87 N/A HES 2 981 Patients,

2 981 WSIs
40× Patient,

Slide
S 3 U

Mo-Campanella 195 N/A H&E, SDF-1, TOM20 249 600
Patches

20× Patch S 6 U

BWH-TCGA-MO 448 N/A H&E 25 547 WSIs N/A Slide S 18 I
BWH-Lu 302 N/A H&E 19 162 WSIs 20×, 40× Slide 2 I
Feng et al. 471 N/A H&E, IHC 500 WSIs 20× Slide S 10 B
SegSet 266 N/A H&E 30 WSIs 0.25/40× Pixel S 2 U
LC25000 706 Link H&E 25 000 Patches N/A Patch S 5 B
OCELOT-CELL 707 Link H&E 306 WSIs, 673

Patches
0.2 ROI S 2 I

OCELOT-TISSUE 707 Link H&E 306 WSIs, 673
Patches

0.2 Pixel S 3 I

Other
MUH 468,708 N/A N/A 18 365 Patches 14.14/100× Patch S 15 I
UPenn 709 N/A H&E 209 Patients 20× Patient S 2 I
CMTHis 299 N/A H&E 352 ROIs 40×, 100×, 200×, 400× ROI S 2 I
Heidelberg University 710 N/A H&E 431 WSIs N/A ROI S 2 U
CHOA 711 N/A H&E 43 WSIs 10× Slide S 4 I
Han-Wistar Rats 452 N/A H&E, ISH 349 WSIs 40× Slide S 2 U
Osteosarcoma 479 Link H&E 1 144 ROIs 10× ROI S 3 I
UPenn+OSU+UH 712 N/A H&E 2 358 WSIs 40× Slide S 4 I
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Dataset Name References Availability Stain Type Size Res(μm)/ Mag Annotation Label Class CB

Kaggle 2018 Data
Science Bowl

713 Link DAPI, Hoechst, H&E 670 WSIs N/A Pixel S 2 U

ALL-IDB2 714,715 By Req. N/A 260 ROIs 300× - 500× Slide S 2 B

Compilation of tasks found in different Co-Path papers categorized by organ (see 9.10)

References Tasks Disease Specification Methods

Basal/Epithelium
594 Detection Metastasis End-to-end classifier using cascaded CNNs
606 Detection Metastasis Unsupervised learning via auto-encoder
604 Disease diagnosis Melanoma, intra-dermal, compound, junctional nevus CNN-based patch classifier
716 Nuclei subtype

classification
lymphocyte, stromal, artefact, cancer CRImage and TTG/CNx for cell identification and

classification
717 Tissue subtype

classification
Epithelial, stromal tissues, Spitz, conventional melanocytic lesions Integration of CNN and HFCM segmentation

605 Tissue subtype
classification

Epithelial, stromal tissues, Spitz, conventional melanocytic lesions CNN-based classifier with transfer learning

87 Patient prognosis Epithelioid, sarcomatoid, biphasic in mesothelium, distant metastatic recurrence ResNet classifier with transfer learning
259 Patient prognosis Epithelioid, sarcomatoid, biphasic in mesothelium, distant metastatic recurrence Combination of DNN and RNN for feature processing
270 Tumor segmentation Tumor, epidermis, dermis, background FCN based segmentation
297 Classification Nevi, melanoma CNN-based classifier

Bladder
415 Classification Papillary urothelial carcinoma LG/HG Combination of CNN and LSTM
380 Segmentation Voronoi objects, edges, background regions CycleGAN with U-Net segmentation
258 Nuclei Segmentation Nuclear, Non-nuclear, Boundary CNN-based classifier with AJI evaluation
146 Tissue Subtype

Classification
Double negative, basal, luminal, luminal p53-like ResNet variation classifier

Brain
76 Classification Glioblastoma multiforme, LG glioma Elastic net classifier with weighted voting
718 Classification LGG Grade II/III, GBM Modular CNN-ensemble network
142 Classification LGG and GBM CNN-based classifier with transfer learning
719 Classification Glioma grading III, IV, V SVM classifier
250 Classification Tissue feature correlation analysis CNN-based classifier with transfer learning
611 Patient prognosis Tissue feature correlation analysis Densenet121 classifiers, initialized with imageNet

pre-trained weights
238 Patient prognosis IDH mutation Survival CNN with genetic biomarker data integration
85 Patient prognosis Survival period for glioblastoma CNN-based patch classifier
477 Patient prognosis GBM prognostic index Fusion network of genome, histopathology, and demography
608 Patient prognosis Glioblastoma Multiforme Custom CNN classifier
556 Patient

prognosis/Tissue
subtype
classification

Oligodendroglioma, IDH-mutant/wild type astrocytoma CNN-based classifier

592 Segmentation Superior Middle Temporal Gyri in the temporal cortex Semi-supervised active learning(SSL)

Mouth/Esophagus
720 Tissue subtype

classification
Stroma, lymphocytes, tumor, mucosa, kerClassificationatin pearls, blood, adipose Modified AlexNet patch classifier with active learning

288 Disease Diagnosis Barrett esophagus no dysplasia, esophageal adenocarcinoma, normal, Barrett
esophagus with dysplasia

Attention based classifier

721 Patient prognosis Oropharyngeal squamous cell carcinoma Computational cell cluster graph
365 Segmentation Oral epithelial dysplasia (OED) HoVer-Net+, a deep learning framework consists of an

encoder branch, and three decoder branches

Breast
199,489 Detection Benign, malignant CNN-based patch classifier
299,722,723 Detection Benign, malignant CNN classifier with transfer learning
631 Detection Benign, malignant CNN-based pixel classifier
508 Detection Benign, malignant Pre-trained AlexNet with automatic label query
724 Detection Benign, malignant Pre-trained AlexNet with Bi-LSTM classifier
323 Detection Benign, malignant Combination of CNN classifier and U-Net segmentation
725 Detection Benign, malignant CNN-based classifier
417 Detection Benign, malignant 3 stage LSTM-RNN classifier
437 Detection Benign, malignant Attention-based MIL model
295 Detection Benign, malignant Tri-branched ResNet model
227 Detection Benign, malignant Combination of CNN and hand-crafted features
219 Detection Custom CNN classifier with Quasi-Monte Carlo sampling
390 Detection, Patient

Prognosis
Tumor, Normal/ Tumor-infiltrating lymphocytes U-Net based classifier

338 Detection Mitosis Multi-scale custom CNN classifier
644 Detection Invasive Ductal Carcinoma Bayesian Convolution Neural Networks
586 Binary classification Breast cancer to axillary lymph nodes (ALNs) Pre-trained architectures: DenseNet121, ResNet50, VGG16,

Xception and lightweight convolutional neural network
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References Tasks Disease Specification Methods

(LCNN)
366 Tumor

Segmentation and
Classification

Breast Cancer Metastases SOTA methods, designed MLVDeepLabV3+

641 Segmentation Segmentation of the malignant nuclei within each tumor bed Mask regional convolutional neural network (Mask R-CNN)
726 Segmentation Segmentation of multiple subtypes on breast images Deep Multi Magnification Network (DMMN), CNN architec-

ture
298 Detection Metastasis/ Micro, Macro CNN-based pixel classifier
419 Detection Metastasis/ Micro, Macro Resnet with transfer learning
727 Detection Metastasis/ Micro, Macro Combination of CNNs with LSTM-RNN, DCNN-based classi-

fier
322 Detection Cancer metastasis detection MIL+RNN classifier, Neural conditional random field
728 Detection Cancer metastasis detection CNN with attention mechanism
486 Detection Metastasis in sentinel lymph node CNN with Random Forest classifier
729 Detection Invasive ductal carcinoma CNN-based patch classifier
291 Detection Invasive ductal carcinoma ResNet with transfer learning
629 Detection Invasive ductal carcinoma CNN-based random forest classifier
654 Detection Invasive ductal carcinoma Autoencoder network
72 Detection Macrometastasis, micrometastasis, isolated tumor cells, negative Customized InceptionV3 classifier
218 Detection Mitosis detection CNN classifier with two-phase training
262 Detection Mitosis detection Task-based CNN ensemble
371 Detection Mitosis detection CNN-based random forest classifier
337 Detection Mitosis detection CNN classifier with transfer learning
372 Detection Mitosis detection Multi-stage RCNN classifier
373 Detection Mitosis detection FCN classifier
374 Detection Mitosis detection Adaptive Mask RCNN
375 Detection Mitosis detection CNN-based patch classifier
200 Detection Mitosis detection Combination of DCNN network
377 Detection Mitosis detection R2U-Net based regression model
228 Classification Epithelium, Stroma Magnification invariant CNN classifier
229 Classification Benign, malignant CNN classifier interleaved with squeeze-excitation modules

(SENet)
730 Classification Adenosis, fibroadenoma, phyllodes tumors, tubular adenoma, ductal, lobular,

mucinous, papillary
Inception Recurrent Residual Convolutional Neural Network
(IRRCNN)

731 Classification Adenosis, fibroadenoma, phyllodes tumors, tubular adenoma, ductal, lobular,
mucinous, papillary

Custom DenseNet classifier

645 Classification normal tissue, benign lesion, in situ carcinoma, and invasive carcinoma Custom multiclass dense layer classifier based on Xception
network

732 Disease diagnosis Adenosis, fibroadenoma, phyllodes tumors, tubular adenoma, ductal, lobular,
mucinous, papillary

Two-stage ResNet classifier (MuDeRN)

324 Disease diagnosis Benign, malignant Ensemble of CNN classifiers
294 Disease diagnosis Adenosis, fibroadenoma, phyllodes tumors, tubular adenoma, ductal, lobular,

mucinous, papillary
CNN-based classifier with transfer learning

733 Disease diagnosis Adenosis, fibroadenoma, phyllodes tumors, tubular adenoma, ductal, lobular,
mucinous, papillary

Class structured DCNN

422 Disease diagnosis Adenosis, fibroadenoma, phyllodes tumors, tubular adenoma, ductal, lobular,
mucinous, papillary

Two stage classification and selection network

734 Disease diagnosis Adenosis, fibroadenoma, phyllodes tumors, tubular adenoma, ductal, lobular,
mucinous, papillary

Domain adaptation based on representation learning

735 Disease diagnosis Benign, in-situ, invasive carcinoma CNN-based classifier with gravitational loss
736 Disease diagnosis Benign, in-situ, invasive carcinoma CNN ensemble with LightGBM
737 Disease diagnosis Benign, in-situ, invasive carcinoma InceptionV3 classifier using dual path network
26 Disease diagnosis Usual ductal hyperplasia, ductal carcinoma in situ Logistic regression with Lasso regularization
362 Disease diagnosis Proliferation score (1, 2, or 3) Encoder-decoder with Gaussian Mixture model
252 Disease diagnosis Low risk/High risk Logistic regression using morphological features
488 Disease diagnosis normal, benign, in situ carcinoma, invasive carcinoma Hybrid CNN classifier
636 Disease diagnosis Proliferative without atypia, atypical hyperplasia, ductal / lobular carcinoma in

situ, invasive carcinoma
Cascade of VGG-Net like classifier

738 Disease diagnosis Benign, malignant CNN-based classifier with fourier pre-processing
414 Disease diagnosis Benign, malignant Combination of CNN and LSTM classifiers
739 Disease diagnosis Tumour, normal Metric learning using similarities
220 Classification Clinically relevant classes CNN-based patch classifier with aggregation
256 Classification Benign, in-situ, invasive carcinoma Scale-based CNN classifier
585 Classification Normal, benign, in situ, invasive carcinoma Combination of patch and image level CNN
635 Classification Normal, benign, DCIS, invasive ductal carcinoma (IDC) Context-aware stacked CNN
740 Classification Benign, in-situ, invasive carcinoma CNN-based classifier with dimensionality reduction
63 Classification Benign, in-situ, invasive carcinoma MIL with auto-regression
416 Classification Benign, in-situ, invasive carcinoma Parallel network with CNN-RNN
257 Classification Benign, in-situ, invasive carcinoma Hybrid Convolutional and Recurrent NN
301 Classification Benign, in-situ, invasive carcinoma CNN-based patch classifier
741 Classification Benign, in-situ, invasive carcinoma Convolutional capsule network
621 Classification Benign, in-situ, invasive carcinoma Combination of residual and spatial model
742 Classification Benign, in-situ, invasive carcinoma Custom CNN patch classifier
213 Classification Benign, in-situ, invasive carcinoma CNN classifier with bidirectional LSTM
743 Classification Tumor, non-tumor Custom CNN-based classifier
330 Nuclei segmentation N/A UNet segmentation with GAN patch refinement
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380 Nuclei segmentation N/A UNet segmentation with CycleGAN domain transfer
350 Nuclei segmentation N/A Ensemble of several CNNs with different architectures
258 Nuclei segmentation Normal, malignant, dysplastic epithelial, fibroblast, muscle, inflammatory,

endothelial, miscellaneous
Sequential CNN network

630 Nuclei segmentation Normal, malignant, dysplastic epithelial, fibroblast, muscle, inflammatory,
endothelial, miscellaneous

Custom encoder-decoder model

591 Detection,
Segmentation

DCIS and invasive cancers IM-Net for DCIS detection and segmentation

278 Tumour
segmentation

Tumor, Normal U-Net segmentation with GoogleNet patch level feature
extraction

361 Tumour
segmentation

Normal, benign, in situ carcinoma or invasive carcinoma Global and local ResNet feature extractors, FCN with auto
zoom

353 Tumour
segmentation

Normal, benign, in situ carcinoma or invasive carcinoma Global and local ResNet feature extractors, FCN with auto
zoom

367 Segmentation Breast cancer U-Net, Residual Multi-Scale (RMS)
342 Segmentation Ki67 detection for breast cancer U-NET, piNET
560 Tumour

segmentation
Non-tumor, ductal carcinoma in situ (DCIS), invasive ductal carcinoma (IDC),
lobular carcinoma in situ (LCIS), invasive lobular carcinoma (ILC)

Ensemble of CNN with atrous spatial pyramid encoding

305 Classification Prediction of HER2 status and trastuzumab response CNN classifier with Inception v3, Transfer learning
308 Tissue subtype

classification
Classifying cancerous tissues weakly supervised approach, Multiple Instance Learning

(MIL) model, Transfer learning pre-trained models (Trans--
AMlL), VGG, DenseNet, ResNe

628 Tissue subtype
classification

24 different tissues Ensemble of different CNN architectures with transfer learn-
ing

438 Tissue subtype
classification

Proliferative without atypia, atypical hyperplasia, ductal / lobular carcinoma in
situ, invasive carcinoma

Multi-class MIL

638 Disease Diagnosis Normal, Benign, Atypical, Ductal Carcinoma In Situ, Invasive CNN-based classifier using graphical representation
429 Tissue subtype

classification
Estrogen, Progesterone, Her2 receptor Style invariant ResNet classifier

27 Tissue subtype
classification

Negative, micrometastasis, macrometastasis, isolated tumor cell cluster (ITC) Custom CNN-based classifier

340 Tissue subtype
classification

Adipose regions, TDLU regions, acini centroid UNet based CNN classifier

639 Classification,
Segmentation

Benign, Atypical (flat epithelial atypia, atypical ductal hyperplasia), Malignant
(ductal, in situ, invasive)

Graphical neural networks

632 Tissue subtype
classification

Basal-like, HER2-enriched, Luminal A, and Luminal B CNN-based classifier with PCA

744 Classification Malignant, normal CNN classifier with transfer learning
209 Segmentation Stain normalization Style transfer using CycleGAN, Relevance vector machine
425 Segmentation Realistic patch generation GAN based architecture
745 Classification Processing technique comparison Comparison of color normalization methods
325 Classification 19 histological types, HER2-, HER2+, PR+, PR- Graph CNN slide level classifier
327 Classification normal, benign, in situ, and invasive Dynamic Deep Ensemble CNN
456 Binary Classification Breast cancer Transformer based MIL (TransMIL)
Liver
554 Disease diagnosis,

Nuclei segmentation
G0, G1, G2, G3, G4 (HCC grade) BoF-based classifier

490 Disease diagnosis Hepatocellular/cholangio carcinoma CNN-based end to end diagnostic tool
607 Nuclei segmentation N/A CycleGAN based segmentation
336 Tissue segmentation Background, tumor, tissue and necrosis UNet with color deconvolution
746 Tissue segmentation Steatosis droplet Mask-RCNN segmentation
646 Classification Stain normalization Relevance vector machine
430 Classification Hematoxylin, eosin, unstained RBC Linear discriminant classifier
431 Classification Stain style transfer CycleGAN based architecture, CycleGAN with perceptual

embedding consistency loss

Lymph Nodes
205 Detection Detection and quantification of Lymphocytes U-Net and SegNet with VGG16 and Resnet50 and pre-trained

weights of ImageNet
231 Detection Metastasis Ensemble of CNNs with different architectures
747 Detection Metastasis Custom CNN for discrimitive feature learning
264 Detection Metastasis DCNN classifier
97 Detection Metastasis CNN-based patch classifier
748 Detection Metastasis (Isolated / micro / macro) Variants of ResNet/GoogleNet
558 Disease diagnosis Hyperplasia, small B cell lymphomas Bayesian NN with dropout variance
364 Tissue segmentation Keratin, subepithelial, epithelial, background Custom CNN model
360 Tumor segmentation normal, metastatic Representation-Aggregation Network with LSTM
749 Classification,

Segmentation
Domain shift analysis for breast tumour Comparison of CNN models, data augmentation, and nor-

malization techniques
203 Classification,

Segmentation
Stain normalization Deep Gaussian mixture color normalization model

427 Classification,
Segmentation

Stain normalization GAN, stain-style transfer network

750 Classification,
Segmentation

Similar image retrieval Siamese network

469 Classification metastatic tissue Contrastive predictive coding, Autoregressor PixelCNN
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166 Prognosis of lymph

node metastasis
lymph node metastasis of papillary thyroid carcinoma Transformer-Guided Multi-instance Learning,

Attention-based mutual knowledge distillation

Prostate/Ovary
587 Tissue subtype

classification
Gland, Gland border region, or Stroma SVM with RBF kernel, CNN classifiers

347 Tissue subtype
classification

stromal areas (ST), benign/normal (BN), low-grade pattern (G3) and high-grade
pattern (G4) cancer

CNN classifiers using a modified U-Net architecture

348 Detection Tumor, No-tumor Generative Adversarial Network named GAN-CS
73,267 Detection Tumor, Normal CNN-based classifier with transfer learning, MIL model
263 Detection Pancreatic adenocarcinoma Custom CNN classifier
665 Detection Probabilistic boosting tree with active learning
669 Detection benign glandular, nonglandular, tumor tissue Pre-trained and validated model based on

InceptionResNetV2 convolutional architecture
382 Disease diagnosis Prostate cancer (benign, LG, HG) Region based CNN classifier
751 Disease diagnosis Gleason Score (G6-G10) Comparison of commonly used CNN models
751 Disease diagnosis Gleason Score (0-5) Active Learning Framework
659 Disease diagnosis Invasive carcinoma, Benign (glandular, non-glandular, stromal, seminal vesicles,

ejaculatory ducts, high-grade prostatic intraepithelial neoplasia, HGPIN),
intraductal carcinoma

NASNetLarge classifier with transfer learning

661 Disease diagnosis Gleason grading (3, 4, 5) ResNet classifier with symmetric domain adaptation
667 Disease diagnosis Gleason grading (3, 4, 5) Two-stage deep learning system
752 Disease diagnosis Gleason grading (3, 4, 5) Multi-scale U-Net for pixel-wise Gleason score prediction
208 Disease diagnosis Gleason grading (3, 4, 5) CNN classifier with CycleGAN
442 Disease diagnosis Gleason grading (3, 4, 5) Attention-based MIL classifier
663 Disease diagnosis Benign, Gleason Grades 3-5 Ensemble of CNN classifiers
664 Disease diagnosis Gleason grades 1-5 K-NN classifier using statistical representation of Homology

Profiles
119 Disease diagnosis High-grade serous ovarian, clear cell ovarian, endometrioid (ENOC), low-grade

serous, mucinous carcinoma
Two-staged CNN with RF classifier

753 Disease diagnosis Low risk Gleason score (6-7), high risk (8-10) Information retrieval using TF-IDF
561 Gland segmentation Gleason Score (1-5) Image analysis using mathematical morphology
266 Tissue subtype

classification
Diagset A : scan background (BG), tissue background (T), normal, healthy tissue (N),
acquisition artifact (A), or one of the 1-5 Gleason grades (R1-R5), Diagset B: pres-
ence of cancerous tissue on the scan (C) or lack thereof (NC), Diagset C:containing
cancerous tissue (C), not containing cancerous tissue (NC), or uncertain and requir-
ing further medical examination (IHC)

CNNs, a variant of fully-convolutional VDSR networks,
AlexNet, VGG16/19, ResNet50, InceptionV3

204 Tissue subtype
classification

Epithelial, stromal Multiresolution segmentation

666 Tissue subtype
classification

Gleason grade 3-5, Benign Epithelium (BE), Benign stroma (BS), Tissue atrophy
(AT), PIN

Cascaded approach

418 Clinical validation Cancer, non-cancerous Two-stage MIL-RNN classifier
443 Prediction of

treatment response
Positive, negative (response to platinum chemotherapy) Ensemble of RBF+SVM and MIL-based CNN classifier

Kidney
614 Detection Tumor, normal DCNN based classifier
615 Detection Antibody mediated rejection CNN-based classifier
421 Classification Abnormalities of blood chemistry, Kidney function and dehydration k Nearest Neighbour (kNN), Long short-term memory

(LSTM)
344 Classification,

Segmentation
Cancer Modified U-Net CNN model

388 Detection Glomeruli boundaries CNN-based classifier with center point localization
754 Detection Glomeruli and Nuclei Anchor Free Backbone + center point localization
381 Prognosis Survival rate for renal cell carcinoma Random forest classifier for nuclei detection
755 Prognosis Survival rate Kaplan-Meier analysis
84 Classification Sclerosed glomeruli, tubulointerstitium Laplacian-of-Gaussian method for blob detection
387 Classification Glomerulus, lymphocytes Different architectures of standard CNN with patient privacy

preservation
389 Classification Non-glomerular tissue, normal glomeruli, sclerosed glomeruli U-Net based classifier
315 WSI representation

and classification
Kidney Chromophobe Renal Cell Carcinoma (KICH), Kidney Renal Clear Cell
Carcinoma (KIRC) and Kidney Renal Papillary Cell Carcinoma(KIRP)

hierarchical global-to-local clustering, weakly-supervised

613 Segmentation Glomeruli Cascaded UNet model
152 Segmentation Glomeruli, sclerotic glomeruli, empty Bowman’s capsules, proximal tubuli, distal

tubuli, atrophic tubuli, undefined tubuli, capsules, arteries, interstitium
Ensemble of U-Net

456 Multiple
Classification

3 cancer types Transformer based MIL (TransMIL)

Lung
234 Detection Lymphocyte richness Unsupervised classifier using convolutional autoencoder
332 Segmentation,

Classification
Mitosis, ND, LUAD, LUSC Deep residual aggregation network with U-Net

651 Classification Squamous and nonsquamous nonsmall cell Inception V3
345 Detection Tumor, cell Detection U-Net
563 Classification Cancer Decision Tree, AdaBoost and XGBoost
491 Disease diagnosis LUAD, LUSC Deep CNN with transfer learning
756 CNN ensemble with random forest aggregation
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251 ML models with Cox hazard model
332 Deep residual aggregation with U-Net
446 Prognosis Malignant, Normal MIL-based CNN classifier
75 Disease diagnosis Lepidic, acinar, papillary, micropapillary, solid, benign CNN-based patch classifer
240 Disease diagnosis Acinar, micropapillary, solid, cribriform, non-tumor CNN-based classifier
491 Prognosis STK11, EGFR, SETBP1, TP53, FAT1, KRAS, KEAP1, LRP1B, FAT4, NF1 Deep CNN with transfer learning
757 Segmentation Characterizing spatial arrangement features of the immune response Watershed-based model
214,330,380 Segmentation N/A

Nuclei of tumor cells, stromal cells, lymphocytes, macrophages, blood cells,
karyorrhexis

UNet segmentation with GAN patch refinement, UNet seg-
mentation with CycleGAN domain transfer Mask-RCNN
based classifier

534 Classification Tumor cell, stromal cell, lymphocyte CNN
758 Classification LUAD, LUSC Pre-trained DenseNet
315 WSI representation

and classification
Lung Adenocarcinoma (LUAD) and Lung Squamous Cell Carcinoma (LUSC) hierarchical global-to-local clustering, weakly-supervised

251 Prognosis Pathology grade, non-small cancer Recurrence prediction for non-small cell cancer
Lung squamous cell carcinoma Tumor cell, stromal cell, lymphocyte

Various ML models with Cox hazard model
89 CNN-based classifier
251 Custom CNN
332 Cox regression model
564 Prognosis Squamous cell Self-supervised pre-trained model, HANet
318 Segmentation Stain normalization CNN, LSTM based feature aware normalization
759 Classification Cancer, normal High resolution heatmaps from CNN
456 Binary Classification LUSC/LUAD subtypes classification Transformer based MIL (TransMIL)
456 Detection carcinomas and benign tissue Transfer Learning

Paneras
250 Classification Feature correlation analysis

Nuclei, antigen, cytoplasm, blood, ECM
CNN-based classifier with transfer learning
Non-linear tissue component discrimination

334 Classification Immunopositive tumor, immunonegative tumor, non-tumor U-Net
326 Tissue Classification benign lung tissues (LN), lung adenocarcinomas (LAC), lung squamous cell

carcinomas (LSCC), benign colonic tissues (CN), and colon adenocarcinomas (CAC)
Pyramid Deep-Broad Learning

Thyroid
557 Classification Follicular lesion (FA, FTC), normal Radial based SVM classifier
454 Classification,

Detection
Unknown/have mutation(BRAF+), dont have mutation (BRAF-)/ have fusion
(NTRK+), dont have fusion (NTRK-)

Attention-based deep multiple instance learning classifier,
DenseNet121

455 Classification,
Detection

Tumor, Healthy/papillary, follicular, poorly differentiated, anaplastic/have
mutation(BRAF+), dont have mutation (BRAF-)

Multi Instance Learning (MIL)

Stomach/Colon
432,440,441 Detection Cancer Combination of CNN and MIL, InceptionV3 classifier with

conditional GANs, Generalized mean model with parallel
MIL

287 Detection Microsatellite instability ResNet with transfer learning
446 Prognosis Malignant, normal MIL-based CNN classifier
77 Detection Nucleus Space-constrained CNN
236 Detection Adenocarcinoma, normal CNN-based classifier
296 Detection Carcinoma, benign CNN-based classifier
686 Detection High-grade intraepithelial neoplasia Deep learning classifier with ResNet backbone
269 Detection Gastric cancer DLA34, Hybrid and Weak supervision Learning method
428 Detection Tumor-bearing tissue, Non-tumor tissue SuffleNet with end-to-end learning method
221 Detection BRAF mutational status and microsatellite instability Swarm Learning
468 Classification N/A Encoder, Resnet18
343 Classification Colorectal carcinoma, Colorectal cancer Weakly supervised neural network named comparative

segmentation network (CompSegNet), U-Net
326 Classification of

tissue
Cadipose (ADI), background (BACK), debris (DEB), lymphocytes (LYM), mucus
(MUC), smooth muscle (MUS), normal colon mucosa (NORM), cancer-associated
stroma (STR), and colorectal adenocarcinoma epithelium (TUM)

Pyramid Deep-Broad Learning

368 Segmentation colorectal cancer CNN, Sliding window method, U-Net+ +
304 Segmentation,

Classification
Colorectal cancer U-Net16/19 network with a VGG-16/19 net as backbone

681 Disease diagnosis Non-epithelial normal, normal gastric epithelium, neoplastic gastric epithelium/-
tubular gastric adenocarcinoma, solid-type gastric adenocarcinoma, diffuse/-
discohesive gastric carcinoma

Custom CNN classifier

142 Disease diagnosis Adenocarcinoma, mucinous carcinoma, serrated carcinoma, papillary carcinoma,
and cribriform comedo-type carcinoma

CNN-based classifier with transfer learning

224 Disease diagnosis Adenocarcinoma, adenoma, non-neoplastic CNN classifier with RNN aggregation
675 Disease diagnosis Colorectal cancer CNN
293 Disease diagnosis Celiac disease, nonspecific duodenitis ResNet patch classifier
445 Disease diagnosis Cancer Multiple instance learning
328 Disease diagnosis Adenocarcinoma, poorly cohesive carcinoma, normal gastric mucosa Multi-scale receptive field model
439 Disease diagnosis Dysplasia, Cancer Multi-instance deep learning classifier
82 Disease diagnosis Healthy, adenomatous, moderately differentiated, moderately-to- poorly

differentiated, and poorly differentiated
Multi-task classifier

678 Disease diagnosis Adenocarcinoma (AC), tubulovillous adenoma (AD), healthy (H) Downstream classifiers (ResNet18, SVM)
80,83,84 Segmentation Benign, malignant Deep contour-aware networks using transfer learning, CNN
81,359 Segmentation Carcinoma Random polygon model, Multi-scale CNN with minimal

information loss
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82,760 Segmentation Lumen, cytoplasm, nuclei SVM classifier with RBF kernel, Regions containing glandular

structures, Multi-task classifier
386,761 Segmentation Colorectal Cancer Two-parallel-branch DNN
368 Segmentation Colon: adenocarcinoma, high-grade adenoma with dysplasia, low-grade adenoma

with dysplasia, carcinoid, and hyperplastic polyp
Ensemble method, wavelet transform (WWE)

260 Segmentation,
Classification

Epithelial cell, Connective tissue cell, Lymphocytes, Plasma cells, Neutrophils,
Eosinophils

ResNet-34 network with contrastive learning, HoVerNet

688 Segmentation,
Classification

high/ low mutation density, microsatellite instability/ stability, chromosomal
instability/ genomic stability, CIMP-high/ low, BRAF mutation/wild-type, TP53
mutation/ wild-type, KRAS wild-type/ mutation

ResNet-18 network/ Adapted ResNet34/ HoVerNet, Weakly
supervised learning

303 Classification Colorectal Cancer customized CNNs, pretrained model VGG, ResNet, Inception,
IRV2

383 Segmentation Epithelial, inflammatory, fibroblast, miscellaneous, unassigned Spatially Constrained CNN
278 Segmentation Tumour U-Net segmentation with GoogleNet patch level feature

extraction, Custom CNN with random forest regression
292 Segmentation Gastric cancer CNN models with transfer learning
363 Segmentation colon/ adenoma, adenocarcinoma, signet, and healthy cases combination of PHPs, CNN features
687 Classification tumor, stroma random forests
86 Prognosis Stroma CNN based on neuronal activation in tissues
88 Prognosis Five year survival rate CNN/LSTM bassed regression classifier
695 Prognosis EBV-associated gastric cancer deep convolutional neural network backboned by ResNet50
453 Classification cancerous, high-grade dysplasia, low-grade dysplasia, hyperplastic polyp, normal

glands
CNN based classifier with a Multi-Scale Task Multiple
Instance Learning (MuSTMIL)

78,762–765 Classification Hyperplastic polyp, sessile serrated polyp, traditional serrated / tubular /
tubulovillous / villous adenoma

Radial based SVM classifier, CNN classifier with dropout
variance and active learning, SqueezeNet with transfer
learning ResNet patch classifier

763,764 Classification tumor epithelium, simple stroma, complex stroma, immune cell conglomerates,
debris and mucus, normal mucosal glands, adipose tissue, background

Bilinear CNN classifier, Convolutional networks (ConvNets)

682 Classification Normal epithelium, normal stroma, tumor VGG16, hierarchical neural network
224 Classification Adenocarcinoma, adenoma, or non-neoplastic InceptionV3 patch classifier
279 Classification Epithelial, Spindle-shaped, Necrotic, Inammatory SC-CNN with Delaunay Triangulation
766 Segmentation Colorectal cancer, Gastroesophageal junction (dysplasic) lesion, Head and neck

carcinoma
DCNN with residual blocks

678 Classification Adenocarcinoma, corresponding to noticeable CRC, Tubulovillous adenoma, a
precursive lesion of CRC, Healthy tissue

Bayesian CNNs (B-CNNs),

311 Classification cancer, non-cancer Transfer Learning
420 Disease diagnosis Gastric cancer GCN-RNN based feature extraction and encoding
767 Segmentation Tumor GAN
768 Prognosis Adenocarcinoma, disease-specific survival time ECA histomorphometric-based image classifier
426 Synthesis of large

highresolution
images

Colorectal Cancer Novel framework called SAFRON (Stitching Across the
FROntier Network)

Multi-Organ
289 Classification Benign, malignant CNN based classifier
64 Classification Kidney, Lymph nodes, Lung/ Chromophobe, clear cell carcinoma, papillary Weakly supervised ResNet50 with transfer learning
277 Segmentation Bladder, Breast, Kidney, Liver, Prostate, Stomach/ Normal, malignant, dysplastic

epithelial, fibroblast, muscle, inflammatory, endothelial, miscellaneous
Modified Preact-ResNet50

258 Segmentation Nuclear, non-nuclear, boundary CNN-based classifier with AJI evaluation
476 Detection Liver, Prostate/ Tumor, normal Custom CNN architecture
676 Classification Epithelial, stromal tissues DCNN classifier
769 Classification Brain, Breast, Kidney/ DCIS, ERBB2+, triple negative Transfer learning using multi-scale convolutional sparse cod-

ing
290 Detection Bladder, Breast, Lymph nodes, Lung CNN-based classifier with transfer learning
62 Detection Basal, Breast, Prostate/ Cell carcinoma, Metastasis RNN classifier with multiple instance learning
71 Classification Micro/Macro metastasis RNN classifier with MIL
685 Detection Breast, Stomach/ Tumor, normal Custom CNN classifier
370 Segmentation Bladder, Breast, Liver, Prostate, Kidney, Stomach/ Edge, foreground, background Domain-Adversarial Neural Network
332 Segmentation,

Classification
Brain, Lung, Esophagus/ Mitosis, Lymphocyte richness, LUAD, LUSC Deep residual aggregation network with U-Net segmentation

202 Segmentation Breast, Esophagus, Liver/ Stain normalization Relevance vector machine
770 Classification colon, kidney, ovarian cancer, lung adenocarcinoma, gastric mucosa, astrocytoma,

skin cutaneous melanoma, breast cancer/ Nuclei, antigen, cytoplasm, blood, ECM
Non-linear tissue component discrimination

452 Classification Different organs of rats/Exploring the morphological changes in tissue to biomarker
level

CNN, MIL, multi-task learning

307 Classification Adrenal gland, Bladder, Breast, Liver, Lung, Ovary, Pancreas, Prostate, Testis,
Thyroid, Uterus, Heart

CNN models with transfer learning/ ResNet-152 pretrained
on ImageNet and GTEx

206 Classification Colon, Breast/molecular fingerprint of a deficient mismatch (Microsatellite stability
(MSS)/ Microsatellite instability (MSI)

CNN models with transfer learning method

306 Classification,
Segmentation

blood, breast, lymph, colon, bone, prostate, liver, pancreas, bladder, cervix,
esophagus, head, neck, kidney, lung, thyroid, uterus, bone marrow, skin, brain,
stomach, and ovary

Unsupervised contrastive learning, residual networks
pretrained with self-supervised learning

356 Segmentation Brain, Breast/ Nuclei Custom encoder-decoder model
271 Prognosis Bladder/ Lung, Low TMB, Medium TMB, High TMB Deep transfer learning, SVM with Gaussian kernel
771 Classification Bladder, Brain, Breast, Bronchus and lung, Connective, subcutaneous and other soft

tissues, Kidney, Liver and intrahepatic bile ducts, Pancreas, Prostate gland, Thyroid
gland/ Cancer

ResNet18, self-supervised BYOL method, Clustering tiles
using k-means clustering
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349 Segmentation,

Classification
Colon, Liver, lymph node sections An ensemble of FCNs architectures/U-Net with DenseNet,

ResNet
772 Segmentation

cellular nuclei
Multiple Cross-patch Dense Contrastive Learning

562 Prognosis, Cancer
Grade Classification

brain and kidney CNN, GCN, SNN

773 Segmentation Colon, Lymph Node Kullback-Leibler (KL) divergence with classifier
479 Segmentation Breast, Bone, Tissue Performing Neural architecture search(NAS)
774 Segmentation of

nuclei and
cytoplasm

Lung, Bladder Multi-task model

775 Classification Axillary lymph nodes, Breast/Metastasis, Colorectal cancer Adversarial autoencoder, Progressive growing algorithm for
GANs, Resnet18 with pre-trained ImageNet weights

601 Classification,
Detection

Skin/ cutaneous melanoma(SKCM), Stomach/ adenocarcinoma(STAD), Breast/
cancer(BRCA), Lung/ adenocarcinoma(LUAD), Lung/ squamous cell carcinoma
(LUSC)

Convolutional neural networks(CNNs), Birch clustering

776 Classification of
tissue

Stomach, Colon, Rectum CNN+ Pathology Deformable Conditional Random Field

472 Classification of
tissue

Liver, Lung, Colon, Rectum Contrastive learning (CL) with latent augmentation (LA)

777 Classification Stomach, Intestine, Lymph node, Colon label correction + NSHE scheme
778 Detection Renal/ cell carcinoma (RCC), lung/nonsmall cell cancer (NSCLC), Breast/cancer

lymph node metastasis
Attention-based learning, Instance-level clustering

779 Classification Breast, Colon /Tumor metastasis and Tumor cellularity quantification ResNet-18
379 Classification,

Detection
Breast cancer, Colorectal adenocarcinoma, Colorectal cancer Co-representation learning (CoReL), Neighborhood-aware

multiple similarity sampling strategy
341 segmentations Nuclei in pancreatic, tubules in colorectal, epithelium in breast U-net
450 Classification Brain, Endocrine, Gastro, Gynaeco, Liver, pancreas, Urinary tract, Melanocytic,

Pulmonary, Prostate Cancer
DenseNet121, KimiaNet

780 Detection cell nuclear Robust Self-Trained Network(RSTN) trained on distance
maps(DMs)

384 Segmentation,
Classification

Nuclei in the breast, prostate/Benign, ADH, DCIS GNN models

309 Classification,
Segmentation

Lung and Skin/nuclei ResGANet

650 Prognosis HPV+, HPV-, survival class MIL classifier with discriminant analysis
448 Detection 18 primary organ/Tumor MIL with attention pooling
239 Detection Tumor, normal Sparse coding and transfer learning
74 Detection Tumor, normal from 23 cohorts CNN-based classifier with transfer learning
704 Detection Loose non-tumor tissue, dense non-tumor tissue, normal tumor tissue Custom CNN classifier
376 Detection Mitosis centroid G-CNN for rotational invariance
312 Detection,

Segmentation
Colon, Rectum Concept Contrastive Learning

302 Disease diagnosis Lung, Breast, Colorectal, Glioma, Renal, Endometrial, Skin, Head and neck,
Prostate, Bladder, Thyroid, Ovarian, Liver, Germ cell, Cervix, Adrenal/metastatic
tumors and Cancer

MIL

273 Segmentation Breast, Pancreatic, Colon/Cell Nuclei, Tubules, Epithelium u-net
207 Segmentation prostate, colon, breast, kidney, liver, bladder, stomach/Nuclei U-Net
471 Segmentation Bladder, Breast, Colorectal, Endometrial, Ovarian, Pancreatic, Prostate/Nuclei Hovernet on tiles, Nuc2Vec with a ResNet34 with contrastive

learning method
619 Segmentation Brain, Kidney, semantic segmentation+ Xception
559 Segmentation Breast, liver, kidney, prostate, bladder, colon, stomach/Cell boundary pixels, Nuclei Hard-boundary Attention Network (HBANet) with back-

ground weaken module (BWM)
369 Segmentation,

Classification
Bladder, Breast, Colorectal, Endometrial, Ovarian, Pancreatic, Prostate/Nucleus
boundaries/Normal epithelial, malignant/dysplastic epithelial, fibroblast, muscle,
inflammatory, endothelial, miscellaneous

CNN pretrained on ImageNe/End-to-end learning

346 Classification Thyroid frozen sections, Colonoscopy tissue, Cytological cervical pap smear/
benign, non-benign

VGG16bn, ResNet50, U-net, with stochastic selection and
attention fusion

781 Classification Colon, Breast/ non-discriminative and discriminative regions CNN classifier, ResNet18, Weakly supervised learning,
Max-Min uncertainty

376 Classification,
Segmentation

Nuclear boundaries, Benign, malignant G-CNN for rotational invariance

172 Classification Basaloid, Melanocytic, Squamous Multi-stage CNN classifier
782 Classification Colorectal glands, Tumor, normal Dense steerable filter CNN for rotational invariance
444 Segmentation Contoured tumor regions Resnet classifier with transfer learning
703 Classification Skin melanoma, stomach adenocarcinoma, breast cancer, lung adenocarcinoma,

lung squamous cell carcinoma
Custom CNN using human-interpretable image features (HIF)

783 Classification 20 classes for muscle, epithelial, connective tissue Inception Residual Recurrent CNN
32 Tissue subtype

classification
Adipose (ADI), background (BACK), debris (DEB), lymphocytes (LYM), mucus
(MUC), smooth muscle (MUS), normal colon mucosa (NORM), cancer-associated
stroma (STR), colorectal adenocarcinoma epithelium (TUM)

ResNet based classifier

385 Nuclei segmentation Breast, Colon, Liver, Prostate, Kidney, Stomach, Colorectal, Bladder, Ovarian CNN model, VGG-19 network
268 Segmentation Lung, Breast Multiple Instance Learning (MIL), self-supervised contrastive

learning in SimCLR setting, feature vector aggregation
316 Prognosis Prediction of cancer rate survival in the Bladder, Breast, Lung, Uterus, Brain Graph Convolutional Neural Net(GCN)
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207 Nuclei segmentation prostate, colon, breast, kidney, liver, bladder, stomach A convolutional U-Net architecture
333 Nuclei segmentation Nuclear boundaries U-net based architecture
478 Nuclei segmentation Nuclear boundaries Modified HoVer-Net segmentation
351 Nuclei segmentation Nuclear boundaries CNN-based attention network
300 Segmentation 3-level hierarchy of histological types Pixel level semantic segmentation
198 Segmentation Tissue, background, edge artifacts, inner artifacts, inner/external margin Custom FCNN
259 Segmentation Lymphocytes, necrosis Semantic segmentation CNN classifier
169 Disease diagnosis usual ductal hyperplasia, ductal carcinoma in-situ Deep-learning based CAD tool for pathologists
424 Nuclei segmentation Positive/negative in nuclei boundaries Conditional GAN
358 Nuclei segmentation Nuclear boundaries CNN-based Boundary-assisted Region Proposal Network
357 Nuclei segmentation Nuclei, other CNN-based multi-branch network classifier
199 Detection Mitosis and metastasis detection U-Net based normalization
168,331 Nuclei segmentation normal epithelial, myoepithelial, invasive carcinoma, fibroblasts endothelial,

adipocytes, macrophages, inflammatory
U-Net with regression loss

335 Nuclei segmentation Nuclei body, nuclei boundary, background Background removal Nuclei boundary UNet based classifier with self-supervised learning UNet with
transfer learning Custom encoder-decoder network

120 Tissue subtype
classification

60 types of tissues from a various datasets ResNet50 feature encoder/decoder for 11 tasks

655 Detection Tumor, normal ResNet based patch classifier
616 Classification Skin/Skin lesions, Chest/ Benign, malignant, Kidney/Chromophobe, clear cell,

papillary carcinoma
Conditional Progressive Growing GAN (PG-GAN/ResNet-50)

212 Classification Neural image compression for Rectal carcinoma CNN classifier with encoder compression network
392 Pathology report

information
extraction

Tumor description relating to primary cancer site, laterality, behavior, histological
type, and histological grade

Ensemble of multi-task CNN

195 Detection Blur detection Combination of CNN and Random Forest regressor
196 Classification 15 types based on focus level Lightweight CNN
705 Segmentation Molecular feature extraction Multi-layer perceptron with aggregation
700 Classification Deblurring Encoder-decoder with VGG-16 blur type classifier
689 Classification WSI Classification Multi-scale Context-aware MIL, Multi-level Zooming
65 Classification BRCA subtyping, NSCLC subtyping, RCC Subtyping Vision Transformer
784 Classification Classification of glioma and non-small-cell lung carcinoma cases into subtypes Two-level model consisting of an Expectation Maximization

based method combined with CNN and a decision fusion
model

65 Prognosis Survival prediction of IDC, CCRCC, PRCC, LUAD, CRC, and STAD cancer types Vision Transformer
785 WSI Processing Stain normalization Combination of segmentation and clustering for

nuclear/stroma detection
210 WSI Processing Stain normalization Self-supervised cycleGAN
352 WSI Processing Stain normalization Modified Wasserstein Barycenter approach for multiple

referencing
668 WSI Processing Patch synthesis Progressive GAN model
786 WSI Processing Similar image retrieval Classifier based on ANN with K-means clustering

Other
787 Detection Heart/rejection and nonrejection tissue tiles Progressive Generative Adversarial Network + Inspirational

Image Generation with a VGG-19 as a classifier
709 Detection Heart failure CNN based patch classifier
712 Classification Heart/Endomyocardial disease CACHE-Grader, SVM and K-means clustering
710 Classification Skin/Cancer random forest ensemble learning method, feature extractor

using ResNeXt50
355 Detection Eye/Macular edema Fully convolutional neural network (FCN), Improved

attention U-Net architecture (IAUNet)
447 Prognosis N/A Custom MIL framework with attention modules
433 Classification Bone marrow/Neutrophil, myeloblast, monocyte, lymphocyte GAN-based classifier
693 Classification,

Detection
Bone marrow/nonneoplastic, myeloid leukemia, myeloma Two-stage detection and classification model

788 Detection Bone marrow/aspirate pathology synopses BERT-based NLP mode, Active learning
339 Segmentation Viable tumor, necrosis with/without bone, normal bone, normal tissue, cartilage,

blank
UNet-based multi-magnification network

789 Diseases diagnosis Bacterial disease CNN-based classifier
354 Segmentation Bone marrow/Myelopoietic cells, erythropoietic cells, matured erythrocytes,

megakaryocytes, bone, lipocytes
Custom CNN

699 Segmentation 10 Cancer types U-Net, Mask R-CNN for quality control
167 Classification Level 1 (Epithelial, Connective Proper, Blood, Skeletal, Muscular, Adipose, Nervous,

Glandular), Level 2 (23 sub-classes from Level 1), Level 3 (36 sub-classes from Level
2 classes)

Ensemble of different CNN architectures

702 Classification Arteries, nerves, smooth muscle, fat InceptionV3, Deep ranking network
683 Disease diagnosis Duodenum/Celiac CNN-based classifier
261 Disease diagnosis Cervical cancer, Squamous cell carcinoma, adenocarcinoma CNN-based patch classifier
684 Disease diagnosis Duodenum/Celiac, environmental enteropathy, Esophagus/EoE, Ileum/Crohns

disease
Hierarchical CNN classifier

696 Disease diagnosis Squamous carcinoma Combinations of CNN classifiers
451 Classification Normal, Cervicitis, Squamous Intra-epithelial Lesion- Low and High, Cancer Deep multiple instance learning
354 Classification,

Segmentation
Bone marrow/Aplasia SVM classifier with BoW

633 Detection Tumor cells, stromal cells, lymphocytes, stromal fibroblasts k-means, Hierarchical Clustering
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391 Classification colorectal liver metastasis Ensemble of 4 MLP and an encoder, supervised multitask

learning (MTL)
378 Detection Mitosis Feature pyramid network
715 Detection Acute Lymphoblastic (or Lymphocytic) Leukemia (ALL), normal/lymphoblast Transfer Learning, CNN pretrained on a histopathology

dataset, ResNet18 and VGG16 as the backbone

Compilation of information and Neural Network architectures found in different Co-Path papers categorized by task (see 9.11)

References Disease/Organ Specification Architecture Datasets

Detection Task
32,62,64,71,72,97,199,212,219,231,264,291,298,302,305,

322,366,376,419,427,478,486,586,629,635,654,685,704,

727,728,729,739,744,747,748,782

Breast cancer Custom CNN {15}, Inception {6}, ResNet {14},
VGG {4}, U-Net {2}, Multi-stage CNN {1},
DenseNet {4}, GAN {1}, AlexNet {1}, E-D CNN
{1}, CAS-CNN {1}, Attention CNN {3},
HoVer-Net {1}, MLV-DeepLabV3+ {1},
Xception {1}, Lightweight-CNN {1}

RUMC, CAMELYON16, CAMELYON17, MSK,
HUP+CINJ, NHO-1, IDC-Moh, AJ-IDC, PCam,
NMCSD, HASHI, TCGA, Cancer Imaging
Archive, TCGA-BRCA, Yale HER2 dataset, Yale
response dataset

62,71,73,267,302,418,587,665,659 Prostate cancer Custom CNN {2}, Res Net {4}, Inception {1},
Non-DL {1}, NASNetLarge {1}

RUMC, MSK, HUH, Pro-Raciti, Pro-Doyle, CUH,
UHB, Gleason 2019

62,259,302,594,606,710 Skin cancer ResNet {3}, Inception {1}, Custom CNN {1},
E-D CNN {1}, ResNeXt {1}

SCMOI, YSM, GHS, MIP, MSK, BE-Cruz-Roa,
Private

221,224,303,304,432,440,441,445,453,704,767 Colon cancer Custom CNN {2}, Inception {1}, GAN {1},
Novel algorithm {1}, DenseNet {1}, ResNet {2},
Inception-ResNet {1}, U-Net {1}, VGG {1},
Swarm Learning {1}

SC-Xu, FAHZU, OSU, TCGA, CRC-Chikontwe,
Novel Dataset, DigestPath 2019, Epi700,
DACHS, TCGA-CRC, QUASAR trial, YCR-BCIP

224,236,269,338,685,686,704, Stomach cancer AlexNet {1}, ResNet {3}, Inception {3},
DenseNet {1}, DeepLab {1}, VGG {1}, DLA {1},
Custom CNN {1}

TCGA, SSMH-STAD, SC-Kong

271,302 Bladder cancer Inception {1}, ResNet {2} TCGA
302,696 Cervix cancer Inception {1}, ResNet {2}, Inception-ResNet {1} XH-FMMU
614 Kidney cancer Custom CNN {1} Pantomics
302,345,563,651,759 Lung cancer Inception {2}, ResNet {1}, DT {1}, Ad-aBoost

{1}, XGBoost {1}, U-Net {1}
TCGA(-LUAD,-LUSC), MedicineInsight, 22c3,
Ventana PD-L1, Private

32 Oral cancer Custom CNN {1} LNM-OSCC
199,200,218,262,337,370–378 Mitosis Custom CNN {7}, AlexNet {1}, U-Net {2},

Multi-stage CNN {2}, FCN {1}, R-CNN {1},
ResNet {2}

TUPAC16, RUMC, MITOS12, TNBC-JRC,
AMIDA13, MITOS-ATYPIA14, CWRU

77,365,369,380,381,382,383,385,470,471,757,780 Nuclei U-Net {2}, GAN {1}, Non-DL {2}, Custom CNN
{2}, Hover-Net {2}, SC-CNN {1}, Robust-Self
Trained Network (RSTN) {1}, RCNN {1}, VGG
{1}, ResNet {2}, E-D CNN {1}

NHS-LTGU, TNBC-CI, MoNuSeg, UHZ,
CRCHistoPhenotypes, TCGA, Private, BCFM,
PanNuke, NuCLS, CoNSeP, NCT-CRC-HE-100K,
Cleveland Clinic (CC)

80,386 Colorectal gland FCN {2} GLaS
199 Epithelial cell Custom CNN {1} PCa-Bulten, RUMC
387–389 Glomeruli ResNet {1}, VGG {1}, AlexNet {1}, MobileNet

{1}
Kid-Wu, Kid-Yang

709,712,787 Heart failure, Heart Transplant Custom CNN {1}, K-Means {1}, SVM {1}, VGG
{1}, PG-GAN {1}

UPenn, CHOA

364 Keratin pearl Custom CNN {1} BCRWC
554,593 Liver, Liver fibrous region Non-DL {1}, Autoencoder CNN {1} Liv-Atupelage, PAIP
234 Lymphocyte-richness Autoencoder CNN {1} TCGA
287 Microsatellite instability ResNet {1} TCGA, DACHS, KCCH
390,591 Tumor-infiltrating lymphocyte U-Net {1}, IM-Net {1}, DRDIN {1} TCGA, DUKE
74,239,302,309,450,601 Multi-organ tumor KimiaNet {1}, Novel algorithm {1}, ResNet {3},

Inception {1}, DenseNet {1}, Custom CNN {1},
MLV-DeepLabV3+ {1}

AJ-Lymph, TCGA, ISIC2017, LUNA,
COVID19-CT

195,196,790 WSI defect ResNet {2}, DenseNet {1}, Novel algorithm {1},
Custom CNN {1}

Pro-Campanella, MO-Campanella, MGH,
TCGA@Focus, FocusPath

715 Acute Lymphoblastic (or
Lymphocytic) Leukemia (ALL)

Custom CNN {1}, ResNet {1}, VGG {1} ADP, ALL-IDB2

Tissue Subtype Classification Task
32,78,86,199,279,311,676,679,682,762–765 Colorectal cancer Non-DL {1}, FCN {1}, ResNet {3}, VGG {3},

AlexNet {1}, Inception {1}, SqueezeNet {2},
BCNN {1}, Capsule CNN {1}, Custom CNN {5},
U-Net {2}

NCT-CRC-HE-100K, NCT-CRC-HE-7K, RUMC,
RC-Ciompi, GLaS, CRC-TP, CRC-CDC, UMCM,
DHMC-Korbar, TBB, HUH, Stanford Hospital,
TCGA

27,327,429,438,632,676,769 Breast cancer Custom CNN {1}, ResNet {1}, Novel algorithm
{2}, Inception {2}, Novel CNN {1}

US-Biomax, ABCTB, TCGA, Bre-Chang,
Bre-Steiner, BCSC, NKI-VGH, BACH

250,556,769 Brain cancer VGG {1}, Novel algorithm {1}, ResNet {1} UHN, TCGA
75,240,534 Lung cancer ResNet {2}, AlexNet {1}, Inception {1}, Custom

CNN {1}
DHMC, CSMC, MIMW, TCGA, NLST, SPORE,
CHCAMS

204,289,666 Prostate cancer Non-DL {2}, Custom CNN {1}, ResNet {1} CPCTR, UHZ-PCa, UPenn
64,289,769 Kidney cancer Novel algorithm {1}, ResNet {2} TCGA, UHZ-RCC, BWH
146 Bladder cancer ResNet {1} CCC-EMN MIBC
681 Stomach cancer Custom CNN {1} SPSCI
65,167,202,289,448,628,703,771,783 Multi-organ Non-DL {1}, Custom CNN {2}, VGG {2}, MO-Khan, KIMIA Path24, ADP, UHZ, TCGA,
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Inception {3}, ResNet {4}, K-Means {2},
XGBoost {1}, ViT {1}

KIMIA Path960, MO-Diao, BWH-TCGA-MO,
CRC-100K, BCSS, BreastPathQ

77,263,277,365,470,554 Nuclei Custom CNN {3}, ResNet {1}, Non-DL {1},
Hover-Net {2}

CRCHistoPhenotypes, CoNSeP, Liv-Atupelage,
PHI, Private, PanNuke, NuCLS

224,365,717 Epithelial Inception {1}, Custom CNN {1}, Hover-Net+
{1}

HUH-HH, NKI-VGH, TCGA, Private

389 Glomeruli AlexNet {1} AIDPATHA, AIDPATHB
354,433,693 Bone marrow VGG {1}, GAN {1}, FCN {1} BM-MICCAI15, BM-Hu, FAHZU, RUMC, EUH
252,557,605 Lesion Non-DL {2}, Inception {1} UPMC, BE-Hart, Bre-Parvatikar
720 Oral cavity AlexNet {1} ECMC

Disease Diagnosis Task
26,63,213,220,227–229,256,257,290,291,294,295,

298,299,301,321,323,324,414,416,417,422,437,

447,488,489,508,585,621,629,635,636,638,639,

722–725,730–738,740–742,749

Breast cancer ResNet {14}, VGG {7}, Inception {9}, Custom
CNN {12}, AlexNet {3}, XGBoost {1},
MobileNet {1}, Xception {1}, DenseNet {7},
Multi-stage CNN {3}, Capsule CNN {1}, SENet
{1}, Inception-ResNet {1}, VGGNet {2}, Atten-
tion CNN {3}, RCNN {1}, CaffeNet {1},
TriResNet {1}, Class Structured Deep CNN {1},
Non-DL {1}

BACH18, BreakHis, BioImaging,
Ext-BioImaging, CAMELYON16, CAMELYON17,
CMTHis, AP, AJ-IDC, BIDMC-MGH, PUIH,
BRACS, TCGA

200,208,382,442,659,661–664,667,751–753 Prostate cancer Custom CNN {3}, U-Net {1}, ResNet {2}, VGG
{2}, Inception {1}, AlexNet {2}, Non-DL {1},
MobileNet {1}, DenseNet {1}, DCNN {1},
NASNetLarge {1}

SUH, CSMC, TCGA, NMCSD-MML-TCGA, VPC,
UPenn, RCINJ

82,142,296,675,678 Colon cancer Inception {1}, ResNet {4}, SqueezeNet {1},
AlexNet {2}, MobileNet {1}, Xception {1}

Warwick-CRC, Ext-Warwick-CRC, SC-Holland,
GLaS, ZU, ULeeds

64,251,332,491,650,756,758 Lung cancer Inception {1}, ResNet {3}, Non-DL {2},
DenseNet {1}, GCNN {1}

TCGA, MICCAI17, Stanford-TMA, NYU LMC,
BWH, DHMC, ES-NSCLC

76,142,718,719 Brain cancer Non-DL {2}, Custom CNN {1}, AlexNet {1} TCGA, MICCAI14
490,554 Liver cancer DenseNet {1}, Non-DL {1} TCGA, SUMC, Liv-Atupelage
328,439 Stomach cancer Custom CNN {1}, Multi-stage CNN {1} GNUCH, WSGI
172,297,604 Skin cancer ResNet {2}, VGG {1}, Multi-stage CNN {1} DKI, Y/CSUXH-TCGA, DLCS, BE-TF-Florida-MC
415 Bladder cancer Custom CNN {1}, Inception {1}, Multi-stage

CNN {1}
TCGA+UFHSH

261 Cervix cancer VGG {1} TCGA
288 Esophagus cancer ResNet {1}, Attention CNN {1} DHMC
447 Kidney cancer Custom CNN {1} TCGA
290,346 Multi-organ cancer Inception {1}, ResNet {2}, Custom CNN {1},

U-Net {1}, VGG {1}
Stanford-TMA, BIDMC-MGH, Private

650 Oral cancer Custom CNN {1} OP-SCC-Vanderbilt
119 Ovarian cancer VGG {1}, Multi-stage CNN {1} VGH
293,683,684 Non-cancer GI tract disorder ResNet {2}, VGG {1} DHMC-Wei, UV, SC-Sali
558,654 Lymphoma E-D CNN {1}, Custom CNN {1} TUCI-DUH, AJ-Lymph
Segmentation Task
168,207,214,234,258,277,330–335,350–352,356–358,

369,370,376,424,433,470,471,478,554,559,607,

630,699,757,782

Nuclei U-Net {6}, Custom CNN {8}, FCN {1}, ResNet
{5}, GAN {4}, Non-DL {2}, Multistage CNN {1},
E-D CNN {4}, Autoencoder CNN {1}, PangNet
{1}, DeconvNet {1}, Hover-Net {3},
multi-branch CNN {1}, Attention(EP, SM) CNN
{1}, HBANet {1}

MICCAI15-18, TCGA, TNBC-CI, MoNuSeg,
CPM-15, CPM-17, CCB, CRCHistoPhenotypes,
CoNSeP, BM-Hu, FAHZU, Liv-Atupelage,
DHMC, MO-Khoshdeli, AJ-N, Kumar-TCGA,
TCGA-Nuclei, SOX10, UrCyt, NLST, Pan-Bai,
PanNuke, NuCLS, Cleveland Clinic (CC)

80-84,168,359,386,760,761,782 Gland FCN {2}, Non-DL {1}, Custom CNN {5}, ResNet
{2}, VGG {1}, multi-branch CNN {1}, E-D CNN
{1}

GLaS, Bilkent, CRAG, Priv-IHC

278,305,323,353,360–362,366,367,560,631,726 Breast tumor Custom CNN {2}, Inception {2}, U-Net {3}, FCN
1, E-D CNN {1}, RAN {1}, DA-RefineNet {1},
DeepLab {1}, MLV-DeepLabV3 {1}

CAMELYON16, CAMELYON17, BACH18,
TCGA, UHCMC-CWRU, BC-Priego-Torres,
TUPAC16, AMGrad, TCGA-BRCA, Yale HER2
dataset, Yale response dataset

142,304,363,368 Colon tumor Custom CNN {1}, VGG {1}, U-Net {2}, Non-DL
{1}, AlexNet {1}

Warwick-UHCW, Warwick-Osaka, ZU,
DigestPath 2019, Yeouido

336,476,593 Liver tumor PlexusNet {1}, U-Net {1}, Autoencoder CNN
{1}

TCGA, IHC-Seg, PAIP

345 Lung tumor U-Net {1} 22c3, Ventana PD-L1
347,476,561 Prostate tumor PlexusNet {1}, Non-DL {1}, U-Net {1} SMS-TCGA, UUH, Private
278,292 Stomach tumor Inception {1}, U-Net {1}, ResNet {1} SC-Takahama, SC-Liu
142 Brain tumor AlexNet {1} MICCAI14
339 Bone tumor U-Net {1} MSKCC
270,309 Skin tumor FCN {1}, ResNet {1}, ResGANet {1} TCGA, ISIC2018
444 Multi-organ tumor ResNet {1} TCGA
84,152,344,613 Kidney tissue structure Custom CNN {1}, U-Net {1}, cascaded CNN {1} WUPAX, M-Gadermayr, RUMC, Mayo,

AIDPATH
354 Bone marrow cell FCN {1} RUMC
340 Breast tissue subtype U-Net {1} NHS
300 Histological tissue type Custom CNN {1} ADP
746 Liver steatosis ResNet {1} Liv-Guo
337,338 Mitosis U-Net {1}, FCN {1} MITOS12, MITOS-ATYPIA14, AMIDA13
364,365 Oral mucosa, Oral Epithelial

Dysplasia
Custom CNN {1}, Hover-Net+ {1} BCRWC,Private
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(continued)

References Disease/Organ Specification Architecture Datasets

205,259,591 Lymphocytes
(Tumor-infiltrating,segmentation)

E-D CNN {1}, IM-Net {1}, DRDIN {1}, U-Net
{1}, SegNet {1}

TCGA, DUKE, Lymphocyte Detection(from
Andrew Janowczyk and Anant Madabhushi)

198,355 Tissue region, Fluid Lesions Custom CNN {1}, FCN {1}, IAUNet {1} Bándi-Dev-Set, Bándi-Dis-Set, RETOUCH

WSI Processing Task
200,209,380,430,431,607,662 Domain adaptation GAN {5}, U-Net {1}, AlexNet {1}, Custom CNN

{1}, ResNet {5}
NHS-LTGU, MITOS-ATYPIA14, RCINJ, Roche,
Liv-Lahiani, TU-PAC16, TCGA, DHMC, SOX10,
UrCyt

202,203,208,210,318,352,646,785 Stain normalization Custom CNN {2}, ResNet {1}, VGG {1}, U-NET
{1}, GAN {3}, E-D CNN {1}, Multistage CNN
{1}, Non-DL {4}

SUH, Leica Biosystems, MO-Khan, MGH,
Lym-Bejnordi, Salvi-SCAN, MITOS-ATYPIA14

330,424–426,489,616,668 Patch synthesis Custom CNN {2}, GAN {5}, PG-GAN {2},
ResNet {1}, VGG {1}, U-Net {2}

MICCAI16/17/18, Kumar-TCGA, BreakHis,
NKI-VGH, TCGA, OVCARE, ISIC 2020,
ChestXray-NIHCC, CRAG, Digestpath

199,352,427,745 Processing technique comparison U-Net {1}, Custom CNN {2}, GAN {2} RUMC, CAMELYON16, MITOS-ATYPIA14
212,391 WSI compression Custom CNN {2}, E-D CNN {1}, GAN {1} N/A
678 Data cleaning ResNet {1} ULeeds
770 Stain augmentation VGG {1} Kid-Cicalese
770 Tissue component discrimination Non-DL {1} TCGA, MO-JHU/US/UB
738 WSI transformations Custom CNN {1} BreakHis
689 WSI Classification MIL {1} IMP Diagnostics Lab., BRIGHT, CAMELYON16
Patient Prognosis Task
85,238,477,556,608 Brain cancer Inception {1}, VGG {1}, Custom CNN {2}, Cap-

sule CNN {1}, ResNet {1}
TCGA

214,251,446,534,564,608,650 Lung cancer Custom CNN {2}, Non-DL {2}, AttentionMIL
{1}, MI-FCN {1}, HANet {1}

Stanford-TMA, TCGA(-LUSC), CHCAMS, NLST,
ES-NSCLC

86,88,446,768 Colon cancer VGG {2}, Inception {1}, ResNet {1}, Non-DL
{1}, AlexNet {1}, SqueezeNet {1}, AttentionMIL
{1}, MI-FCN {1}

NCT-CRC-HE-100K, NCT-CRC-HE-7K, HUCH,
WRH-WCH, MCO

381,447,755 Kidney cancer Non-DL {2}, AttentionMIL {1} UHZ, TCGA, HPA
390,447 Breast cancer U-Net {1}, AttentionMIL {1} AJ-Lymph, TCGA
667 Prostate cancer Inception {1} NMCSD+MML+TCGA
259 Melanoma Multi-stage CNN {1} MIP, YSM, GHS
87 Mesothelioma ResNet {1} MESOPATH, TCGA
65,316 Multi-Organ AttentionMIL {1}, GCN {1}, ViT {1} TCGA, CRC-100K, BCSS, BreastPathQ
89,721 Recurrence prediction Custom CNN {1}, Non-DL {1} NSCLC-Wang, ROOHNS

Other Tasks
27,297,343,418,490,669 Clinical validation, Stress Test,

Quality Control, Explainability
DenseNet {1}, ResNet {2}, Inception {1},
Inception-ResNet {1}, Extended U-Net {1}

SUMC, Bre-Steiner, Pro-Raciti, DKI, TCGA, Pri-
vate

167,206,213,260,266,273,299,307,348,349,

384,428,640,699
Dataset creation/curation and
annotation, IntegratedAPI and
(End-to-End) Toolkits

Custom CNN {1}, GNN {1}, VGG {3}, Inception
{3}, AlexNet {1}, FCN {2}, U-Net {4}, ResNet
{6}, Hover-Net {1}, DenseNet {1}, MobileNet
{1}, DeepLab {1}, SLAM {1}

CMTHis, ADP, TCGA, TCGA-Nuclei, PUIH,
BRACS, BACH, UZH, SICAPv2, Lizard, GTEx
Dataset(V8), BreaKHis, HF(Heart failure)
Dataset, DACHS, YCR-BCIP, Diagset-A,
Diagset-B, Diagset-C, Painter by Numbers,
miniImageNet, CRC(DX), CAMELYON(16,17),
DigestPath, PAIP, Private

655,759,766 Data deficiency study Inception {1}, Custom CNN {1}, ResNet {1} TCGA, GLaS, CAMELYON16, CAMELYON17,
Thagaard

368,420,449,452,702,750,753,771 Image retrieval/compression,
Representation Learning

ResNet {1}, Inception {1}, Non-DL {2}, GCN
{1}, AttnMIL {1}, Custom CNN {2}, U-Net++
{1}, Barcodes {1}, XGBoost {1}, K-Means {1}

TCGA, CAMELYON16, SC-Zheng, CRA,
Han-Wistar Rats

120,268,269,306,308,316,391,428,451–456,

468,470,471,592,599,688,778,779,781,791
Multi-(task,instance) learning
(MT,MIL),
(Weak,Semi,Self)-Supervised
Learning, Contrastive Learning

ResNet {9}, GCN {1}, AttentionMIL {2},
MuSTMIL {1}, SimCLR {3}, MIL {2}, D(S)MIL
{1}, Pretext-RSP {1}, MoCo {1}, MLP {1},
CLAM {1}, GAN {1}, VGG {2}, DenseNet {2},
Hover-Net {2}, Custom CNN {2}, SLAM {1},
DLA {1}, TransMIL {1}

UHC-WNHST, PanNuke, AJ-Epi-Seg, OSCC,
TCGA(-CRC-DX, - THCA, -NSCLC, -RCC),
CAMELYON16, CAMELYON17,
NCT-CRC-HE-100K, NCT-CRC-HE-7K, CPM-17,
AJ-Lymph, M-Qureshi, SKMCH&RC,
SKMCH&RC-M, OV-Kobel, MT-Tellez,
TUPAC16, SC-Galjart, CT-CRC-HE-100K,
Munich AML, MSK, MHIST, CPTAC, Kather
multi-class, BreastPathQ, CRC, Novel, PanNuke,
NuCLS, GlaS, OAUTHC, DACHS, YCR-BCIP,
BreakHis, DEC, TH-TMA17

212,262,342 Proliferation scoring Custom CNN {2}, piNET {1} TUPAC16, DeepSlides
433 Cell clustering ResNet {1} MICCAI15, BM-Hu, FAHZU
433 Chemosensitivity prediction Non-DL {1} TCGA
479 Neural Architecture Search DARTS {1} ADP,BCCS,BACH, Osteosarcoma
250,469,471,593,601,750 Feature extraction/analysis, VGG {1}, Custom CNN {2}, Hover-Net {1}, CAMELYON16, UHN, TCGA, Private

Unsupervised Learning PixelCNN {1}, AutoEncoder CNN {1}
454,455,491,688 Gene mutation prediction VGG {1}, Inception {1}, AttentionMIL {2},

DenseNet {1}, ResNet {1}, Hover-Net {1}
TCGA(-CRC-DX, -THCA), DEC, PAIP,
TH-TMA17, Private

304,379,385,387,735 Novel loss function, Novel
optimizer

ResNet {3}, VGG {3}, MobileNet {1}, DenseNet
{1}, U-Net {1}

BACH18, AJ-Lymphocyte,
CRCHistoPhenotypes, CoNSeP, ICPR12,
AMIDA13, Kather Multi-class, DigestPath 2019,
CT-CRC-HE-100K

599,676 Patch triaging Non-DL {1}, ResNet {1}, Pretext-RSP {1}, MoCo BIRL-SRI, CAMEYLON16, MSK, MHIST

(continued on next page)
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(continued)

References Disease/Organ Specification Architecture Datasets

{1}, MLP {1}
392,788 Pathology report information

extraction
BERT {1}, Custom CNN {1} LTR

325 Receptor status prediction Custom CNN {1} TCGA
271 TMB prediction Inception {1} TCGA
262,641 Tumor grading Mask R-CNN {1}, Custom CNN {1}, Non-DL {1} TUPAC16, Post-NAT-BRCA, ILC
633 Visual analytic tool Non-DL {1} TCGA
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A.12. Model card categorization

For comprehensive review on model cards and updated information, please refer to our GitHub repository for more information. The following lists ex-
amples of our model cards used in preparation of our survey paper.

A.12.1. Template
Model-Card for Categorizing Computational Pathology Papers
Step-1) Paper Summarization:
Summarize the paper in terms of (A) Goal/Problem of the paper to be solved; (B) Why the problem introduced by the authors is important to the com-

munity in terms of Technical Novelty, Comprehensive Experiment, New Insights, Explainability; and (C) Overall conclusion of the paper.
Step-2) Model Card Table Categorization:
The following is a model-card for each paper to populate the table accordingly. Find relevant information within each category that is reported in the

paper. Try to compile it efficiently and populate each sub-type within each category.
Step-3) Citation: BibTeX Citation.
Keywords comma separated list
Organ Application Organ:

Task:
Dataset Compilation Name:

Availability:
Dataset Size: (#patches/#slides/#images)
Image Resolution:
Staining Type:
Annotation Type: (region/patch/slide-level)
Histological Type: (cellular/tissue ROI/etc, I.e., on what basis is it labeled)
Label Structure: (single label/multi label)
Class Balance: (is size of dataset balanced across each classes)

Technicality Model: (architecture/transfer learning/output format)
Training Algorithm: (end-to-end/separately staged)
Code Availability: (give source)

Data Processing Image Pre-processing: (patching, data augmentation, color normalization)
Output Processing:

Performance Summary Evaluation Metrics:
Notable Results: Numerical result for strongest performing model.
Comparison to Other Works: Comparison to state-of-the-art models (one sentence)

Novelty Medical Applications/Perspectives:
Technical Innovation: (algorithms for processing or deep learning, new metrics)

Explainability Visual Representations: (feature distribution, heatmaps, tsne, gradCAM, pseudocode, etc.)
Clinical Validation Usage in Clinical Settings: Has the work been used by pathologists in clinical setting?

Suggested Usage: How can the work be used by pathologists?
Performance Comparison: Has the model performance been compared to that of pathologists?

Caveats and Recommendations • Personal comments on the paper
• Relevant info from other papers
• Criticism and limitations of the work
A.12.2. Samples
Paper: Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks
Summary:

Classification of histological structures in lung adenocarcinoma tissue is important for patient prognosis and treatment plans. Some histological patterns
(such as lepidic patterns) are associated with better survival rates, whereas others (micropapillary and solid patterns) are associated with poor prognoses.
The identification of these histological patterns is a challenge, as 80%of adenocarcinoma tissue samples contain amixture of different patterns, and the qual-
itative classification criteria can result in variance in diagnosis between different pathologists. Automated analysis and classification of tissue structures
through convolutional neural networks has been a compelling area of research. This paper presents a variant of ResNet, ResNet18 to perform a patch-
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based classification amongst the different lung adenocarcinoma histological patterns. A heatmap for the entire WSI is made using the probability score per
patch, with low-confidence patches being discarded. The performance of the model is compared with 3 expert pathologists to determine relative perfor-
mance. The study concludes that the model has high performance, with results on par with expert pathologists.

Categorization:
Keywords Deep learning, convolutional neural networks, lung adenocarcinoma, multi class, ResNet
Organ Application Organ: Lung

Task: Histologic pattern classification in lung adenocarcinoma
Dataset Compilation Name: Dartmouth-Hitchcock Medical Centre in Lebanon, New Hampshire

Availability: Unavailable due to patient privacy constraints. Anonymized version available upon request.
Dataset Size: 422 WSIs, 4 161 training ROIs, 1 068 validation patches
Image Resolution: 20 magnification
Staining Type: H&E
Annotation Type: Region-level training set, patch-level validation set, slide-level test set
Histological Type: Lepidic, acinar, papillary, micropapillary, solid, and benign.
Label Structure: Single label
Class Balance: Imbalanced, with significantly fewer papillary patterns in all data.

Technicality Model: ResNet model with 18 layers
Training Algorithm:
• Multi-class cross-entropy loss
• Initial learning rate of 0.001
• Learning rate decay by factor of 0.9 per epoch
Code Availability: https://github.com/BMIRDS/deepslide

Data Processing Image Pre-processing:
• Created training ROIs by selectively cropping regions of 245 WSIs.
• Spliced 34 validation WSIs into 1 068 224x224 patches.
• Colour channel normalization to mean and standard deviation of entire training set.
• Data augmentation by rotation; flipping; and random colour jittering on brightness, contrast, hue, and saturation.
Output Processing: Low-confidence predictions filtered out for predictions below a threshold. Thresholds are determined by a grid search over classes,
optimizing for similarity between the trained model and the validation data.

Performance Summary Evaluation Metrics: F1-Score, AUC
Notable Results: F1-Score of 0.904 on validation set, AUC greater than 0.97 for all classes.
Comparison to Other Works: ResNet18, 34, 50, 101, 152 compared for performance to choose optimal depth. All had similar accuracies on validation set,
so chose ResNet18 for lower model complexity.

Novelty Medical Applications/Perspectives: Potential platform for quality assurance of diagnosis and slide analysis.
Technical Innovation: First paper to attempt to classify based on histological lung adenocarcinoma subtypes.

Explainability Visual Representations: Heatmaps for patterns detected, AUC curve for each class
Clinical Validation Usage in Clinical Settings: N/A

Suggested Usage:
• Could be integrated into existing lab information management systems to provide second opinions to diagnoses.
• Visualization of a slide could highlight important tissue structures.
• Could help facilitate tumour diagnosis process by automatically requesting genetic testing based on histological data for patient.
Performance Comparison:
• On par with pathologists for all evaluated metrics
• Model in agreement 66.6% of the time with pathologists on average, with robust agreement (agreement with 2/3 of the pathologists) 76.7% of the time.
• WSI region annotation differences between pathologist and model are compared for a sample slide.

Caveats and
Recommendations

• Data taken from one medical centre, so may not be representative of lung adenocarcinoma morphology
• Dataset relatively small compared to other deep learning datasets, with some classes having very few instances
Citation:
@article{wei2019pathologist,
title={Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks},
author={Wei, Jason W and Tafe, Laura J and Linnik, Yevgeniy A and Vaickus, Louis J and Tomita, Naofumi and Hassanpour, Saeed},
journal={Scientific reports},
volume={9},
number={1},
pages={3358},
year={2019},
publisher={Nature Publishing Group UK London}
}

Paper: Classification of lung cancer histology images using patch-level summary statistics
Summary:

The classification of non-small cell lung cancerWSIs as either lung adenocarcinoma (LUAD) or lung squamous cell carcinoma (LUSC) is an important task
in diagnosis and treatment planning. Manually classifying these WSIs is a laborious and subjective task that is often complicated by poorly differentiated
tissue structures within the slide. Automated classification of WSIs may facilitate the analysis of non-small cell lung cancers. This paper proposes a new
3-class network for effective classification of tissue regions within aWSI. It uses a modification of the ResNet50 architecture, ResNet32 to create probability
maps of LUAD/LUSC/non-diagnostic pixels in theWSI. Features from these probabilitymaps are next extracted and fed into a random forest classifier for the
final classification. Themodel achieves the greatest accuracy of 0.81 in the Computational PrecisionMedicine Challenge and provides a newmethod of clas-
sification for non-small lung cancer histological images.
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Categorization:
Keywords Non-small cell lung cancer, histology image classification, computational pathology, deep learning
Organ Application Organ: Lung

Task: Classification between non-small cell lung cancer types
Dataset Compilation Name: Computational Precision Medicine at MICCAI 2017

Availability: Unavailable, link on MICCAI 2017 website unreachable
Dataset Size: 64 WSIs
Image Resolution: 20 magnification
Staining Type: H&E
Annotation Type: Pixel-level and Slide-level
Histological Type:
• At pixel-level, classifies as lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and non-diagnostic (ND)
• At slide-level, LUAD or LUSC
Label Structure: Single label
Class Balance: Balanced dataset at the slide level, 32 LUAD and 32 LUSC

Technicality Model:
• Ensemble ML model
• Variant of ResNet50, called ResNet32 with 32 layers and 3x3 kernel, as compared to 7x7 kernel with ResNet50.
• 50 statistical and morphological features extracted from probability maps generated by ResNet32. The top 25 are selected for best class separability and
used as input to a random forest.

Training Algorithm: Separately staged, ResNet32 creates probability maps, then random forest generates final prediction for each WSI
Code Availability: Unavailable

Data Processing Image Pre-processing:
• Splicing of slides into 256 256 patches, then random cropping into 224 224 patches
• Reinhard stain normalization
• Random crop, flip, rotation data augmentation
Output Processing: N/A

Performance Summary Evaluation Metrics: Accuracy
Notable Results:
• ResNet32 with Random Forest achieves 0.81 accuracy over WSI
• Results superior to ResNet32 with Maximum Vote, which had 0.78 accuracy. Features for the random forest are tailored for WSI classification, and so can
achieve higher performance.

Comparison to Other Works: Compared ResNet32 to VGG, GoogLeNet, and ResNet50, with higher average classification accuracy.
Novelty Medical Applications/Perspectives: Automated distinguishing of LUAD tissue from LUSC could be done at scale to assist pathologists in diagnosis and

treatment planning for patients.
Technical Innovation:
• First 3-class network for classification of WSI into diagnostic/nondiagnostic areas
• Ensemble method resulted in greatest accuracy at the MICCAI 2017 competition.

Explainability Visual Representations: Probability maps for each pixel-level class
Clinical Validation Usage in Clinical Settings: N/A

Suggested Usage: Automated distinguishing of LUAD and LUSC slides could aid pathologists in treatment planning.
Performance Comparison: N/A

Caveats and
Recommendations

• Because features for random forest training are chosen based on categorization of lung tissue samples, may not be able to generalize well to other tissue
types.
Citation:
@inproceedings{graham2018classification,
title={Classification of lung cancer histology images using patch-level summary statistics},
author={Graham, Simon and Shaban, Muhammad and Qaiser, Talha and Koohbanani, Navid Alemi and Khurram, Syed Ali and Rajpoot, Nasir},
booktitle={Medical Imaging 2018: Digital Pathology},
volume={10581},
pages={327–334},
year={2018},
organization={SPIE}
}

Paper: Digital pathology and artificial intelligence (Review)
Summary:

The advent of cheaper storage solutions, faster network speed, and digitizedWSIs has greatly facilitated the presence of digital pathology in modern pa-
thology. Particularly,WSIs allow for the development and integration of automated AI tools for histopathological analysis into the pathologist’s workflow.AI
tools have the potential to increase the efficiency of diagnostics and improve patient safety and care. However, histological analysis comeswith several chal-
lenges, including the large size, different potential image magnifications, presence, and variation of stain color information, and z-axis information (in the
thickness of the slide). These challenges make it difficult for a human viewer to extract all available information and provide important issues that an AI tool
must overcome. This paper outlines several different areas in which AI may be applied in digital pathology, namely education, quality assurance (QA), clin-
ical diagnosis, and image analysis. The potential uses are outlined as follows:
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• Education: Through the digitization of slides, education can be enhanced. As slides no longer need to be viewed through a microscope, and images can be
zoomed into and panned, convenience can be increased without sacrificing the quality of education. Synthetic tissue sample images using GANs can be
used to easily create test material in trainees, as well as evaluate cognitive biases in practicing pathologists.

• Quality Assurance: Can help pathologists remain updated in their field and check for lab proficiency of diagnoses, as well as monitor for inter-observer
variance.

• Clinical Diagnosis: AI can aid in the preparation of digital slide imagery, such as in reducing the frequency of out-of-focus areas in slides. Color and stain
normalization methods using AI-based models are another possible area of application.

• Image Analysis: AI can be used to process the data, including in nuclear segmentation and ROI detection.

AI systems have several different limitations. AI models have been criticized as being black box models. Explainability of decisions will need to be in-
creased. While visualization techniques are being developed, these tend to reduce performance. Additionally, regulatory and economic effects of AI-
based systems are unknown at this time. Some areas of future research for AI applications in computational pathology include one-shot learning and rein-
forcement learning.

Citation:
@article{niazi2019digital,
title={Digital pathology and artificial intelligence},
author={Niazi, Muhammad Khalid Khan and Parwani, Anil V and Gurcan, Metin N},
journal={The lancet oncology},
volume={20},
number={5},
pages={e253–e261},
year={2019},
publisher={Elsevier}
}
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