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Application of fungi as biological control 
strategies for nematode management 
in horticultural crops
Mati Ur Rahman1, Xiaomin Zhong1, Muhammad Uzair2 and Ben Fan1*   

Abstract 

Plant-parasitic nematodes are a major problem for horticultural production, causing significant economic losses. 
Chemical nematicides are a common nematode control strategy but can negatively impact the environment 
and human health. In this review, we provide an overview of the use of fungi for the biological control of plant-
parasitic nematodes in horticultural crops. Fungal bio-control represents an alternative, environmentally friendly 
strategy for managing nematodes. The use of fungi for the bio-control of nematodes has gained increasing attention 
due to the potential benefits of selectivity, sustainability, and long-term control. Here, we discuss the different types 
of fungi used for nematode management, the mechanisms of their action, the advantages and limitations of using 
fungi for bio-control, and the factors affecting their efficacy. Additionally, we provide several case studies of fungal 
bio-control against root-knot, cyst, and lesion nematodes in horticultural crops. The review concludes with a discus-
sion of future directions and research recommendations for implementing fungal bio-control in horticultural crops.

Keywords Fungi, Biological control, Nematode, Horticultural crops, Long-term control

Background
Plant nematodes are the most common phytopathogens, 
comprising 80–90% of eukaryotic soil microbiota (Rueda-
Ramírez et al. 2022; Khan 2023). They can, however, also 
seriously harm crops, causing large losses for the agricul-
tural and horticulture sectors. Over 4100 plant-parasitic 
nematodes (PPN) species have been found. A few genera 
are major plant pathogens, whereas others affect a lim-
ited range of crops and significantly impact economi-
cally important crops. Plant nematodes are suspected of 
being responsible for a forecasted 12.3% ($157  billion) 

decrease in worldwide output. Crop roots are infected 
by plant-parasitic nematodes, which feed on the root tis-
sues and interfere with the intake of nutrients and water 
(Sikder and Vestergård 2020). This may cause wilting, 
yellowing, stunted growth, and lower yields. The impact 
of nematode damage on crops is exacerbated by the fact 
that some nematode species are also plant virus vectors 
(Hoysted et al. 2017; Desmedt et al. 2020).

Numerous nematode management techniques have 
been developed for the long-standing recognition of 
nematodes’ negative effects on crops and soil health. The 
potential viability of these tactics may be compromised 
due to their economic inefficiency, as well as the potential 
loss of resistance over time. This resistance is attributed 
to the significant diversity seen in the parasitism genes of 
nematodes, along with the ongoing challenge of identify-
ing plant nematode resistance genes. The use of chemi-
cal nematicides, which have historically been utilized to 
control nematodes, is being questioned more and more 
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because of worries about the effects on the environment 
and the emergence of resistance (Desaeger et  al. 2020; 
Poveda et al. 2020; Sasanelli et al. 2021). The suppression 
of cyst nematode populations can be achieved by using 
many taxonomically varied antagonistic fungi widely 
distributed throughout the fungal kingdom. This accu-
mulation of fungi can ensnare and parasitize nematodes 
(Nordbring-Hertz et  al. 2001; Saxena 2018). A specific 
subset of these fungi, known as egg parasites, exhibits a 
parasitic relationship with stationary PPNs by targeting 
their eggs and female individuals. This sub-group infects 
the host using individual hyphae or specialized infection 
structures such as the appressoria (Ashrafi et  al. 2017). 
The female individuals of cyst nematodes provide a viable 
target for possible assault by nematophagous fungi. Dur-
ing nematode development, an immature female destroys 
the roots, matures, lays eggs, and eventually dies as a 
cyst; this cyst can persist in the soil as an infective agent 
for several years without a host plant. This procedure 
results in an extended duration of female and cyst nema-
todes being subjected to various species of egg-parasitic 
fungi (Ashrafi et al. 2017; Haj Nuaima et al. 2021).

A number of these fungi have been shown to exhibit 
a multifunctional lifestyle in the context of interactions. 
Some fungi (Lecanicillium lecanii, Pochonia chlamydo-
sporia, and Purpureocillium lilacinum) exist as endo-
phytes of the host plant while also acting as pathogens 
for nematodes or insects (Schouten 2016). Some other 
species of fungi (Exophiala pisciphila and Pyrenochaeta 
terrestris) parasitize the nematode eggs (Chen and Chen 
2002). Recent studies reported the endophytic fungi 
Exophiala salmonis and Polydomus karssenii from the 
roots of Paris polyphylla and E. radices from the roots 
of Microthlaspi perfoliatum (Wang et  al. 2013; Maciá-
Vicente et al. 2016; Ashrafi et al. 2023). Similarly, Polyphi-
lus frankenii and Polyphilus sieberi have been used as 
nematode antagonistic fungi (Wennrich et al. 2023). Two 
new species under consideration are Laburnicola nemat-
ophila and L. radiciphila, which show endophytic inter-
actions with plant roots and parasitic interactions with 
nematode eggs (Knapp et al. 2022). Consequently, there is 
an increasing interest in developing ecologically accepta-
ble and sustainable strategies for nematode control, such 
as bio-control employing fungi and other soil bacteria 
(Abd-Elgawad and Askary 2018; Bhat et al. 2023). In this 
review, we will examine the role of fungi in controlling 
nematodes in soil and crops, explore the mechanisms of 
nematocidal action, and discuss the advantages and limi-
tations of using fungi for nematode management.

Lifecycle of nematodes and their damage to crops
Nematodes are a highly diverse and abundant group of 
organisms that belong to the phylum Nematoda. The life 

cycle of nematodes is a complex process that comprises 
several stages, including one embryonic stage, four to five 
larval phases, and an adult stage (Fig.  1). The body size 
of larvae grows with each molt, finally attaining sexually 
mature adult size. First is the egg stage, during which the 
adult nematode reproduces sexually or asexually, laying 
eggs that are either fertilized or unfertilized. The eggs of 
nematodes are typically small, oval-shaped, and covered 
in a protective layer (Mathison and Pritt 2018). Second 
is the larva stage, during which the eggs hatch into lar-
vae, which emerge from the egg as small, worm-like 
organisms. The larvae have a body structure similar to 
that of the adult nematode but smaller in size. They may 
go through several molts before reaching the next stage 
(Poinar 2012). Third, as the larvae continue to grow, they 
eventually reach the juvenile stage. During this stage, the 
larvae mature into young adult nematodes. This stage is 
characterized by the development of reproductive struc-
tures and the ability to reproduce (Hand et al. 2016; Karp 
2021). In the final stage of the life cycle, the adult nema-
tode reproduces and lays eggs, starting the cycle again 
(Mkandawire et al. 2022). The adult nematode is respon-
sible for perpetuating the species and maintaining the 
population. In addition to these stages, some species have 
additional life cycle stages, such as the infective stage. 
This stage occurs in parasitic nematodes and is charac-
terized by the development of specialized structures 
(white cysts and crystal structure) that allow the nema-
tode to infect its host and reproduce (Gang and Hallem 
2016; Vlaar et al. 2021).

Many nematodes can cause significant damage to hor-
ticultural crops, such as vegetables, fruits, and ornamen-
tal plants (Table 1). Numerous ways exist for nematodes 
to destroy crops. Some nematode species are plant para-
sites that feed on crop roots, damaging the root system 
and impairing the plant’s capacity to absorb water and 
nutrients, leading to the plant’s eventual death (Pulavarty 
et  al. 2021). Some other nematode species can result in 
the establishment of galls, which are swollen, deformed 
growths that appear on the roots or stems of crops. Galls 
prevent plants from absorbing water and nutrients, 
which causes stunted growth and decreases yields (Ber-
nard et  al. 2017). Additionally, some species of nema-
todes act as vectors, transmitting plant pathogens from 
one plant to another and causing soil-borne diseases that 
reduce crop yields and lead to plant death (Gamalero and 
Glick 2020; Wielkopolan et al. 2021).

Fungi as biological control agents
Bio-control is a strategy used to manage pests and dis-
eases in agriculture and horticulture by utilizing natural 
predators and pathogens to control pest populations. In 
the context of managing nematodes, bio-control refers to 
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Fig. 1 The general life cycle of nematodes under various environments
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the use of nematode-trapping fungi, bacteria, and other 
nematode-parasitic organisms (Table  2). Nematodes are 
preyed upon by these natural predators, which lower 
their population and limit crop damage (Nyaku et  al. 
2017; Liang et al. 2019; Zhang et al. 2020). Incorporation 
of fungi into cropping systems can be an effective way to 
reduce nematode populations and improve plant health 
(Collange et al. 2011). Fungi have adopted several differ-
ent mechanisms against nematodes.

Direct mechanisms employed by fungi to combat 
nematodes
There are reportedly over 100,000 species of fungi, and 
there are undoubtedly many more that have yet to be 
found and identified. Among them, a small group of 
microfungi that can capture, kill, and digest nematodes 
are called nematophagous fungi (NF) (Nordbring-Hertz 
et  al. 2001). They live on the exterior or interior of the 
host organism, exploiting it for nutrition. Nematopha-
gous fungi are crucial agents that balance the nematode 
population by parasitizing, capturing, and poisoning in 
the natural world. They use particular traps for catch-
ing, conidia for adhering, and hyphae tips for parasitizing 
females and eggs or generating toxins to attack nema-
todes (Fig.  2). On this basis, the NFs have been tradi-
tionally categorized into four groups: (1) predatory fungi 
use specialized structures, (2) egg parasitic fungi invade 
nematode eggs or females with their hyphal tips, (3) 
endoparasitic fungi use their spores, and (4) toxin-pro-
ducing fungi immobilize nematodes before invasion (Liu 
et al. 2009; Abd-Elgawad and Askary 2018; Rahman et al. 
2023). G protein-coupled receptors are the most com-
mon conserved signaling pathway involved in trap for-
mation in response to several environmental stimuli. The 

G protein β subunit gpb1 mutant in C. elegans exhibits 
impaired functionality, particularly affecting trap forma-
tion (Li et  al. 2007; Yang et  al. 2020). G protein recep-
tors coordinate with mitogen-activated protein kinases 
(MAPK) in trap formation. One of MAPK cascade SLT2 
was found to be involved in trap formation in filamen-
tous fungi A. oligospora (Zhen et  al. 2018). The cAMP-
dependent protein kinase A signaling pathway is also 
involved in trap formation. The downstream genes of the 
cAMP/PKA pathway were downregulated in ras2 and 
rheb mutants (Yang et al. 2021).

Predatory fungi
Predatory fungi use specialized hyphal structures as traps 
to capture nematodes (Fig. 3). The nematode’s cuticle is 
damaged by the traps produced by the mycelium of the 
fungi. The hyphae spread throughout the interior of the 
worm body and create a penetration peg. Eventually, the 
hyphae develop over the exterior of the colonized nema-
todes (Nordbring-Hertz et al. 2001). Adhesive branches, 
adhesive networks, adhesive knobs, constricting rings, 
and non-constricting rings are all structures (Fig. 3) used 
by the trapping fungi to entrap nematodes (Jiang et  al. 
2017). Compared to regular hyphae, adhesive traps have 
a longer lifespan (Bedekovic and Brand 2022). These 
structures (traps) are used by over two hundred species 
of fungi (spread among the Zygomycota, Basidiomycota, 
and Ascomycota) to catch free-living nematodes in soil 
(Liu et  al. 2009). More than 80% of the nematode-trap-
ping fungi in the Ascomycota belong to the Orbiliaceae 
family; however, due to relatively inadequate isolation 
and culture methods, nematode-trapping fungi within 
Zygomycota have not been well studied (Saikawa 2011).

Table 1 Prevalence and diversity of nematode-induced diseases in horticultural crops

Nematode
disease

Scientific
name

Affected
crops

Symptoms References

Root knot nematode Meloidogyne spp. Tomato, pepper, cucumber, 
eggplant, beans, melons, 
squash, and many other 
crops

Stunted growth, yellowing 
of leaves, wilting, root galls

(Philbrick et al. 2020; 
Sikandar et al. 2020; Hajji-
Hedfi et al. 2022)

Citrus nematode Tylenchulus
semipenetrans

Citrus trees Stunted growth, yellowing 
leaves, root damage, fruit 
drop

(Verdejo-Lucas and McK-
enry 2004; Nasir et al. 
2021)

Northern root knot nema-
tode

Meloidogyne hapla Carrots, beets, parsnips, 
lettuce, spinach, onions, 
and other crops

Stunted growth, reduced 
yield, root galls

(Hussain and Zouhar 2017)

Columbia lance nematode Hoplolaimus columbus Turfgrass, ornamentals, 
vegetables

Stunted growth, chlorosis, 
root damage

(Garcia et al. 2022)

Sting nematode Belonolaimus longicaudatus Sweet potato, turfgrass, 
strawberry

Root damage, plants become 
stunted, wilt, and with a 
severe infestation, die.

(Grabau et al. 2022)
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Adhesive branches Adhesive branches, also known 
as adhesive columns, are the simplest trapping organs 
in terms of morphology. These branches consist of one 
to three cells  that simply join to form adhesive rings or 
networks with two dimensions that look like crochet or 
lines. The nematodes are trapped if they come into con-
tact at any point with the  thin adhesive layer that com-
pletely envelops these branches. As these branches are 
often  close together, a nematode will quickly become 
attached to other branches during the struggle  to break 
free. These are typical trapping mechanisms of Mona-
crosporium cionopagum and  Monacrosporium gephy-
rophagum (Saxena 2018). Dactylella cionopaga is the 
most  commonly isolated species from temperate soils 
with sticky branches (Poinar 2012). M.  cionopagum 
produces sticky branches that trap and immobilize the 
sugar beet cyst nematode Heterodera schachtii (Anders-
son et  al. 2014). Similarly, Gamsylella gephyropaga 

produces  adhesive branches to trap nematodes (Zhang 
et al. 2014).

Adhesive hyphal network An adhesive network is a 
highly dispersed trap formed by a vertical lateral branch 
that consists of three-dimensional complex networks and 
develops and grows 20–25 μm from the primary hypha 
(Niu and Zhang 2011). Adhesive networks are formed by 
bending a single lateral branch and can fuse with paren-
tal hyphae. More lateral hyphae are produced from the 
parental hyphae, or the loop is formed to produce more 
loops. Nematodes are attracted to the surface of the net-
work, which is covered with a fine layer of adhesive. A. 
oligospora is the most common species of fungi found to 
form this type of trapping structure worldwide (Wang 
et al. 2023).

Fig. 2 Mechanism of fungi as a bio-control against nematodes. Dendritic cell activating receptor (DCAR1), a part of the defense mechanism, 
is a G protein-coupled receptor that binds to endogenous ligand 4-hydroxyphenyl lactic acid (HPLA), which activates G12 α protein. This protein 
undergoes activation via the conserved p38 mitogen-activated protein kinase (MAPK) pathway to produce antimicrobial peptides released 
in the epidermis of the nematode (Zugasti et al. 2014)
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Adhesive knobs Adhesive or sticky knobs are mor-
phologically unique cells covered with an adhesive 
film. When the nematode comes into contact with the 
adhesive mass, which has formed a thick pad, the fun-
gus takes over, significantly increasing the attachment 
area and ensuring that the captured nematode is firmly 
bound. The penetration of fungus into the nematode 
body is a combination of enzymatic and physical activ-
ity. For example, the synthesis of collagenase may help 
the fungus to penetrate the nematode’s cuticle, but the 
added strength and hardness of attachment provided 
by the thick sticky pad is necessary if the penetrating 
hyphae are to reach the cuticle (Poinar 2012). Assimila-
tive hyphae then emerge from the newly formed globular 
infection bulb to consume the nematode’s internal organs 

(Bahadur 2021). Dactylellina arcuata, D. copepodii, Dac-
tylella asthenopaga, and D. ellipsospora produce adhesive 
knobs to capture nematodes (Jiang et al. 2017). Similarly, 
All Basidiomycota-trapping fungi use spores and adhe-
sive knobs (Thorn et al. 2000).

Non‑constricting rings Non-constricting rings are 
three-celled rings that grow on a slender support stem 
from prostrate septate hyphae. They are passive in the 
process of nematode predation. The point of contact 
between the stalk and the ring was found to be weak-
ened during the nematode’s struggle to escape, and the 
ring often breaks off, suggesting that the fungus wants 
the captured nematode to escape with the non-constrict-
ing ring, which is tightly wrapped around the prey body. 

Fig. 3 Predatory fungi employ different morphological structures to capture nematodes. Two types of traps (adhesive and non-adhesive) are 
usually used by fungi
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This appears to be a preferred method of achieving wide 
dispersal in the soil (Poveda et al. 2020). Fungi that pro-
duce non-constricting rings, such as Dactylaria candida 
and Dactylella lysipaga, often form sticky knobs and 
capture nematodes through non-constricting rings (Wu 
et  al. 2012). A similar pattern has been observed with 
Drechslerella daliensis (Su et al. 2008).

Constricting rings Constricting rings are circu-
lar hyphal branches, usually consisting of three cells. 
They are the most sophisticated traps and actively cap-
ture prey. When a nematode enters the ring, the three 
cells quickly triple their volume, seal the ring, and hold 
the nematode in place. Hyphae then enter the body and 
consume the nematode (Liu et  al. 2012). The volume of 
the cells forming the ring is likely to increase as a result 
of rapid water uptake (Feng et al. 2016). The mega-traps 
of D. brochopaga mutants are rings eight times the size 
of normal traps, and it was found that each cell releases 
drops of fluid at the expense of cell volume (Liu et  al. 
2012). Water from the atmosphere can easily move in 
and out of these cells by changing the relative humidity 
of the environment. There is also a relationship between 
the ambient humidity and the frequency of ring closures. 
It has been investigated that the water source is mainly 
exogenous, although it is initiated by stem cells or myce-
lium (Liu et al. 2022). This view is supported by the dis-
covery that rings can continue to spread effectively even 
after being detached from the initial source (stem) over 
which they first developed (Barron and Thorn 1987). 
Moreover, there was no visible movement of intracellular 
components after stalk cell closure, suggesting that water 
is reserved for the atmosphere. This hypothesis is reason-
able, as live worms are typically covered by a thin layer 
of water, which may provide sufficient fluid for ring clo-
sure. In addition to physical methods of inflation, chemi-
cal induction of ring closure has also been observed in D. 
brochopaga (Dowsett et al. 1977), whose traps expanded 
within 10 to 15 seconds when cultures of this fungus 
were exposed to solutions containing methanol, ethanol, 
propanol, butanol, or chlorobutanol vapor. On the other 
hand, benzene, ether, and chloroform had no effects, 
suggesting that some unknown factors controlled this 
extraordinary event (Zachariah 1989). Twelve species of 
hyphomycetes have been identified as forming constrict-
ing rings, varying in size from 20 to 40 μm internal diam-
eter (Poinar 2012).

Egg and female parasitic fungi
These fungi use appressoria, lateral mycelial branches, 
and penetrating pegs to parasitize eggs, females, and 
other growth stages of PPNs (Lopes et  al. 2021). The 

parasitism of ten isolates of Pochonia chlamydosporia 
was assessed in vitro against the eggs of Globodera pal-
lida, with pathogenicity ranging from 34 to 49%. Impul-
sive hatching was observed when P. chlamydosporia 
isolates parasitized immature eggs more aggressively 
than eggs with second-stage juveniles. The efficacy of 
Beauveria bassiana 08F04 on Heterodera filipjevi in vitro 
was investigated, and significant differences in growth 
rate and bio-control potential were found between some 
of the transformants, mainly G10. Also, the use of wild-
type Beauveria bassiana 08F04 and transformant G10 
significantly minimized the population of cereal cyst 
nematodes (female) in the roots (Zhang et al. 2020). Sim-
ilarly, in a greenhouse experiment, the AMF Glomus etu-
nicatum on Heterodera glycines caused a 28% reduction 
in female nematodes in the root systems of mycorrhizal 
plants, compared to the untreated roots, suggesting that 
G. etunicatum encourages host plants to tolerate the 
presence of the soybean cyst nematode (SCN) (Benedetti 
et al. 2021).

Endoparasitic fungi
Endoparasitic fungi produce spores (conidia, zoospores) 
to infect nematodes. The spores either are ingested by 
nematodes or adhere to the nematode epidermis before 
the infection (Braga and de Araújo 2014; Zhang et  al. 
2020). Drechmeria coniospora is a nematode-aggressive 
endoparasitic fungus. The strain YMF1.01759 had high 
infection efficiency against nematodes. It inhibited egg 
hatching, infected nematodes with spores, and produced 
active metabolites to kill nematodes (Wan et al. 2021). In 
greenhouse experiments, D. coniospora can reduce the 
number of root-knot nematodes forming galls on toma-
toes and alfalfa (Liu et al. 2009; Wan et al. 2021). Studies 
have shown variation in the number of conidia produced 
by fungi on a single infected nematode. D. coniospora 
fungi produce a large number of conidia compared to 
hyphal material, which produces 10,000 conidia, and Hir-
sutella rhossoliensis produces 100–1000 conidia on each 
infected nematode. Upon infection, conidia rapidly gemi-
nate, and assimilative hyphae grow and ultimately pen-
etrate the outer layer of nematodes and enter their body.

Toxin production
Some nematophagous fungi produce toxins that kill nem-
atodes. Toxin-producing fungi come from a wide range 
of orders and families. The fungus attacks nematodes 
without physical contact by secreting inhibitory metabo-
lites. Once the nematodes immobilized, the hyphae pen-
etrate their cuticle. Fungi that produce toxins are mostly 
basidiomycetes. Many Pleurotus species produce toxins 
with nematotoxic activity. For example, P. ostreatus pro-
duces trans-2-decanoic acid, a compound derived from 
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linoleic acid that is toxic to insects, nematodes, and 
other fungi. It is important to note that basidiomycetes 
are not the only fungi that produce such toxins; certain 
fungi produce toxins that are harmful to nematodes but 
are not nematophagous. These compounds have a wide 
range of chemical properties, including simple fatty acids 
and other organic acids such as lactone pyrones, anth-
raquinones, benzoquinones, alkaloids, furans, peptaibi-
otics, and cyclodepsipeptides. The mechanisms of these 
toxins against nematodes are diverse and multifaceted, 
as shown by recent studies on the basidiomycetous fungi 
(Coprinus comatus and Stropharia rugosoannulata) (Luo 
et al. 2006).

Enzymes of NF
Physical barriers are present in the composition of 
nematodes, protecting them from the activities of natu-
ral predators (Ekino et  al. 2017). NF can overcome this 
barrier by penetrating the nematode cuticle and egg-
shell using mechanical and enzymatic (protease and chi-
tinase) means (Liang et al. 2010). There is an abundance 
of proteins belonging to these enzymes. The key enzymes 
involved in cuticle degradation are alkaline and neutral 
serine proteases, which catalyze the hydrolysis of the 
peptide bonds of cuticle proteins (Rao et al. 1998). Serine 
proteases hydrolyze peptide bonds by using a specifically 
triggered serine residue in the substrate-binding pocket 
(Siezen and Leunissen 1997). Alkaline serine protease 
induced cuticle destruction within hours and inhibited 
the nematode Panagrellus redivivus (Yang et  al. 2005). 
Neutral serine protease produced by A. oligospora can 
control Haemonchus contortus and Caenorhabditis ele-
gans in  vitro (Junwei et  al. 2013). High levels of serine 
protease produced by the fungus Monacrosporium thau-
masium are destructive to Meloidogyne javanica eggs (de 
Souza Gouveia et al. 2017). Serine protease is, therefore, a 
vital enzyme in the fungus-initiated infection process. In 
addition, the shell of nematode eggs is rich in chitin and 
proteins. Endochitinases and exochitinases catalyze the 
hydrolysis of glycosidic linkages between the N-acetyl-
glucosamine groups of chitins (Tikhonov et  al. 2002). 
M. thaumasium is an NF that produces chitinases and 
showed nematocidal activity against the nematode Pana-
grellus redivivus (de Freitas Soares et  al. 2014; Soares 
et  al. 2015). Furthermore, these enzymes have shown 
nematocidal activity alone in the absence of fungi (Soares 
et al. 2015). Thus, chitinases also play an important role 
in infection and the digestion of shells (Khan et al. 2004).

Fungal‑induced defense against nematodes
Some fungal species, such as Trichoderma, mycor-
rhizal, and endophytic fungi, can induce plant resist-
ance against nematodes. This is an indirect mechanism 

that fungi mitigate the harm caused by plant-parasitic 
nematodes (Martinez-Medina et  al. 2016; Kubicek et  al. 
2019). Trichoderma’s alteration in transcripts, pro-
teins, and metabolites leads to systemic defense stimu-
lation, enhancing the plant’s immunological response 
for quicker reactions to future pathogen attacks. As a 
result, the likelihood of the disease spreading is reduced 
(Mendoza-Mendoza et al. 2018). This induced systematic 
resistance (ISR) is controlled by the hormone (JA/ET/
SA) signaling pathways (Fig.  4). SA signaling is reduced 
during the first phases of M. javanica infection in tomato 
roots. Conversely, the response mediated by JA/ET is 
stimulated in tomato roots treated with the fungus, sug-
gesting that Trichoderma triggers the activation of ISR 
inside the plant (Martínez-Medina et al. 2017). However, 
new research has shown that the SA route plays an active 
role in this regulation (Jogaiah et al. 2018).

Mycorrhizal fungi can also activate ISR in plants, pro-
tecting against nematodes, as evaluated by multiple stud-
ies (Vos et al. 2012a; Xu et al. 2019). The introduction of 
Funneliformis mosseae to tomato roots decreased infec-
tion rates of M. incognita and Pratylenchus penetrans by 
modifying the release of substances from the roots. These 
mechanisms involve the activation of specific genes 
responsible for encoding chitinases, PR (pathogenesis-
related) proteins, enzymes that aid in the detoxification 
of ROS (which accumulate due to nematode-induced 
cell hypertrophy and death), such as glutathione S-trans-
ferase and superoxide dismutase (SOD) (Sharma and 
Sharma 2017; Balestrini et  al. 2019). Similarly, the split 
root system methodology has been utilized to study sys-
temic resistance caused by endophytic fungi, such as F. 
oxysporum against M. incognita in tomatoes and bananas 
against Radopholus simili (El-Fattah Adnan Dababat 
and Alexander Sikora 2007; Martinuz et  al. 2015). Root 
nematodes may be effectively controlled with the help of 
bio-control microorganisms. The endophytic fungi that 
possess the ability to produce nematotoxic metabolites 
have significant promise as viable biocontrol agents. By 
lowering nematode penetration, postponing develop-
ment, or limiting reproductive potential, these fungi can 
efficiently inhibit and suppress nematodes (Grabka et al. 
2022). Endophytic fungi such as Acremonium scleroti-
genum (Yao et  al. 2023), Neotyphodium coenophialum 
(Choi et  al. 2022), and Chaetomium globosum (Bairwa 
et  al. 2023) play pivotal roles in regulating nematode 
pathogenesis in various crops. The fungi and nematodes 
compete for space and nutrients in the soil as both are 
required for survival. Metabolites released by plants are 
also overtaken by fungi and nematodes for their survival. 
Nematodes do not decompose organic matter but act as 
parasites for plants, while fungi decompose organic mat-
ter available to plants (Brady et al. 2008). The plants take 
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deep roots to allocate carbon and other nutrients to hori-
zontal soil volume (Iversen et al. 2011).

Biological control against nematodes in horticultural crops
Fungal bio-control has been studied and applied in vari-
ous horticultural crops with promising results. Many 
notable case studies have been reported. For example, the 
application of certain fungi P. lilacinus in tomatoes can 
effectively reduce populations of root-knot nematodes, 
resulting in improved plant growth and yield (Moreno-
Gavíra et  al. 2020; Giri et  al. 2022). In another study of 
tomatoes, a strain of the fungus Verticillium chlamydo-
sporium has been found to control root-knot nematodes 
effectively. This fungus colonizes the roots and nematode 
galls, reducing the nematode population and improving 
plant health. One study showed that the application of 
the fungal species T. harzianum and Gliocladium virens 
in tomato crops reduced root-knot nematode popula-
tions and improved plant growth and yield (Khan et  al. 
2022; Tyśkiewicz et al. 2022). Additionally, Phanerochaete 
chrysosporium has been used to control the population 
of nematodes (Du et al. 2020). In carrots, the use of the 
fungus G. virens has been shown to reduce populations 

of dagger nematodes, resulting in healthier and more 
productive crops (Villate et al. 2012). Similarly, in straw-
berries, the application of fungal bio-control agents 
(Aureobasidium pullulans) has effectively reduced popu-
lations of root-lesion nematodes, leading to improved 
plant growth and fruit yield (Hong et al. 2022). Thus, the 
application of the fungus can significantly reduce nema-
tode populations and improve plant growth and yield.

In controlling cyst nematodes, the fungus P. lilacinum 
has been shown to infect and parasitize the nematode 
eggs, effectively reducing the hatching rate and nema-
tode population in the soil (Rumbos et  al. 2008). The 
fungal species H. rhossiliensis has been shown to con-
trol potato cyst nematodes (Gartner et al. 2021; Dubovs-
kiy et  al. 2023). In ornamental crops, such as roses and 
chrysanthemums, strains of the fungus P. lilacinum have 
been found to control root-knot nematodes effectively 
(Sánchez and Cardona 2018).

Fungal control against root‑knot nematodes
Root-knot nematodes are one of the most destructive 
plant-parasitic nematode species, causing extensive dam-
age to root systems and reducing crop yields. The fungus 

Fig. 4 Mechanisms of Trichoderma, mycorrhizal, and endophytic fungi benefiting plants against nematodes. JA (Jasmonic acid), SA (salicylic acid), 
IAA (indole-3-acetic acid), and EA (ethyl acetate) are hormones released, and SOD (superoxide dismutase) and PAL (phenylalanine ammonia-lyase) 
are enzymes released by plants due to the expression of pathogenesis-related (PR) genes as a result of plant and fungi association which protect 
the plant against nematodes. Plants provide metabolites, and the fungi and nematodes compete against each other for nutrients, water, and space 
in the soil
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Metarhizium anisopliae has been shown to effectively 
control root-knot nematodes in tomato, cucumber, and 
eggplant crops (Youssef et al. 2020; Panyasiri et al. 2022). 
Besides, P. lilacinum is commonly used to control root-
knot nematodes in tomatoes, pepper, and cucumber 
(Osman et  al. 2020), and Verticillium lecanii has been 
shown to suppress root-knot nematodes in several veg-
etable and ornamental crops (Uddin et  al. 2023). Addi-
tionally, several Trichoderma species have been used to 
suppress root-knot nematodes in tomatoes and other 
crops (d’Errico et  al. 2022); Coniothyrium minitans has 
been successfully used in several crops, including toma-
toes, cotton, and peanuts (Forghani and Hajihassani 
2020); Pasteuria penetrans species, which can infect the 
root-knot nematode larvae and form spores inside the 
nematode body (Kariuki and Dickson 2007), has been 
demonstrated to be efficient at lowering root-knot nema-
tode populations in crops like tomatoes, peppers, and 
cotton. The genus Arthrobotrys spp., containing numer-
ous species that produce sticky traps to capture and 
eliminate root-knot nematodes, has been demonstrated 
to lower nematode numbers in crops like tomatoes and 
cotton (Philbrick et al. 2020).

Fungal control against cyst nematodes
Cyst nematodes cause severe economic loss and are a 
pest of several crops worldwide. Fungus bio-control has 
also been used to suppress cyst nematode populations, 
G. virens have been used for bio-control of cyst nema-
todes in a variety of crops, including potato, cotton, and 
soybean. Trichoderma species can reduce populations 
of cyst nematodes in crops such as tomatoes and cotton 
(Khan et al. 2022; Mhatre et al. 2022). Penicillium funicu-
losum has also been used to reduce populations of cyst 
nematodes in tomato and cucumber crops (Martinez-
Beringola et  al. 2013). Other examples include Pythium 
oligandrum, which has been used for bio-control of cyst 
nematodes in crops such as tomato and cotton (Luca 
et al. 2022), Coniothyrium minitans in crops such as soy-
bean and potato (Sun et al. 2022), Hirsutella minnesoten-
sis in crops such as soybean and potato (Sun et al. 2015), 
and Metarhizium anisopliae in a variety of crops includ-
ing cotton, soybean, and tomato (Liu et al. 2022).

Fungal control against root‑lesion nematodes
The majority of root-lesion nematodes’ habitat is within 
plant roots, making them difficult biological control tar-
gets (Stirling 1991). However, using biological control 
of nematodes in potatoes is promising, although its use 
in agriculture is restricted, and its efficacy is unknown 
(Palomares-Rius et  al. 2014). Several “trapping” fungi 
have been studied for their potential biological control 
of P. penetrans, including A. oligospora, H. rhossiliensis, 

Monacrosporium ellipsosporum, Verticillium balanoides, 
Drechmeria coniospora, and Nematoctonus spp. that 
produce adhesive conidia; however, only H. rhossiliensis 
(24–25% reduction of population) has proven to be suc-
cessful in potatoes (Timper and Brodie 1993). In a dif-
ferent investigation, H. rhossiliensis similarly suppressed 
nematode penetration, resulting in a 25% reduction in P. 
penetrans penetration of potato roots (Timper and Brodie 
1994). Similarly, the quantity of Pratylenchus brachyurus 
per gram of root in pineapple was considerably reduced 
by the arbuscular endomycorrhizal Glomus spp. injected 
with pineapple microplants (Guillemin et  al. 1994). 
Another study examined the effects of AMF on nema-
todes. Potted apple seedlings were modified with several 
AMF species in the presence of nematode P. penetrans. A 
positive relationship was found between the percentages 
of root length when colonized by AMF species, while a 
significant reduction of nematodes in the soil of the apple 
seedlings was observed (Ceustermans et al. 2018). Addi-
tionally, the development of carrots was inhibited by 
the root-lesion nematode P. penetrans; however, the soil 
densities of P. penetrans were reduced by 49% through 
soil inoculation with Glomus spp. spores (Talavera et al. 
2001), and similarly, G. mosseae systematically reduced 
the soil densities of P. penetrans in tomatoes (Vos et  al. 
2012b). Moreover, AMF mitigated the damage caused by 
Pratylenchus coffeae to banana cultivars (Musa spp.) in 
their roots (Elsen et al. 2003a, b). These case studies dem-
onstrate the potential of fungal bio-control as a valuable 
tool in managing plant-parasitic nematodes in horticul-
tural crops and suggest that further research and devel-
opment in this field could lead to even more widespread 
adoption of this approach.

Advantages of using fungi for biological control
Using fungi as nematode control agents has several 
advantages over chemical or physical control methods 
(Fig.  5). The advantages of using fungi for bio-control 
include selectivity, environmental safety, long-term effec-
tiveness, sustainability, and compatibility with other 
management strategies, which are discussed separately 
below.

Selectivity and environmental safety
One of the most significant benefits of bio-control is its 
specificity. In contrast to chemical control approaches, 
which can be dangerous to a broad variety of organisms, 
fungi can selectively target and control nematode popu-
lations, lowering the potential of injury to non-target 
organisms such as beneficial microorganisms, insects, 
pollinators, and wildlife (Sandhu et  al. 2012; Gill et  al. 
2014; Sponsler et  al. 2019). This is important because 
these non-target organisms play important roles in soil 
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Fig. 5 Essential mechanisms involved in the biological suppression of plant nematocidal infection by fungal antagonists. Antibodies, enzymes, 
secondary metabolites, nutrients, mycoparasitism, and space are the factors where nematodes and fungi compete with each other and act 
as biological controls for plant safety and development. The advantages of biological control include less pathogen attack, increased resistance 
and stress tolerance, better plant development, reduced agro-chemical inputs, and inhibition of pathogenic enzymes
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health and productivity, such as breaking down organic 
matter, cycling nutrients, and maintaining soil structure 
or other biodiversity. These organisms are expected not 
to be killed by pesticides. Fungal selectivity also helps 
reduce the risk of developing nematode populations 
resistant to bio-control agents (Khan et al. 2022). When 
nematodes are exposed to non-selective nematicides, 
they may develop resistance over time, making it more 
difficult to manage them in the future (Lima et al. 2018; 
Wram et  al. 2022). However, using fungal bio-control 
agents, which are specific to nematodes, it is less likely 
that they will develop resistance. Fungal selectivity is a 
major benefit of using fungal bio-control agents for man-
aging plant-parasitic nematodes (Liarzi et al. 2016). Due 
to the specificity, fungal bio-control agents are generally 
more environmentally friendly than chemical control.

Long‑term effectiveness
Fungal bio-control can provide long-term control of 
plant-parasitic nematodes (Balla et al. 2021), which helps 
reduce the need for repeated applications and improve 
the sustainability of agricultural systems. Fungal bio-
control provides long-term control of plant-parasitic 
nematodes through several mechanisms. First, they can 
persist in the soil for extended periods, allowing them 
to infect and control nematodes continuously over time 
(Usta 2013). This persistence is attributed to the abil-
ity of some fungal species to form resistant structures, 
such as spores and sclerotia, which can survive in the 
soil for long periods. Second, fungal bio-control agents 
can reproduce and spread in the soil, allowing them to 
reach new areas and infect additional nematodes (Lou-
lou et  al. 2022). This reproduction helps maintain and 
increase the population of fungal bio-control agents in 
the soil over time, providing a long-term source of con-
trol for nematodes. Third, fungal bio-control agents can 
induce systemic resistance in plants, helping reduce the 
impact of nematode-feeding damage. By inducing sys-
temic resistance, fungal bio-control agents protect plants 
from future nematode infections and provide long-term 
control of nematodes (Walters et al. 2013; Fontana et al. 
2021). Finally, the integration of fungal bio-control with 
other nematode management strategies, such as cultural 
practices and chemical nematicides, can help to improve 
the efficacy and sustainability of nematode management 
in crops (Devi 2018; Yigezu Wendimu 2021).

Sustainability
Fungal bio-control is economically sustainable, particu-
larly in the long term, as the fungi can persist in the soil 
and control nematode populations over multiple crop-
ping cycles (Dutta et  al. 2019; Forghani and Hajihas-
sani 2020). Additionally, fungal bio-control is often less 

labor-intensive and requires fewer inputs, such as ferti-
lizer, water, and energy, than chemical control (Chaud-
hary et al. 2022). The use of fungi can help maintain soil 
health by preserving soil structure, improving nutrient 
cycling, and promoting the growth of beneficial microor-
ganisms (Chamkhi et al. 2022). Taken together with other 
advantages shown above, fungal bio-control is a sustain-
able management strategy that offers environmental, eco-
nomic, and agronomic benefits.

Compatibility with other management strategies
Fungal bio-control can be combined with other nematode 
management strategies, such as crop rotation, resistant 
varieties, and chemical nematicides. The integration of 
multiple management strategies allows for a more com-
prehensive approach to controlling nematodes, reducing 
the risk of developing nematode populations resistant to 
any single control method (Fourie et al. 2016). For exam-
ple, using a combination of cultural practices, such as 
crop rotation and nematode-resistant varieties, with fun-
gal bio-control can help reduce the nematode population 
in the soil over time (Xiang et al. 2018). Cultural practices 
can help reduce the number of nematodes in the soil, 
creating a less favorable environment for nematode sur-
vival and reproduction, while fungal bio-control agents 
can directly control nematodes and help maintain the 
reduced nematode population (El-Saadony et  al. 2021). 
Another example is the integration of fungal bio-control 
with chemical nematicides. Chemical nematicides pro-
vide quick and effective control of nematodes in the short 
term, while fungal bio-control can help reduce the nema-
tode population over the long term (Abd-Elgawad 2020). 
This combination can help reduce the required chemical 
nematicides (Kawanobe et  al. 2019; Gowda et  al. 2022). 
Finally, fungal bio-control agents can also be used with 
biostimulants, such as compost and microbial inoculants, 
which can help improve soil health and plant growth 
while also reducing nematode populations (Naik et  al. 
2020; Aioub et al. 2022; Jindo et al. 2022).

Factors limiting the efficacy of fungal biological control
The efficacy of fungal bio-control agents as a nematode 
management strategy depends on several factors, which 
can significantly limit the ability of the fungi to reduce 
nematode populations and improve plant health. These 
factors must be considered when deciding on the most 
appropriate management strategy for controlling plant-
parasitic nematodes (Fig.  6). Some key factors affecting 
the efficacy of fungal bio-control are discussed below.

Environmental conditions
Environmental conditions, such as temperature, mois-
ture, and light, can considerably influence the efficacy of 
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fungal bio-control agents (Velásquez et al. 2018; Bamisile 
et al. 2021). For example, changes in these conditions can 
affect the growth and activity of fungal agents, leading 
to variations in their efficacy. High temperatures or low 
moisture levels can reduce the growth and viability of 
fungal agents, while high moisture levels can increase the 
risk of fungal disease and reduce their efficacy (Mohapa-
tra et  al. 2017; Davies et  al. 2021). Additionally, some 
fungi may be sensitive to light and may perform poorly 
in brightly light areas, which can limit their use in some 

crops or growing regions (Losi and Gärtner 2021). Envi-
ronmental sensitivity can bring out inconsistent perfor-
mance (Chandler et al. 2011).

Soil characteristics, such as pH, nutrient content, 
and texture, also affect the efficacy of fungal bio-con-
trol agents (Neina 2019; Scavo et al. 2019; Sharma et al. 
2021). Fungal bio-control agents may perform poorly in 
soils with low moisture levels, as the fungi require a cer-
tain level of moisture to grow and reproduce (Dannon 
et  al. 2020; Stenberg et  al. 2021). Similarly, some fungi 

Fig. 6 A comparison of fungal and other management (cultural and chemical) shows fungal bio-control’s effectiveness
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require specific nutrients to grow and reproduce effec-
tively (Kowalska et al. 2022), so they may not work well 
in a barren field. The pH of the soil can affect the perfor-
mance of fungal bio-control agents, as some fungi prefer 
slightly acidic or alkaline soils, while others perform best 
in neutral soils (Zhang et al. 2016; Msimbira and Smith 
2020). In addition, soil structure, such as the presence of 
organic matter, can also influence fungal performance by 
changing the penetration and persistence of the fungal 
agents in the soil (Meurer et al. 2020).

In general, if the fungi are not well-suited to the envi-
ronmental conditions of the crop or growing region, 
they may not establish well or effectively control nema-
tode populations. Some fungi may require specific tem-
perature or moisture conditions to grow and control 
nematodes, and if these conditions are not present, the 
fungi may not perform well. Therefore, it is important to 
consider the environmental conditions and select fun-
gal bio-control agents well-suited to the specific soil and 
environmental conditions of the target area.

Nematode diversity and abundance
Nematode diversity and abundance play a significant 
role in the efficacy of fungal bio-control of plant-para-
sitic nematodes. A high level of nematode diversity can 
reduce the efficacy of fungal bio-control agents, as dif-
ferent nematode species may have different levels of sus-
ceptibility to the fungal agents (Chanu et al. 2015; Garcia 
et  al. 2022). In addition, high nematode abundance can 
increase the challenge of controlling nematode popu-
lations, as a large number of nematodes can quickly 
repopulate the soil and reduce the impact of the fungal 
bio-control agent (Büttner et  al. 2021; Sukhanova et  al. 
2022). This information can help select the most appro-
priate fungal bio-control agent and determine the best 
application rate and timing to achieve the desired level of 
nematode control.

Crop management practices
Crop management practices, such as tillage, fertilization, 
and pest management, also impact the efficacy of fungal 
bio-control agents (Manik et al. 2019; Pirttilä et al. 2021). 
Certain practices, including tillage or heavy pesticide 
use, may disturb or kill the fungi, reducing their effec-
tiveness, while other practices, such as reduced tillage 
or integrated pest management, help maintain and pro-
mote fungal populations, their distribution, and longev-
ity (Alyokhin et  al. 2020; Kumar et  al. 2021; Orrù et  al. 
2021). Crop rotation is reported to result in an altered 
nematode population density (Rueda-Ramírez et  al. 
2022). Growing crops that are not hosts for particular 
nematode species lowers their numbers and enhances 
the effectiveness of fungus-based bio-control treatments. 

The kind and quantity of fertilizer used on the crops 
affect how well nematodes are controlled by biological 
agents (El-Saadony et al. 2022). A high-nutrient environ-
ment caused by excessive use of fertilizer may encourage 
the establishment of nematodes and lessen the effective-
ness of fungal bio-control treatments (Zin and Badalud-
din 2020). Irrigation techniques influence soil moisture 
levels, whose impact on the effectiveness of bio-control 
agents has been discussed above (Café-Filho et al. 2018; 
Lüneberg et  al. 2019). The growth and reproduction of 
fungal bio-control agents can be aided by maintaining 
the ideal soil moisture levels through proper watering 
techniques.

Limitations of using fungi for biological control
Fungi typically take time to establish in the soil, colonize 
roots, and reduce nematode populations (Molinari et al. 
2022). Furthermore, the inconsistency or slow-acting 
performance of fungal agents often makes it difficult for 
farmers to predict the outcome of fungal bio-control 
applications. Another affecting factor is the cost. Cur-
rently, chemical nematicides are often cheaper and more 
readily available. However, the production, formulation, 
and distribution of fungal bio-control agents are often 
complex and time-consuming, and therefore their costs 
can be passed on to growers and farmers (Mawar et  al. 
2021). Additionally, the cost of fungal bio-control agents 
can be influenced by factors such as the availability and 
cost of the raw materials used to produce the fungi, the 
size of the market for fungal bio-control, and the levels of 
competition among suppliers (Daou et al. 2021).

Additionally, some fungal bio-control agents may be 
subject to regulatory restrictions. Regulatory hurdles 
can include requirements for the registration of fungal 
bio-control agents, the approval of their use for specific 
crops, and the establishment of performance stand-
ards (Palmieri et  al. 2022). These requirements can be 
time-consuming, complex, and costly to meet, and they 
can limit the availability and feasibility of fungal bio-
control agents for farmers. Taken together, all these fac-
tors or limitations can have a significant impact on their 
effectiveness as bio-control agents for plant-parasitic 
nematodes.

Future directions and research recommendations
Further research is needed to identify the most effective 
fungi for controlling certain nematode pests in horti-
cultural crops. To optimize their integration into pest 
management programs, it is necessary to conduct stud-
ies to determine the compatibility of fungal bio-control 
agents with other nematode management strategies, 
such as chemical treatments. It is crucial to create scal-
able, affordable manufacturing techniques for fungal 
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bio-control agents to make this strategy more available 
and useful for growers. For fungal bio-control products 
to operate better in the field, it is important to under-
stand how environmental factors like temperature and 
moisture affect their efficiency. More investigation is 
required to determine the long-term effects of fungal 
bio-control on nematode populations and plant health 
to guarantee that fungal bio-control is sustainable as a 
management method. New and efficient procedures for 
identifying and quantifying fungal bio-control agents in 
soil and plant tissues must be developed to track their 
effectiveness and enhance their application in the field. 
It is also important to perform studies to assess the 
capability of fungal bio-control in various agricultural 
systems and to ascertain its applicability to varied agro-
ecological circumstances. The future of fungal bio-con-
trol as a viable and successful management technique 
against nematode pests in horticulture crops will be 
secured by implementing these suggestions.

Conclusion
This review discussed using fungi as a bio-control agent 
against plant-parasitic nematodes and how fungi can 
effectively reduce nematode populations and improve 
plant health in horticulture crops. The emphasis was 
given to thoroughly detail the key elements, includ-
ing environmental circumstances, nematode diversity 
and abundance, soil properties, and crop management 
practices that may impact the effectiveness of fun-
gal bio-control. Several case studies have also been 
detailed, including fungi that control cyst, root-knot, 
and lesion nematodes. We also discussed the pros and 
cons of employing fungi for biocontrol and concluded 
that despite certain drawbacks, using fungi for bio-con-
trol can be a viable and efficient method for controlling 
plant-parasitic nematodes in horticulture crops when 
correctly combined with other management practices. 
Future studies should emphasize the importance of the 
complexity of microbial communities in soil and their 
interactions with other soil biotas to properly compre-
hend their potential for bio-control.
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