
COMPSUITE: A Dataset of Java Library Upgrade
Incompatibility Issues

Xiufeng Xu
Nanyang Technological University

Singapore
xiufeng001@e.ntu.edu.sg

Chenguang Zhu
The University of Texas at Austin

USA
cgzhu@utexas.edu

Yi Li
Nanyang Technological University

Singapore
yi li@ntu.edu.sg

Abstract—Modern software systems heavily rely on external
libraries developed by third-parties to ensure efficient development.
However, frequent library upgrades can lead to compatibility
issues between the libraries and their client systems. In this
paper, we introduce COMPSUITE, a dataset that includes 123
real-world Java client-library pairs where upgrading the library
causes an incompatibility issue in the corresponding client. Each
incompatibility issue in COMPSUITE is associated with a test case
authored by the developers, which can be used to reproduce the
issue. The dataset also provides a command-line interface that
simplifies the execution and validation of each issue. With this
infrastructure, users can perform an inspection of any incompati-
bility issue with the push of a button, or reproduce an issue step-
by-step for a more detailed investigation. We make COMPSUITE
publicly available to promote open science. We believe that
various software analysis techniques, such as compatibility
checking, debugging, and regression test selection, can benefit
from COMPSUITE. The demonstration video of COMPSUITE is
available at https://www.youtube.com/watch?v=7DQGsGs 65s.

Index Terms—Incompatibility issue, software libraries, dataset

I. INTRODUCTION

Modern software systems are becoming increasingly complex
due to the need for integrating various components developed
by different teams or organizations. These components are
often subject to continuous evolution, and as a result, ensuring
that new upgrades to third-party libraries do not cause any
compatibility issues with the existing software system is a
challenging task. The complexity of these systems and the
number of dependencies involved make it difficult to anticipate
and identify incompatibilities that may arise from updates
to external components. Incompatibility issues resulting from
upgrades to external components can compromise the reliability
of software systems, potentially leading to significant financial
losses for the organizations that rely on these systems.

Many techniques have been proposed to address third-party
library compatibility issues, including regression testing [1],
static analysis [2], dependency conflict detection [3], and client-
specific compatibility checking [4]. These techniques address
library compatibility issues in different dimensions and have
been evaluated with their own isolated datasets.

An excellent dataset has the potential to serve as a valuable
reference for future research in this field. However, composing
the dataset requires intricate manual validation, e.g., confirming
whether the cause of a test failure is due to runtime exception,
assertion violation, or other reasons. Therefore, we propose

COMPSUITE, the first incompatibility issue dataset focusing on
library behavioral incompatibility with concrete reproducible
test cases. Each test case is isolated and validated, enabling
the direct manifestation of the incompatibilities.

COMPSUITE comprises 123 real-world Java client-library
pairs such that upgrading any library results in incompatibility
issues for the corresponding client. Every incompatibility issue
in COMPSUITE contains a test case created by developers,
allowing for the reproduction of the issue. On top of this dataset,
we also developed an automated command-line interface,
which streamlines all processes of the reproduction, such as
downloading and compiling a projects, running target tests
and re-runing the tests after a library upgrade. With this
infrastructure, users may reproduce an incompatibility issue
programmatically with minimal efforts.

Contribution. We make the following contributions:
1) We construct a dataset, COMPSUITE, including 123 re-

producible, real-world client-library pairs that manifest
incompatibility issues when upgrading the library. These
data points originate from 88 clients and 104 libraries.

2) We created an automated command-line interface for the
dataset. With this interface, users can programmatically
replicate incompatibility issues from the dataset with a sin-
gle command. The interface also offers separate commands
for each step of the reproduction of incompatibility issues.

We envision that COMPSUITE to be used to evaluate
various program analysis techniques, including compatibil-
ity checking, module-level regression testing selection, and
debugging techniques. More detailed information can be
found in Section IV. The dataset and tool are available at:
https://github.com/compsuite-team/compsuite.

II. DATASET CREATION

A. Subjects Selection

To ensure the representativeness and reproducibility of the
COMPSUITE dataset, we focus on including high-quality and
popular client projects and libraries. The selection of client
projects was sourced from GitHub, a widely recognized online
community for hosting open-source codebases. To ensure the
inclusion of the most popular projects, we systematically sorted
all the available projects in descending order based on their
number of stars on GitHub and selected the target clients

https://www.youtube.com/watch?v=7DQGsGs_65s
https://github.com/compsuite-team/compsuite

TABLE I
DETAILS OF CLIENTS AND LIBRARIES INCLUDED IN COMPSUITE.

Client #LoC #Star Library #Maven Usage
retrofit 29.7K 41.5K org.slf4j:slf4j-api 62.5K
apollo 61.3K 28K com.google.guava:guava 34.4K
druid 441.9K 26.8K org.scala-lang:scala-library 34K
webmagic 17.4K 10.8K com.fasterxml.jackson.core:jackson-databind 25.8K
languagetool 171.2K 8.5K ch.qos.logback:logback-classic 25.5K
Other 83 clients (mean) 371.6K 1.3K Other 99 libraries (mean) 3.2K
All clients (mean) 358.7K 2.5K All libraries (mean) 4.8K

from the top of the list. The selection of libraries was sourced
from Maven Central, which hosts 33.5M of Java libraries and
their associated binaries, making it a widely used repository
of libraries for Java API and library research. We include a
library in the dataset only if it has more than 100 usages (i.e.,
clients) on Maven Central. Our selection criteria aimed to
ensure the inclusion of popular and widely used client projects
and libraries in the dataset, thereby maximizing its relevance
and usefulness to the research community.

Among the highly-rated client projects, our selection criteria
focused on those that use Maven as their build systems,
given its widespread adoption and maturity. Maven provides
a standardized approach to managing Java projects and their
dependencies, where each library dependency in a Maven client
project is represented as an item in a pom.xml file, making
it easy to identify and edit library versions programmatically.
Furthermore, Maven offers built-in functionality for running
unit tests and generating test reports, which simplifies the
identification and diagnosis of incompatibility issues arising
from test executions. Since Maven projects typically rely on
Maven Central as their centralized repository for hosting and
downloading libraries, the process of obtaining and managing
libraries in our dataset is simplified.

Table I presents the top 5 client projects and libraries in
the COMPSUITE dataset, ranked by popularity. For each client
project, we provide information on its lines of code (LoC)
and the number of stars it has received on GitHub, while
for each library, we include its number of usages by other
projects from Maven Central. In total, COMPSUITE comprises
123 incompatible client-library pairs. These pairs encompass
88 distinct clients and 104 libraries altogether. On average,
the affected clients have 2.5K stars on GitHub and 358.7K
lines of code, while incompatible libraries have 4.8K usages
on Maven Central. Thus, we believe that the incompatibility
issues present in the COMPSUITE dataset have a significant
impact on a large number of codebases and can affect many
users of the libraries, either directly or indirectly.

To ensure that all client projects in the dataset are executable
and the runs are reproducible, we performed a series of checks
on each project. First, we checked out the project to the version
(SHA) at the time of the dataset creation, referred to as the base
version. Next, we ran the standard Maven project compilation
command to verify if the project compiles successfully. If
the project fails to compile, we excluded it from the dataset.
Subsequently, we ran the standard Maven test command to
execute all the tests in the project, ensuring that all tests pass

on the base version. We excluded any project that fails to pass
tests at this stage. Finally, we only included the projects that
successfully compile and pass all tests on the base version,
thereby ensuring that the dataset only consists of projects which
can be executed and whose executions can be reproduced.

B. Data Collection
We collected the data following the below procedures.

Figure 1 visualizes the overall architecture of COMPSUITE.
In the upper left portion of Fig. 1, we illustrate the approach
taken by COMPSUITE to identify incompatibilities between
a client project and its dependent libraries. Specifically, for
each client project on its base version, we upgraded each of its
dependent libraries and tested if the upgrade caused any test
failures. Our intuition behind this approach is that since all
the tests in the client passed on the base version, if upgrading
any library causes a test failure, that library upgrade must have
introduced incompatibility issues. We refer to the test that flips
from passing to failing as an incompatibility-revealing test.

To automatically upgrade the libraries and run the tests, we
utilized the Maven Versions Plugin. For a given client project,
we scanned its dependency list using this plugin to identify
all the libraries that had newer versions available on Maven
Central. If a library had a newer version, we marked it as
upgradable. Next, for each upgradable library, we used the
plugin to upgrade it by updating the pom.xml file to the most
recent version on Maven Central. We then re-executed the test
suite of the client. If any tests failed during this run, we marked
the client-library pair as having an incompatibility issue and
marked the test as an incompatibility-revealing test of this issue.
It is crucial to note that we only upgraded one library at a
time to isolate failures caused by different libraries. To ensure
the accuracy and dependability of the dataset, we carried out a
manual verification process for each identified incompatibility
issue. In particular, we carefully examined the test failure
messages and reports to confirm that they were indeed caused
by the upgraded library. For each incompatible client-library
pair, we selected a single incompatibility-revealing test to be
included in the final dataset. In cases where a client-library
pair had multiple incompatibility issues, we chose the one that
we deemed most representative and easy to comprehend.

Finally, we persisted the metadata of all the selected incom-
patibility issues in a collection of json files. Figure 2 presents
the metadata of an incompatibility issue in the COMPSUITE
dataset. The data schema includes the ID of the issue, client
project name, SHA of the client base version, URL of the
client project, library name, versions of the old and new

Metadata

lib lib’

Library upgrade

test success test fail

……

……

Original Repositories

fork

V!"#$
Tag: org.restlet.jse--org.restlet-2.2.1; com.alibaba--fastjson-1.1.41
Test: ControllerStarterTest#testDelete

TestSourceKafkaClusterValidationManager#testValidation

V2%&'()*
Tag: com.alibaba--fastjson-1.2.62
Test: TestSourceKafkaClusterValidationManager#testValidation

V1%&'()*
Tag: org.restlet.jse--org.restlet-3.0-M1
Test: ControllerStarterTest#testDelete

CompRunner

Filter & validate

Incompatibities

Read Reproduce Incompatibilities

Repository Structure of uReplicator

Json File

Dataset Creation Process Dataset Overview

Branch: org.restlet.jse--org.restlet

Branch: com.alibaba--fastjson

Fig. 1. The architecture of COMPSUITE.

1 "id": "i-49",
2 "client": "wasabi",
3 "sha": "9f2aa5f92e49c3844d787320e2d22e15317aa8e2",
4 "url": "https://github.com/intuit/wasabi",
5 "lib": "org.apache.httpcomponents:httpclient",
6 "old": "4.5.1",
7 "new": "4.5.10",
8 "test": "DefaultRestEndPointTest#testGetRestEndPointURI",
9 "submodule": "modules/export",

10 "test_cmd": "mvn
org.apache.maven.plugins:maven-surefire-plugin:2.20:test -fn
-Drat.ignoreErrors=true -DtrimStackTrace=false
-Dtest=DefaultRestEndPointTest#testGetRestEndPointURI"

↪→
↪→
↪→

Fig. 2. The data schema of COMPSUITE

libraries, the name of the incompatibility-revealing test, the
submodule containing the incompatibility-revealing test, and
the command to run the test. The majority of the information
is self-explanatory. However, it is worth noting that the old
version of the library is the one utilized at the base version of
the client, while the new version is the most recent version
found on Maven Central that triggers the incompatibility when
upgrading, as described in Section II-B.

III. DATASET USAGE

A. Exploring an Incompatibility Issue

To ensure the reproducibility of incompatibility issues and to
facilitate the demonstration of such issues, we have annotated
checkpoints in the version histories of the client projects and
provided tags that guide users to explore any incompatibility
issues present in the COMPSUITE dataset.

As illustrated on the right-hand side of Fig. 1, our approach
to handling incompatible client-library pairs involved creating
a fork of the original client project for each identified pair,
while preserving all code and version history information. To
mark the base version of the project, we utilized the git tag
command, designating it as Vbase. Subsequently, we developed
a patch to upgrade the library from its old version to its new
version, a simple process that can be accomplished with a
single line change in the pom.xml file for Maven projects.
This patch was then applied to the Vbase version, resulting
in a new version that we identified as Vincomp. Notably, the
only difference between Vbase and Vincomp lies in the library
version used: the old (compatible) version is utilized on Vbase

while the new (incompatible) version is utilized on Vincomp.

For instance, in Fig. 1, the client project employs version
2.2.1 of the org.restlet.jse-org.restlet library on
its Vbase and version 3.0-M1 on its Vincomp. In cases where
multiple libraries exhibit incompatibility issues in the client
project, we not only create different branches for each library
with its name, but also generate a Vincomp version tag for each,
with accompanying annotations that denote the corresponding
library name and version, as depicted in Fig. 1.

The Vincomp tag for each client-library pair also specifies
the specific test that can reveal the incompatibility issue
during its run. Following Maven’s convention, the test name
is formatted as TestClassName#testMethodName. By
simply copying the text from the tag, users can easily run
the incompatibility-revealing test on the Vincomp version and
observe the incompatibility issue. On the Vbase version, all
tests should pass. This design aims to simplify the usage of
COMPSUITE and make it more accessible and user-friendly.

Using the forked client repositories and version tags provided
in the COMPSUITE dataset, users can easily reproduce any
incompatibility issue by checking out to Vincomp and running
the corresponding incompatibility-revealing test. To compare
the behaviors of the client with compatible and incompatible
library versions, users can run the incompatibility-revealing
test on both Vbase and Vincomp and compare the test outcomes.
This allows for a clear understanding of the impact of the
library upgrade on the client behaviors.

B. COMPRUNNER: An Automated Tool for Reproducing In-
compatibility Issues

We further developed an automated tool, named COMPRUN-
NER, which is a part of COMPSUITE. With COMPRUNNER,
users can easily reproduce and investigate any incompatibility
issue in a one-click manner by providing the issue ID as input.

We offer an option which enables users to reproduce an
incompatibility issue end-to-end with a single command as is
shown below. The command outputs and saves all intermediate
results and logs for future reference.
1 python main.py --incompat i-56

When COMPRUNNER runs, it clones the client project from
our forked code repository and saves it in the output directory

(which is configurable). Then, it checks out to the base version,
compiles the code, and runs the incompatibility-revealing test.
Next, it upgrades the library to the new version, reruns the
same test, and reports any failure information to the user.

We also provide a set of commands that break down the
entire cycle of incompatibility exploration into separate steps:
1 python main.py --download i-56
2 python main.py --compile i-56
3 python main.py --testold i-56
4 python main.py --testnew i-56

We provide other commands to inspect different aspects of
the incompatibility issues from the COMPSUITE dataset. A com-
plete list of these commands can be found on COMPSUITE’s
website at https://github.com/compsuite-team/compsuite.

IV. APPLICATION SCENARIOS

We anticipate that both researchers and practitioners can
benefit from COMPSUITE to facilitate their investigations and
research on errors and test failures induced by library upgrades.
COMPSUITE supports the evaluation of various program
analysis techniques, such as software upgrade compatibility
checking, debugging, and module-level regression test selection.
• Compatibility Checkers and Detectors. There are three

main categories of existing compatibility checking and
detection in Java: i) Techniques for detecting API-breaking
changes [5]. ii) Techniques for detecting behavioral incom-
patibilities that cause test failures when a library is upgraded
in a client [6]. iii) Techniques for detecting dependency
conflicts that exhibit inconsistent semantics between libraries
due to class path shading [3]. Developers of techniques in
the first two categories can use COMPSUITE as a benchmark
to evaluate their tools’ performance. They can run their
tools on the COMPSUITE dataset and compare the results
with the incompatibility issues present in the dataset. For
dependency conficts detecting techniques, users can slightly
modify COMPSUITE by placing both old and new libraries
on the class path and checking if the issues can be detected.

• Module-Level Regression Test Selection. Regression test
selection (RTS) aims to reduce the cost of regression testing
by selecting a subset of tests that may change the behavior
due to code changes on each program version [7]. Authors of
module-level RTS techniques can use COMPSUITE to assess
the safety of their approaches. A safe module-level RTS
technique should select all the corresponding incompatibility-
revealing test cases when the library changes.

• Debugging. Existing debugging techniques for Java, include
symbolic execution, delta debugging, fault localization, etc.
These techniques aim to identify the root cause of errors
or failures in software. Developers of debugging techniques
can use COMPSUITE as a dataset of compatibility bugs
to evaluate their techniques’ ability to perform root cause
analysis by identifying the corresponding library change that
caused the compatibility issue.

V. RELATED WORK

To cater to the requirements of various research endeavors,
numerous outstanding datasets have been made available to date.

Just et al. [8] introduced Defects4J, a database supplies actual
bugs, fixed program versions, and corresponding test suites.
Bui et al. [9] introduced Vul4J focusing on Java vulnerabilities.
Jezek et al. [10] released their synthetic corpus of compatibility
issues that simulates program evolution. There are also many
datasets cater for other research domains and ecosystems [11].

Distinct from the previously discussed datasets, COMPSUITE
is the first dataset emphasizes the incompatibility issues caused
by Java library behavior changes. This type of issues are preva-
lent and difficult to detect. We believe that a dataset targeting
the library upgrade incompatibility issue will contribute to the
advancement of the associated technologies.

VI. CONCLUSION

This paper presents COMPSUITE, a dataset containing 123
real-world Java client-library pairs where library upgrades cause
compatibility issues in the corresponding clients. On top of it,
we developed a command-line interface, COMPRUNNER, which
allows users to quickly check incompatibility issues with a sin-
gle command or reproduce an incompability programmatically
for in-depth analysis. We believe that various program analysis
techniques like library compatibility checking, debugging, and
regression test selection, may benefit from our dataset.

ACKNOWLEDGEMENT

This research is supported by the NTU Start-up Grant.
REFERENCES

[1] C. Zhu, O. Legunsen, A. Shi, and M. Gligoric, “A framework for checking
regression test selection tools,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 2019, pp. 430–441.

[2] D. Foo, H. Chua, J. Yeo, M. Y. Ang, and A. Sharma, “Efficient static
checking of library updates,” in Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2018, pp. 791–796.

[3] Y. Wang, R. Wu, C. Wang, M. Wen, Y. Liu, S.-C. Cheung, H. Yu,
C. Xu, and Z. Zhu, “Will dependency conflicts affect my program’s
semantics?” IEEE Transactions on Software Engineering, vol. 48, no. 7,
pp. 2295–2316, 2021.

[4] F. Mora, Y. Li, J. Rubin, and M. Chechik, “Client-specific equivalence
checking,” in Proceedings of the 33rd ACM/IEEE International Confer-
ence on Automated Software Engineering, 2018, pp. 441–451.

[5] L. Li, T. F. Bissyandé, H. Wang, and J. Klein, “Cid: Automating
the detection of api-related compatibility issues in android apps,” in
Proceedings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2018, pp. 153–163.

[6] C. Zhu, M. Zhang, X. Wu, X. Xu, and Y. Li, “Client-specific upgrade
compatibility checking via knowledge-guided discovery,” ACM Trans.
Softw. Eng. Methodol., feb 2023, just Accepted. [Online]. Available:
https://doi.org/10.1145/3582569

[7] A. Gyori, O. Legunsen, F. Hariri, and D. Marinov, “Evaluating regression
test selection opportunities in a very large open-source ecosystem,”
in 2018 IEEE 29th International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 2018, pp. 112–122.

[8] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in
Proceedings of the 2014 international symposium on software testing
and analysis, 2014, pp. 437–440.

[9] Q.-C. Bui, R. Scandariato, and N. E. D. Ferreyra, “Vul4j: a dataset of
reproducible java vulnerabilities geared towards the study of program
repair techniques,” in Proceedings of the 19th International Conference
on Mining Software Repositories, 2022, pp. 464–468.

[10] K. Jezek and J. Dietrich, “Api evolution and compatibility: A data corpus
and tool evaluation.” J. Object Technol., vol. 16, no. 4, pp. 2–1, 2017.

[11] C. Zhu, Y. Li, J. Rubin, and M. Chechik, “A dataset for dynamic
discovery of semantic changes in version controlled software histories,”
in 2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR). IEEE, 2017, pp. 523–526.

https://github.com/compsuite-team/compsuite
https://doi.org/10.1145/3582569

	Introduction
	Dataset Creation
	Subjects Selection
	Data Collection

	Dataset Usage
	Exploring an Incompatibility Issue
	CompRunner: An Automated Tool for Reproducing Incompatibility Issues

	Application Scenarios
	related work
	Conclusion
	References

