CHAPTER VII

FIRST FUNDAMENTAL INEQUALITY

In this chapter, we will prove that if K is a finite cyclic extension of k then
k*Ng /kIk is a closed subgroup of finite index in Iy and [Ik :k*Nk /kIK] is divisible
by [K : k|. We begin with an algebraic lemma.

LEMMA 7.1 (HERBRAND’S LEMMA). Let L be a subgroup of finite indezx in
abelian group J, and let f : J — J and g : J — J be two homomorphisms such that
f(L) C L and g(L) C L, and fg=gf = 1. Let f1 and g1 be the restrictions to L
of [ and g, respectively. If [ker(f1) : Im(g1)] and [ker(g1) : Im(f1)] are both finite
then [ker(f) : Im(g)] and [ker(g) : Im(f)] are finite and

[ker(f) : Im(g)] _ _[ker(g) : Im(f)]

[ker(f1) : Im(g1)]  [ker(gy) : Im(f1)]

ProoF. Consider the composite J J, Im(f) = II;H((J{?). If f(j) is in Im(f;) then

f(j) = f(£) with £in L, so j = j¢~¢ is in ker(f)L. Therefore ker(vf) = ker(f)L,
and ; . Im(f)
ker(f)L — Im(f1)

Both sides are finite groups since [J : L] is finite. In addition, we have

ker(f)L  ker(f)  ker(f)
L ker(f)NL T ker(f1)

Homomorphism g satisfies the same hypotheses as f, so we have also

J _ Im(g) and ker(g)L _ ker(g) N ker(g)
ker(g)L  Im(gy) L  ker(9)NL  ker(gr)

Therefore, with every index in the following being finite, we have
[J: L] = Im(f) : Im(f1)] [ker(f) : ker(f1)]

= [Im(f) : Im(f1)] [[11{{;«1“((;?) :: 11?1(5111))]]

= [Im(f) : Tm(f1)] [Tm(g) : Im(g1)]

60

[ker(f) : Im(g)]
[ker(f1) : Tm(g1)]’
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or

[/ : L] __[ker(f) : Im(g)]

[Tm(f) : Im(f1)] [Im(g) : Im(g1)]  [ker(f1) : Im(g1)]"

The left side is symmetric in f and g so we have the desired result,

ker(f) : Im(g)] _[ker(g) : Tm(f)]

[ker(f1) : Im(g1)]  [ker(g1) : Im(f1)]"

LEMMA 7.2 (HILBERT’S THEOREM 90). Let Z/F be a finite cyclic extension of

degree n with Galois group generated by o. If o in Z* satisfies altot+a" ™l _
then there exists 3 in Z* such that o = 3177

PROOF. Suppose that Z = F(0). Put 0; = 0" . Then 07 =0;41 for0<i<n—1,
and 0_, =0=0). Putag=1, 01 =0, ..., o = altot -+ for 1 <i1<n-—1.
Then aaf = o4 for 0 <i <n—1,and aa)_;| = altot o™ — 1 = gy, Finally,
put

Bj =l + 6] + -+, 16, | for0<j<n.
Then af] = f;. The n elements 6o, ..., 0,1 are all distinct (otherwise 6 would
have fewer than n conjugates, which is impossible), so the Vandermonde matrix
(9? ) is non-singular. Therefore 3; # 0 for at least one value of j, and we have

a=p0;/p7 = B;_U as desired.

Computation of [kj : Nk, Kj] for cyclic extensions. In the proof of
the first fundamental inequality for cyclic extensions, we begin by showing that
k; : Nk, /K] = Ky : kp], and we will need only that local extension K, /k,
is cyclic. Let [K,, : ky] = n = ef, where pO,, = p° and Np = Np/. Let principal
ideals p and p be generated by elements II in O, and 7 in o, respectively. Denote
the unit group O}, by U, and the unit group oy, by u,. The index [k} : Nk /i, K]
is the product of two factors.

<71) [k; : NKg@/ka;] - [k;; : upNKsO/ka;HupNKgo/ka; : NKsO/ka;]
We will show that the first factor of the right side is f and the second factor is e.

Computation of the first factor. Since Nk _ i, (IT) = (m)7, we have Nk, /i, 11 =
pm! where p is in u,. Then K7 = Uy (), so u, Nk 1, K, = upNKp/kpUp<ﬁf> =
u,(r/). We also have ky = u,(m), so

(7.2) [k} :upNg, i, K] = [uy(7) : uy(wf)]
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Computation of the second factor. We have
(73) [upNKp/ka:; : NKsO/ka;] = [up Uy N NKK,/ka:;] = [up : NKso/kpUp]'

To compute [u, : Nk, /kpUp], we apply Herbrand’s lemma with J = U, and homo-

morphisms f :J — J and g : J — J defined by f(a) = Nk, = qltot -+t
and g(f) = f'7°. Then ker(g) = {# €U, | /5" =1} = U, Nk; = u,, and

Im(f) = Nk, /k,Up. Lemma 7.1 (Herbrand’s) asserts that

. _ , _ [ker(f) : Im(g)] [ker(g1) : Im(f1)]
(7.4) [up : NKg)/kpUp} = [ker(g) : Im(f)] = Ter(fy)  Im(gy)] )

It remains to choose L and compute the three indices on the right side of (7.1)

Computation of [ker(f) : Im(g)]. We have

Im(g) = {a ey, ‘ a= 377 with g € Up},
and, by lemma 7.2,
ker(f) = {oz e U, ’ Nk, /x,@ = 1} = {oz ey, ’ a= ("7 with § € K;}
Let ¢' : K¥, — K be the map ¢'(a) = o' 7. Then ker(f) = Im(g’), and Im(g) =
9(Uy) = ¢'(k;U,,). Both rows are exact in the following commutative diagram.

1l — k, — K g—/>ker(f)—>1

I I I

1 —— ki —— kU, —— Im(g) —— 1

We have [ker(f): Im(g)] = [K; kx Uy = [Ug(ID) : Up(r)] = [(IT) : (II°)], and

therefore

(7.5) [ker(f) : Im(g)] = e.

Choice of subgroup L. By the normal basis theorem, there exists an element
6 in K, so that 0,0°,...,0°" " is a basis of K, over k,. If a is in k5 then

ab,ab’, ..., af”" " is also a basis, so we can assume that ordp(ﬁgj) > q—ﬁl, where
b is as defined in lemma 4.8, and q is the rational prime which p divides. Put

M =o0,0 +0,0° +--- + 0p9‘7n71.
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Then exp(z) is defined on M and maps M isomorphically onto a subgroup L of
U, where
b
L=exp(M)= {y €U, |ordy(y—1) > qj}

If m is sufficiently large, we will show that M contains ™. Let x1,...,7, be a
basis for O, over o,. Then x; = E;:Ol Bij 67" for 1 < i < n, with Bij in 0,. There is
a constant ¢y so that ord,(5;;) > —cofor 0 <j<nand1 <i< n. If x is in ™ =
(II°™) = 7m0, then = = Y 1 aum™x; = Y iy Z?:_Ol ;™ B3;;07 = Z;:Ol 7,077,

. . -1
where a; isin 0p, 1 < i <n, and v; = E?:o a; 7™ B;;. We have

ordy(vy;) > min (ord(ammﬂij)) >m — ¢.

If we take m > co then the v; are all in o,, so x is in M, and p°™ C M C O,
Since [Oy, : ™] is finite, we see that [M : p®™] is finite. Since ™ is mapped
isomorphically onto 1+ o™ by the exponential function, then [L : 14 p™] is finite.

O, Uy

[ I

exp

M — L

I I

em eXp 1 + pem

©
We can carry out the computation of [ker(gy) : Im(f1)] and [ker(f1) : Im(g1)] in M.
1

Since M = M, we can define f; : M — M by f(z) =z 4+ 2% +---+2° , and
g1 : M — M by gly) = y — y°. Each automorphism of K /k, is an isometry,
so if lim,, .o a, = « then we have |a,, — o, = |af — a7, so lim, ., af = a’.
Therefore exp(z?) = (exp(x))g. We have

exp (f1(a)) = exp (x +2%+- -+ x"n_1> = exp(x) exp(z?)...exp (x“n_l)

n

= exp(x)exp(x)? ...exp(x)? = fi(exp(a))

Likewise, we have exp (gl(y)) =g ( exp(y)). Since exp is an isomorphism, we have

[ker(f1) : Im(g1)] = [ker(f1) : Im(g1)]

(7.6) [ker(g1) : Im(f1)] = [ker(g1) : Im(f1)]-
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Computation of [ker(f1): Im(g1)]. Let « be in M. Then z = Zn_ol ;07" , with
a; in o,. We have

_ — o n—1n—1 o
s E(Ee ] E

i=0 j=0

If Sk, /k,0 = 0, then replace 6 with 6 + 1, which also generates a cyclic basis and
Sk, /k, (0 + 1) # 0. Therefore ker(f)) = { €M | El 0 O = O}

For y = Y375 467, we have gu(y) = g (S50 867 ) = (550 8,67 ) -
(z;:g ﬁjeffj“), 50

(78) gl(y) - (60 - ﬁn—l)g + (61 - ﬁO)QU + -+ (671—1 - ﬁn—Z)gan

We show ker(f;) € Im(gy). If S 0 a; =0, put By = o, 1 = aw + aq, ...,
Bn1=ao+ 4+ ap_1 =0. Then

Bo—Bn-1=a0, B1—Po=0a1, ..., Bn-1—Pn-2=0an1,
S0
(7.9) [ker(f1) : Im(g1)] = 1.
Computation of [ker(g1) : Im(fi]. By (7.8), we have §i(y) = 0 if and only if

Bo = Bn-1, B1 = Bo,--» Bn-1 = PBn_2, so ker(g1) = o, (Zn 190 ) Comparison
with (7.7) shows that Im(f}) is the same set. Therefore
(7.10) [ker(g1) : Im(f1)] =

PROPOSITION 7.3. If extension K, /k, is normal with cyclic Galois group, then
[up : NKp/kpUEO} =

ProoFr. Using (7.6), substituting the results of (7.5), (7.9) and (7.10) into the
right side of (7.4), we obtain

(711) [up . NKso/kpUp] =€

REMARK. Lemma 4.7 was the unramified case of lemma 7.3.
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PROPOSITION 7.4. If extension K, /k, is normal with cyclic Galois group, then
Nk, K, s an open subgroup of ki, and [k;’; : NKp/ka;;} =n.

PROOF. Applying the results of (7.2), (7.3) and (7.11) to the right side of (7.1)
produces

LEMMA 7.5. Ifi is an idele in Iy and G(K : k) is abelian then i is in Nk ndk
if and only if i, 1s in Nk, K, for every prime p of k and some prime o of K
dividing p.

PROOF. Suppose that for every p we have i, = Nk _ i, @, for o, in K¢ for some
o dividing p. This gives a set U of primes of K. Let j in Ix have components j, = o,
for p in U and j, = 1 for p not in U. Then lep Nk, /x,Jo = Nk /x,0p = i for
each p, so Nk i j = 1.

Conversely, suppose that i = Ny j for some j in Ix. Then i, = lep Nk, /x, Jo
for each p. Let the primes of K dividing p be p1,. .., p4. For abelian extensions, the
splitting groups S, all coincide, so put S, = S,,. (Chapter I, Splitting groups and
inertial groups in normal extensions.) Let o1, ..., 04 be a set of coset representatives
for splitting group S, in G(K : k). Then ]’ = p;, and 0; : K, — K, is an
isomorphism. Put 7; = aj_l. Then gJ]T-j = gy and 7; : K,. — K, is an isomorphism,
and we have

Ti

. . T] o .TJ U _ .TJ
NKsoJ-/kp -]on = <NKgoj/kP -]Pj) = H <J@J) - H <J@J> o NKm/kp']@j’
ceS(p) oeS(p)

and i, = H?:1 NKpj Jkp o, = H§=1 NKm/kpj;jj = Nk, , /k, <H§=1 JZ%), showing
that i, is in Nk, /x, Ko,

LEMMA 7.6. Nk Ik is an open subgroup of Iy.

ProOOF. If pis a ramified finite prime in K then by lemma 4.14 there is an integer
m, so that
W, (my) = {a €k | ordy(a) > mp} C Ng_ i, K.

If p is an unramified finite prime, then every unit of o, is a norm by lemma 4.7,
so W,(0) = u, C Nk s, K; set m, = 0. If p is a real infinite prime, then
W,(1) C Nk, ik, K5; set m;, = 1. For a complex infinite prime, set m;, = 0. Then

[1, W, (m,) is an basic open neighborhood contained in Nk, /1., K5
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LEMMA 7.7. If J is an open subgroup of Iy so that Iy = JI) then k*J is a
subgroup of finite index in Ij.

PrROOF. We have

L kKJI, 0 /k*
k*J  k*J T kJINI) T (k*JNIL) /k*

J is open, so k*J = Uuex+J is open. Therefore k*J N1IY is an open subgroup of I,
and (k*J N Iﬂ) /k* is open in the quotient topology. We have an open covering of
I /k*, which is compact by Proposition 6.9; therefore I /k* is covered by a finite
number of cosets of (k*JNIY) /k*.

LEmMA 7.8. If K/k is abelian then Iy = (NK/kIK) .

PrOOF. Choose one infinite prime py of k and one infinite prime gy of K which
divides pg. Given i in Iy, define ideles i’ and i” of Iy as follows. At primes p such
that p # po, put ij, = i, and ij = 1. Put i, =1i,,/c and ij = ¢, where c in ky,
satisfies |c|p, = |i|. (If pp is real and o : k,, ~ R, choose ¢ so that o(c) = |i|; if po
is complex and o : k,, >~ C, choose ¢ so that o(c) = \/m, taking the positive real
square root.) Then i = i'i”. To show that |i’| is in I{, consider

W= T Wlo ) Wloo = | TT o (ilpolpo):|lll .

P#Po P#Po el Clpo

We have |c|,, = |o(c)| = |i] if po is real, and |c|,, = |o(c)|* = [i] if po is complex. To
show that i” is in Nk, Ik, for p # po we have ij =1 € Ng_/ K}, and ij = c.
Since o(c) > 0, then c is in Nx,, /k,, Kpo- By lemma 7.5, i’ € Nk klk, and we

have shown i € (Nk Ik ) If.
COROLLARY 7.9. k*Nk i Ik is a subgroup of finite index in Iy.

LEMMA 7.10. For any finite set E of primes of k containing the infinite primes,
let

I(E)={iel ||il,=1forp¢ E}.
Then k*Ix(E) is a subgroup of finite index in Ij.

PROOF. By lemma 7.7, we need to show that Ij(F) is open and Iy = I (E)I).
We have [[, W'(0) C Ix(E), so Ix(E) is open. For the other requirement, let i be
in Ix. choose one infinite prime py. Define ideles 1, i”, and ¢ in k,,, as in the proof
of lemma 7.8. Then i =i"{, i’ isin IY, and i” is in Ix(E). Therefore Iy C I)(F)I).
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LEMMA 7.11. Let E be a finite set of primes of k containing the infinite primes.
There ezists a finite set F' of primes such that E C F' and Iy = k*I(F).

PRrROOF. By lemma 7.10, k*I(E) is a subgroup of finite index in Iy, so there
are ideles iy, ..., i, such that I = U;_; k*"Ix(E)i;. Let F' consist of the primes in
E and all primes such that |ij|, # 1 for 1 < j <. Then F is a finite set of primes,
and Ix(E)i; C Ix(F). Therefore Ix C k*Ix(F).

LEMMA 7.12. Let Hy, Hy and Hj3 be subgroups of abelian group H. If Hy C Hs

then
H,Hy Hy

Hs ~— HsoNHj3

PrROOF. The natural homomorphism Hy — (H1H2)/Hs is onto and the kernel
is Ho N Hs. (Note: the case in which H; = H3 has been used on several occasions.)

Computation of [Ik :k*Nk /kIK] . K is a finite cyclic extension of k of degree
n. Let o be a generator of Galois group G(K : k). Let E be a set of primes of k
that contains all infinite primes, all primes that are ramified in K, and primes such
that Iy = k*I(F). Let E’ be a set of primes of K containing all primes that divide
a prime of F and such that Ix = K*Ix(E’). Add to E all primes of k that are
divisible by a prime of E’. Then add to E’ primes that divide a prime in E. (Now
E’ is closed under that action p — %, and if p divides p then p € E’ if and only
if p € E.) Since Nk /xK* C k*, we have

e 1 Nic i) = () 1 Naepe (K T ()] = [k T kN (I ()]
Using lemma 7.12, we obtain

[T : K*Ni k] = [I(E) : KNk i (I (E')) N L(B)] .
Since Nk /i (I (E')) € Ii(E), we have

[Ik(E) N NK/k (IK<E/))]
[k*NK/k(IK(E’)) NIk(E) : NK/k(IK(E’))]
Again, since N /i (Ix (E’)) C Ix(E), we have

k"Nk /i (Ik (E)) NIe(E) = K*(E)Nk /(I (E')),
where k*(F) = k* N Ix(F) is the group of E-units of k. Therefore

[Ik(E) : Nk i (I (E'))]
[k*(E)Nk k(I (E)) : Nk x(Ix (E"))]

We need to compute the numerator and the denominator of (7.12).

[Ik : k*NK/kIK] =

(7.12) [Ik : k*NK/kIK] =
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The numerator of (7. 12) We have a map [[,cpk; — Ik(E), and we can

identify an element of [[ . k; with its image in Ix(E). Define I {E} to be
L{F}={icl |i,=1forpec E}.

Then
L(E)= | [[ X% )N {E}).

pelE

By lemma 4.7 and lemma 7.5, we have (Ix(E) NIx{E}) C Nk Ik (E’), so

(7.13) L(E)= | [[ % | NIk (E).

Substituting (7.13) into the numerator of (7.12) gives

I (E) : Nx (I (E))] = | | [] %5 | Nrwdx (E') : Nkl (E)

Applying lemma 7.12, we have

L (E): Nxa(Ix(ED))] = || [T % | - [ [] X | N Nxx(Ix(E))

peE peEE

For each p in FE, choose one p in E’ that divides p. By lemma 7.5, we have

1% | "Nk (Ix(E)) = [ Nk, K
peEE peEE
Therefore
L (BE) : Nk (I (ED)] = || [T % | ¢ ] N, K
peE peFE
= ] [k : Nk, Kj]
peE

The degree n, = [K,, : k,] does not depend of the choice of g, so we obtain the
following formula for the numerator of (7.12).

(7.14) I(E) : Nx (I (E))] = [

pelE
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The denominator of (7.12). Applying lemma 7.12 to the denominator, we
have

[k*(E)Ngk/x (Ik (E)) : Nijx (Ix(E'))] = [k*(E) : k*(E) N Nk (Ix (E'))]
from which we obtain
(7.15)  [k*(E)Ngk/k(Ik(E")) : Nk (I (E'))]

(k" (E) : Nic/i (K(E"))]

Substituting (7.14) and (7.15) into (7.12) gives the following formula.

_ ( HpeE Np
k*(E) : Ng i (K(E)

] ) [k*(E) NNk /x(Ix(E")) : N,k (K(E"))]

Computation of [k*(E) : Nk i (K(E’))]. By the unit theorem 6.13, if E con-
tains s + 1 primes py, ..., ps then k*(E) is the product of a finite group and a free
abelian group on s generators. Each prime p; is divisible by ¢; primes of K. The
number of primes in E' is ' + 1 =Y 7_, ¢;, and K*(E’) is the product of a finite
group and a free abelian group on s’ generators.

If p is a prime of K dividing prime p of k, then g is in E’ if and only if p is in
E. Therefore

k*(E)={acK"(E') | a" =afor T € GK:K]}.
The cyclic Galois group G(K : k) is generated by o, so
(7.17) kK*(E)={aeK"(E')|a” =a} ={a e K*(E) | a7 =1},

We will apply Herbrand’s lemma with J = K*(E’). Note that K*(E")? C K*(E")
since p° € E’ if and only if p € E'. Put g : K*(E’) — K*(E') by g(a) = a'~°.
Put f: K*(E') — K*(E') by f(a) = Ng/xa = altot+o"" Then fg=gf =1,
so the requirements of Herbrand’s lemma are met. We have Im(f) = Nk K" (E’),
and by formula (7.17), we have ker(g) = k*(E), so
(7.18)

Ry N , _ : [ker(g1) : Tm(f1)]
() Nagp (K(E")] = [her(g) : I(7)] = [ke() : Ton(g)] prom S0 P

It remains to compute [ker(f) : Im(g)], to choose subgroup L, and to compute
[ker(g1) : Im(f1)] and [ker(f1) : Im(g1)]-
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Computation of [ker(f) : Im(g)]. By Hilbert theorem 90, if f(a) = 1 with a €
k*(E) then there is an element 3 € K* such that « = 3'79. The following lemma is
needed to insure that 8 may be chosen from K*(E’), which will show that ker(f) C
Im(g), so we have

(7.19) [ker(f) : Im(g)] = 1.

LEMMA 7.13. If a € k*(F) and Nk /xa = 1, then there is an element 8 e
K*(E') such that o = (8')17°.

PROOF. Let a = 177 with 8 € K*. If we can find v in k* so that 3y € K*(E'),
then (By)!77 = 179 = q, so ﬁ’ = [ will satisfy the conclusion. Let p be any
prime not in E'. Put p; = p° for 0 < i < g;. Then p; ¢ E', so |a|,, = 1. We

have
i —1
aa’

o 6Ji_o_i+1 601’ ﬁa_H»l

©i

1=|a

& § £

Therefore | i

i1 .
o =187 |, so for any p not in E we have

—1

Bl, =167, =---= |87

©

This also applies to p;, so we have |3y, = |37]p, = [B],-+ = |Blp,,. Therefore

m‘p = |5’p0 = |5’p1 == m‘pgiﬂ‘

Because p is not in E’, the extension K, /k,, is not ramified, so there are elements
in kj; of every value. In particular, there exist an element A, € kj such that
Aploo = 18]po- Since A, is fixed by o, we have

AO’

p

A

p

Pi — |5’p0 = ’)‘P‘po =

—1

|6

o

g o4 = |)\p‘pZ

Let idele i € I, have component i, = A\, for p ¢ E, and i, = 1 for p € E. If
o ¢ E' then |Bi~!|,, =1, so i~! € Ix(FE’). Using the imbedding I, — Ik, we
have Ix(E) C Ix(E'), so

Put i = §j with § € k* and j € Ix(E’). Then Bi~! = 86~ 1j= 1. Since i~! and j!

are in Ix (E'), then so is 3671 in Ix(E’). Therefore 3671 € K*(E'), so v =401 is
the required element.
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The subgroup L. If pg,...,ps are the primes in E, each p; in F splits into g;
primes in K. We claim that there exist elements in J = K*(E’) as follows.

(1) Elements 7, ...7 so that ;7 = 1.

(2) Elements Hy, ..., Hs so that H{"gZ = H, and lLIiH‘H""JrU%_1 =1.

(3) The elements 7y, ...,ns, Ho, HY, .. nggsz, .. He ,H?, .. .,Hgg“ are in-
dependent and generate a subgroup L of finite index in J = K*(E’). (If g; = 1 then
H; is omitted.)

We will now apply Herbrand’s lemma using the subgroup above L to compute
[ker(g1) : Im(f1)] and [ker(f1) : Im(g1)], after which we will show that L is a
subgroup of finite index in J.

Computation of [ker(gy1) : Im(f1)] and [ker(f1) : Im(g1)]. A typical element of L
has the form . .
A = Hnul HHZ’UZ(U)
i=1 =0

where v;(0) is a polynomial with rational integer coefficients of degree at most g; —2.
Note that Ny i H; = 1, because if Z; is the subfield of K fixed by the subgroup
< 09 > then H; € Z; and

sz/kHZ = Hil‘f‘o’—i—-.._i_o_gi,l 1

Y

so Nk /H; = Nz, Nk ,z,H; = Nz, )\ (H; )*/9 = 1. Therefore,

= H pn H NK/kHivi(G) _ H "
=1 =0 i=1

The right side is an element of L, so f(L) C L, and we have

(7.20) Im(f;) = {Hn’“‘" u; € z}

Since the 7; are independent, the kernel of f; is
) € Z[o] and deg(v;) < g; — 2} :

(7.21) ker(fy) = {HHUI(G)

Next, we find the kernel and image of g;. We have

(7.22) g1(A) = H H;Ui(a)(l—a).
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. 9. . vt g9i—1
Let m; be the coefficient of 092 in v;(c). Since H; tot+7 =1, we have

i@ (=0) _ gui(e)(A=o)tmi(l+ot- 4091

7 9

and v;(0)(1 — o) +m;(1+0+---+0%71) is a polynomial of degree at most g; — 2.
Therefore ker(g;) is the set

ker(g1) {H n HH vi(o)

There exist polynomials a(z) and b(x) so that (1—z)a(z)+(1+z+- - -+x9% " 1)b(z) =
L. ffv(o)l—0)+mi(l+o+-+0%1) =0, then v;(c) = 1 +0+ -+
o9 1) (vi(o)b(o) — m;a(o)). Since the degree of v;(0) is at most g; — 2 then we
must have v;(c) = 0. Therefore

(7.23) ker(g1) {H n' }

For the computation of Im(g;), we have the following lemma.

o)(l—o)+m;(1+oc+-- —1—091'_1)20}.

LEMMA 7.14. A necessary and sufficient condition for polynomial h(x) of degree
at most g — 2 to be of the form

h(x) = U(.r)(l - x) + m(l +x4+---+ xg—l)
where m is a rational integer and v(x) is a polynomial of degree at most g — 2 is

h(1) = 0(mod g).

PrOOF. If h(z) = v(z)(1—x)+m(1+z+---+2971) then h(1) = mg. Conversely,
suppose h(1) = mg for some integer m. Let v(z) be the quotient of the division of
h(z) —=m(l+z+---+2971) by 1 — 2. Then we have
h(z)—m(l+z+--+29"") =v(z)(1—z)+r where deg (v(z)) < g—2, and r € Z.

Setting x = 1, we conclude that r = 0, so h(z) = v(z)(1—z)+m(l+z+---+2971).
Applying lemma 7.14, we see that (7.22) is equivalent to

(7.24) {H H()

= 0(mod g;) and deg (h;) < g; — 2}
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By (7.22) and (7.19), we have

(7.25) ker(ga) : Tm(f1)] [H i Hn”m] — .

By (7.21) and (7.24), we have

deg(vi) < gi = 2,

ker(f1) : Tm(gy)] [HHW Hﬂh W] deg(hi) < g; — 2
hi(1) = 0(mod g;)

In the homomorphism H'"”) — Z/(g) by H*”) — v;(1)(mod g), the kernel con-

)
sists of those h;(o) such that h;(c) = 1(mod g;), so H;“(U)/H;“(U) is isomorphic to
Z/(g;). therefore

(7.26) [ker(f1) : Tm(g1)] ng
From (7.25) and (7.26), we have

ker(gy) :Im(f)] _ _n°  _ lyp(n\_ Ly _loq,
T2 ker(f) - mlgn)] ~ Ty ‘nH<gi) o L= 1L

=0 peE

From (7.27) and (7.18), and recalling that [ker(f) : Im(g)] = 1, we have

(7.28) [k*(B) : Ng i (K( H n, =

Substituting the right side of (7.28) into (7.16), we obtain
(7.29) [Ik : k*NK/kIK] = [K : K] [k*(E) N Nk /x (IK(E’)) : Nk /k (K(E’))] .
Except for constructing generators for subgroup L, we have finished the proof of

the first fundamental inequality.

FIRST FUNDAMENTAL INEQUALITY. If K is a cyclic extension of k then
[Ix : k*Nk Ik | is divisible by [K : K].

PROOF. The term [k*(E) ﬂNK/k(IK(E’)) : Nk (K(E"))] in (7.29) is finite

because it divides [k*(E) : Nk i (K(E’))], which has been shown in (7.28) to be
finite.
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Construction of generators for subgroup L. For each prime p = p;, 0 <
i < s, in E, there are g = g; primes of K dividing p; their splitting groups coincide
and so may all be denoted by S,(K/k). Since [G(K/k) : S,(K/k)] = g then
Sp(K/k) is generated by o9. Let Z be the subfield of K fixed by S,(K/k). Then
G(K:Z) = S,(K/k). To determine S,(K/Z), for prime p in E’ dividing p we have

So(K/Z)={r € GK:Z) | ¢" = p}
= {1 € 5,(K/k) | ¢" = p} = S,(K/k) = G(K : Z).
Then [G(K : Z) : S,(K/Z)] = 1, so each prime p of K divides exactly one prime

© of Z. The subgroups S,(K/Z) all coincide with S,(K/k). We next determine
the splitting groups S,/ (Z/k). We have the exact sequence

1—-5,(K/k) —GK:k)—G(Z:k)— 1.

Let 7 be the image of 7 in G(Z : k). Then
S (Z/k) = {T€ Gz K) | ¢ =¢'}.

We have /7 = (pN0z)" = p" N0z = p™, s0 o7 = ¢ if and only if 7 = ¢ if
and only if p” = p. Therefore 7 € S,/ (Z/k) if and only if 7 € S,(K/k) if and only
if 7 = 1. This show that S,/ (Z/k) =1 so

Z, =k,.

To determine the parameters € and f’ for the splitting of prime @} in K, the
extension K, of Z is identical to extension K, of k,, so we have ¢/ = e and

fr=1r

LEMMA 7.15. Let p be a prime of abelian extension K ofk, and let Z the subfield
fized by the splitting group S,(K/k). If a is in K*, we have ‘NK/za‘p s greater
than 1, equal to 1, or less than 1, if and only if ]a\p 1s greater than 1, equal to 1,
or less than 1, respectively.

PRrROOF. The proof depends on the fact that g is the only prime of K dividing
prime o’ = N Oz of Z. For « in K* the formula expressing Ny sz« as the product
of local norms reduces to

NK/Za = NKKJ/Z@/O-/'

Therefore

Nk, za o = ’NK@/ZKJ/O"@, = |af,, .
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Applying the above formula (twice!) to the element Nk /za, we have

Nzl = [Nic/z (Nicjze), = | (Nagjz) 7| = lal

from which the conclusion follows immediately.

REMARK. The primes of F are pg,...,ps. For each p; in F, choose one prime
©; in B’ which divides p;. Prime p; splits into g; primes in K. Splitting group
Sp, (K/k) is generated by 9%, and g;, 97, ..., pggifl is the complete list of distinct
primes of K dividing p;. The number of primes in E" is s’ +1=3"7_, g;.

LEMMA 7.16. If a single prime g; is selected then there exists an element o in
K* so that

o, > 1 and laf, <1 for p € E', o # @;.

©

PROOF. F contains at least one infinite prime, so we take ps to be infinite. Then
@s is also infinite. Let v be a positive real constant so that v > max(u, 1) where
constant mu is defined below. If s = 0 then there is nothing to prove. We construct
idele j € Ix by choosing components j, in the following order.

Ifi=1...,s—1, choose components as follows:
(1) At p ¢ E’, choose j, =1 .
(2) At p € B, p # p; and p # ps, choose j, € K7, so that [j|, < 1
(3) At p;, choose j,, € K, large enough so that [jlo, > v cpm ozp. or.
(4) At ps, choose j,,, € K7, so that [j| = 1.

From (3) we have []

it

oe B ptp. Ml > v. Then from (4), we have

. o1 1

j
PEL’ pFps

If ¢ = s, choose components of j as follows:
(15) At p ¢ E’, choose j, =1.
(25) At p € B, p # @5, choose j, € K7, so that |j|, < i
(35) At s, choose j € K, so that [j| = 1.

From (3;) and (25), we have |j j|;1 > (V)S/ > v.

Ps — HpGE’,pﬁéps

By our construction, j is in Ix (E') NI . By lemma 6.10, there exists a constant
w so that

1
Ix(E') N1 = K*(E) {i € Ix(F') | < il <pforpe E}
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Therefore there exist element o € K*(E’) and idele i € Ix(E’) so that j = ai and
i satisfies the condition % <li], < p for p € E’. For p; we have

T o—1 4
|alp, = lile: i, >;>1
and for p € E', p # p; we have
o e — Y
o, = |-]|P‘l|p1 < " < 1.
LEMMA 7.17. There exist elements Hy*, ..., H:* in K* so that

[H™ ], >1  and  [H|, <1 forpeE,p# @i

PrOOF. Apply Lemma 7.16 for i = 1,...,s.

LEMMA 7.18. Let H}*,..., H** in K*(E') satisfy the conclusion of lemma 7.16.
Let Z; be the subfield fized by splitting group Sp,(K/k) =< 0% >. Put Hf =
Ny ,z, H;*. Then elements

1

(HY)y -y (H(B“)Ugi’ e (HD), (H*)Jgs—1

S

satisfy the condition

[k

7

J J

>1 and ’(H?*)”

7

<1 if pekF andp;épfj
©7 ©
PROOF. The primes of E’ are p;-’j for 0 <i <s,0<j < g Suppose that
in £’ does not divide p;. Then p = % with i’ # i. We have [K : Z;] = n; where
n = n;g;. Then

ni—l kg, ni—l
|Hlp = ‘NK/ZZ'H;*‘@ = H (H;")” = H |H;*|pg—k9i <1,
k=0 k=0

%

because none of the po'_kgi coincide with p;, so all of the terms |H£k*‘po—kgi are less
than 1.
j c—1
We also have to check (H})?" at g;, 97,...,97"" . Since Hf = Ny /z,H;* and
|H}*|p, > 1, then by lemma 7.15 we have
)

(3

— *|
L =]

K3

pi>1’

For o = o’ # g7, we have g7 # p; 0
(H;)”

(2

= H e <1,

showing that the (H, f)“j satisfy the required conditions.
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LEMMA 7.19. Put U;; = (H{")”j, 0<i<s,0<j<g;. There are s’ + 1 pairs
(2,7). If we exclude U, j, for one pair (ig, jo), then the remaining s’ elements U,
are independent.

PROOF. Suppose that []i; o ¢0 o) U;;.” = 1. Let
F':{(i,j)’a¢j>0} and F”:{(i,j)}ai]‘<0},

so F'' N F"” = () . Suppose that F’ is not empty. Then

o= 11 v

(i,)EF’ (i,5)eF"

where b;; > 0. Let p;;’j be denoted by g;;. Since (ig, jo) ¢ F' U F" we have

IT v or
030

J
C , .. . ®igio
(i,J)EF (i,J)EF

This show that F”' cannot be empty. By the product formula, we have

| I vy| = II| IT viy| = II II |oiy

—1.
o |(i.j)eF pEE" |(i,j)EF pEE’ (i,j)EF v

8]

Since @;,;, € E’, there exists (i;, 1) so that

IT |or| - 11 o] >

(i,5)eF”

LEMMA 7.20. Suppose that A is an abelian group containing a subgroup Ay of
finite index in A, and Ag is free abelian on s’ generators. Let B be a subgroup of A
containing s’ independent elements. Then B has finite index in A.

PROOF. Take B’ to a subgroup of B generated by s’ independent elements. Then
B" € B C A. Let [A: Ay = m. Replace B’ by By = mB’. Then By C Ay and
By has s’ independent elements. Let x1,...,2zs be a basis for Ag; let yq,...,ys
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be independent in By. Let y;, = 2;21 a;;x;. Matrix (a;;) is non-singular, because
otherwise there exist integers by, ..., by, not all zero, so that Zf:o bja;; = 0. Then
Z::O bzyz = Ef:o E;:O biaij.ij = Z;:O Efzo biaijxj = 0, which is impossible.
There exists an integer matrix (c;z) so that (c;x)(ak;) = al, where a = det(a;;).
Then

’ ’

Z CikYk = Z Z Cikak;T; = ax; € By.
k=0 k=0 j=0

Therefore aAg C By, so [Ag : Bo] < [Ag : aAp] = a® | so [A: Bl <[A: By =[A:

Ag|[Ao : By] < ma® , which proves the lemma.

We now define the elements 7y, ...,ns and Hy,..., H, as follows.

n; = Ng, ncH; and H;=n; ' (H)? for0<i<s

7

These satisfy the first two of three required conditions.

(1) m; is in k*(E), son, 7 = 1.

(2) Nz, j1cHi = Ny, e (n; H(H7)9) = n; %t = 1.

Let L be the subgroup generated by the following elements (This is one more
than we need, but we will show that 7y may be discarded.)

o902 g9s—2

770,...77737H07..., 0 7"'7HS7"'7 0

Since Nz, i H; = 1, then H}+”+"'+0gi_1 =1, 0or H ' = (Hi1+0+m+ggi_2)_1, S0
- ; i\ 9i i\ 9i -

Hfgz "isin L. We have Hf] = 777;_1 (Hfgj) , SO (Hfgj) = meJ is in L for
0<j<g;—1. Bylemma 7.19, we know that L contains s’ independent elements,
so by lemma 7.20 subgroup L has finite index in K*(E’). We still need to discard
one element. If we could discard one of the HY ’ leaving s’ independent elements,
then 7o, ...,ns would be a set of s+ 1 independent units in k*(FE), but this would
be a violation of unit theorem 6.13. Therefore we must discard one of the n;. After
relabeling the 7;, we obtain the following set of s’ independent generators for L.

095*2

(7.29) M.ne, Ho,y . HE™ ", ... H,, ... Hg

Condition (3) is now satisfied: elements (7.29) are independent and generate a
subgroup of finite index in K*(E’). The completes the proof of the first fundamental
inequality.



