CHAPTER IX

KRONECKER’S THEOREM

For each prime p of k, choose a non-negative integer m, such that m, = 0 for
all but a finite number of primes, m), is 0 or 1 for real finite primes and m,, = 0 for
complex infinite primes. A modulus of k is a formal product

m:Hme

A closed subgroup H of finite index in Iy is open, so there exists some modulus m
so that
H> HWp(mp) = W (m).

Subgroup H is said to be defined modulo m. If m’ and m” are two moduli then
the greatest common divisor (m’, m”) is the modulus m where m,, = min(m;,, m).
For finite and infinite primes, we have

Wp(m/ )Wp(m//> = Wp(mp).

p p

Therefore if H is defined modulo m’ and m” then H is defined modulo m =
(rl,l/7 m//)
If H is defined modulo some modulus, then there exists a modulus m so that H

is defined modulo m and if H is defined modulo w then m divides w. Modulus m
is called the conductor of H.

LEMMA 9.1. Take k = Q(C) where ( is an m-th root of unity. Let m be the
modulus (m)psc. Then the kernel of ¢y q is Q*W (m).

PROOF. Suppose i in Iq is in the kernel of ¢ /q. We can write i = aj where
a is in Q* and j is in Hp W,(0), and we can choose « so that j,__ is positive. We
want to show that j is in W(m). We know that j is in ker (qbk/Q) since « is. By
the Chinese remainder theorem, we can choose 3 in Q* so that 3 > 0 and jj is
in Wy(m,) when m, > 0. We know ¢x/q(j) = 1, but we can also apply (3.2) to
compute ¢y /q(J)-

k: by
‘bk/Q(j) = H <TQ) where \ﬁj\p :p—bp
ptm
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Let B = (1/P2 where 3 and (3, are relatively prime positive integers. We want to
show that #; = B2(mod m). We have

1Bilp = 1Blp = |81/B2], = p ot where |31], = p~" and |Ba, = p~ .

Then
b —b b AN
k: PP k: P k: P
o) =TT (52)" = (T (53) ) (T (52)
b D b
ptm ptm ptm
We have
b/ b/
H(k:QY ¢ = clm?™ — o1
pfm b
and

. b;/ by
H(—k'Q) ¢ =lam?™ =

pim p

since f; > 0 and B> > 0. This shows ¢y /q(j) is the result of applying { — (%
followed by the inverse of applying ¢ — (”2. Let 3235 = 1(mod m). The inverse
of ¢ = (P2 is ¢ — (P2, so Px/q(J)¢ = (PP Since $x/q(j) = 1 we conclude that
B105 = 1(mod m), and therefore 5; = f2(mod m).

For each finite prime p dividing m, we have 8; = f2(mod p™»), so (105 lis in
Wp(myp). Therefore 8 is in Wy(m,,). Since §j is in W,(m,), we conclude that j, is
in W,(m,).

For finite primes p not dividing m, we have j, in W},(0), and since j,__ is positive
we have j,_ in W,_(1). This shows that j is in W (m), and therefore i = @j is in
Q*W(m). This shows that ker(¢x/q) C Q"W (m).

The converse is easy. Suppose j is in W (m). Applying (3.2) we have

Px/Qi) = ﬂl <%)O =1

since |j|, = 1 for finite primes that do not divide m. This shows that W (m) C
ker(¢k/q), so Q*W(m) C ker(¢y/q)-
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PROPOSITION 9.2 (KRONECKER'S THEOREM). Fuvery abelian extension of the
rational numbers is contained in a cyclotomic extension.

PROOF. Let T be an abelian extension of Q. By Theorem 1, ¢1,q is defined
and ker ((bT /Q) is a closed subgroup of finite index in Iq. Let n be the conductor of
the kernel of ¢1/q. Then ker (¢1,q) contains Q*W (n). Choose n’ = (n)ps where
n is the positive integer so that (n) = [, g,iP"”- Then n divides n’ because n
is either (n) or (n)ps. Put k = Q(({) where ¢ is an n-th root of unity. Then,
ker(¢x/q) = Q"W (n') by lemma 9.1,

ker (9/q) D Q"W (n) O Q"W (n') = ker (¢1/q) .

so T C k by proposition 2.15.



