
CHAPTER IX

KRONECKER’S THEOREM

For each prime p of k, choose a non-negative integer mp such that mp = 0 for
all but a finite number of primes, mp is 0 or 1 for real finite primes and mp = 0 for
complex infinite primes. A modulus of k is a formal product

m =
∏

pmp

A closed subgroup H of finite index in Ik is open, so there exists some modulus m

so that
H ⊃

∏

Wp(mp) = W (m).

Subgroup H is said to be defined modulo m. If m′ and m′′ are two moduli then
the greatest common divisor (m′,m′′) is the modulus m where mp = min(m′

p, m
′′

p).
For finite and infinite primes, we have

Wp(m
′

p)Wp(m
′′

p) = Wp(mp).

Therefore if H is defined modulo m′ and m′′ then H is defined modulo m =
(m′,m′′)

If H is defined modulo some modulus, then there exists a modulus m so that H
is defined modulo m and if H is defined modulo w then m divides w. Modulus m

is called the conductor of H.

Lemma 9.1. Take k = Q(ζ) where ζ is an m-th root of unity. Let m be the

modulus (m)p∞. Then the kernel of φk/Q is Q∗W (m).

Proof. Suppose i in IQ is in the kernel of φk/Q. We can write i = αj where
α is in Q∗ and j is in

∏

p Wp(0), and we can choose α so that jp∞
is positive. We

want to show that j is in W (m). We know that j is in ker
(

φk/Q

)

since α is. By
the Chinese remainder theorem, we can choose β in Q∗ so that β > 0 and βj is
in Wp(mp) when mp > 0. We know φk/Q(j) = 1, but we can also apply (3.2) to
compute φk/Q(j).

φk/Q(j) =
∏

p-m

(

k : Q

p

)bp

where |βj|p = p−bp
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Let β = β1/β2 where β1 and β2 are relatively prime positive integers. We want to
show that β1 = β2(mod m). We have

|βj|p = |β|p = |β1/β2|p = p−b′p+b′′p where |β1|p = p−b′p and |β2|p = p−b′′p .

Then

φk/Q(j) =
∏

p-m

(

k : Q

p

)b′p−b′′p

=





∏

p-m

(

k : Q

p

)b′p









∏

p-m

(

k : Q

p

)b′′p





−1

.

We have




∏

p-m

(

k : Q

p

)b′p



 ζ = ζ

∏

p-m
p

b′p

= ζβ1

and




∏

p-m

(

k : Q

p

)b′′p



 ζ = ζ

∏

p-m
p

b′′p

= ζβ2

since β1 > 0 and β2 > 0. This shows φk/Q(j) is the result of applying ζ → ζβ1

followed by the inverse of applying ζ → ζβ2 . Let β2β
′

2 = 1(mod m). The inverse

of ζ → ζβ2 is ζ → ζβ′

2 , so φk/Q(j)ζ = ζβ1β′

2 . Since φk/Q(j) = 1 we conclude that
β1β

′

2 = 1(mod m), and therefore β1 = β2(mod m).

For each finite prime p dividing m, we have β1 = β2(mod pmp), so β1β
−1
2 is in

Wp(mp). Therefore β is in Wp(mp). Since βj is in Wp(mp), we conclude that jp is
in Wp(mp).

For finite primes p not dividing m, we have jp in Wp(0), and since jp∞
is positive

we have jp∞
in Wp∞

(1). This shows that j is in W (m), and therefore i = αj is in
Q∗W (m). This shows that ker(φk/Q) ⊂ Q∗W (m).

The converse is easy. Suppose j is in W (m). Applying (3.2) we have

φk/Q(j) =
∏

p-m

(

k : Q

p

)0

= 1

since |j|p = 1 for finite primes that do not divide m. This shows that W (m) ⊂
ker(φk/Q), so Q∗W (m) ⊂ ker(φk/Q).
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Proposition 9.2 (Kronecker’s theorem). Every abelian extension of the

rational numbers is contained in a cyclotomic extension.

Proof. Let T be an abelian extension of Q. By Theorem 1, φT/Q is defined

and ker
(

φT/Q

)

is a closed subgroup of finite index in IQ. Let n be the conductor of

the kernel of φT/Q. Then ker
(

φT/Q

)

contains Q∗W (n). Choose n′ = (n)p∞ where
n is the positive integer so that (n) =

∏

p finite
pnp . Then n divides n′ because n

is either (n) or (n)p∞. Put k = Q(ζ) where ζ is an n-th root of unity. Then,
ker(φk/Q) = Q∗W (n′) by lemma 9.1,

ker
(

φT/Q

)

⊃ Q∗W (n) ⊃ Q∗W (n′) = ker
(

φk/Q

)

,

so T ⊂ k by proposition 2.15.


