CHAPTER VI

IDELE CLASS GROUP AND THE UNIT THEOREM

The ring of adeles. Let k be an finite extension of the rational number field.
An element a of the direct product [] k; of all completions k,, is an adele of k if
every coordinate a, is in 0, except for a finite number of p. Let Ax denote the set
of adeles of k. Ay is a ring, and the idele group Iy is the group of units of Ay. As
with ideles, |a,|, is denoted simply by |al,.

For the topology of Ay, basic neighborhoods are defined as follows. Choose any
finite set of primes E of k, and for each prime p in E choose a positive real ¢,. Then

{bcAx||b—a|,<¢ forpe Fand |b—al,<1forp¢ E}.

is a basic neighborhoods of adele a.

LEMMA 6.1. Let p be a prime of k, let K/k be a finite extension, and let
©1,-..,80q be the primes of K which divide p. Then there is a natural isomorphism
oc:Kekk, > K, & - @K, of algebras over k.

Proor. Elements of k are denoted by lower case a, b; elements of finite extension
K by upper case A, X; elements of k,, by «, 3,v. Let o; be the imbedding of K into
completion K,,. Then o(4,3) = (01(A)B,...,04(A)B) is a k-bilinear mapping of
Kxk, to K, ®---®K,, . There is a k-linear mapping o : K&k, — K, & - 6K,
such that o(A® ) = (61(A)B,...,04(A)B). Both K @k k, and K, @ --- ® K,
are vector spaces over k;,. We have 0 ((A® )(A'®3)) = 0(A® ) sigma(A'® 3'),
and o is k,-linear.

Let X1,..., X, be a basis for K over k. We want to show that X;®1,..., X, ®1
is a basis for K ®k k,, over k,. An element of K ®yk, is a finite sum 221:1 A ® Br.
Let Ay =Y ., X;aix. Then

S Ar@B =) <<2Xiaik> ®5k> =3 ) Xi®anb =) Xi® > aib
k=1 i—1 k=1

k=1 i=1 k=1i=1

Then every element of K®yk,, is of the form Z?:l X;®v;,80 X1®1,...,X,®1 span
K®yk, over k,,. We will show that X; ®1,..., X,,®1 are linearly independent over
48
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k,. Suppose that Y " ; X; ® ; = 0. Multiply both sides by X; ® 1 for 1 < j <mn
to obtain a system of n linear equations.

Y XiX;®y=0 1<j<n.
=1

The trace Sk /k : K — k is k-linear, so we can apply Sk /x ® I : K ®x k, — k;, to
both sides of each equation, obtaining

Sk ®I)) XiX; @ = ZSK/kXX) =0 1<j<n
=1 =1

Matrix ( Sk, (X;X;)) is non-singular by proposition 4.4, so y1 = -+ = 7, = 0.
This shows that X; ®1,...,X,, ® 1 are linearly independent over k,,.

Since Y7, [K, : kp] = [K : k] = n then algebras K ®y k, and K, &--- &K,
have the same dimension over k,. The isomorphism will be established if we can
show that ker(c) = 0. If 0 (X1 ® 71 + ... X,, ® y,) = 0, then multiply both sides
of the equation by o(X; ® 1) for 1 < j < n to obtain the following system of linear
equations.

g <Z(Xin®%'>> :ZU(Xin®% )=0for1<j<n.
i=1

=1

In Ky, @---® K, we have

(6.1) (Zal (XiX;) Vi - - - ZO—QXX ) 0.

=1

The trace function Sk /i is the sum of local traces (1.5).

Sk/k(4) =) Sk, /i, (7k(A)).

Each coordinate of (6.1) is zero, so we have

g n
ZSka/kp (Z Uk(Xin)%> =0 forl<j<n,
k=1 i=1
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or

n g n
Z (Z SK@k/kpUk(Xin)> Yi = ZSK/k(XZXJ)’YZ =0 for 1 S] S n.

i=1 \k=1 =1

Since det (SKk(Xin)) # 0, we conclude that v; = 0 for 1 < j < n, and the proof
is complete.

REMARK ON THE TRACE FUNCTION. If prime p of k splits into primes o1, ..., g4
in extension K, then for each prime p; we have the embedding o; : K — K, and
the mapping 0 : K — K, @---®K,, , where o(A) = (01(A),...,04(A)). Consider
the function S : K, @ --- ® K, — k;, defined by

S(Ai1,..., Ag) =Sk, /i, (A1) + -+ Sk,_/k,(4g).

Then for A in K we have Sk /i(A4) = S(U(A)). (Chapter I, norm and trace func-
tions.) On K ®y k, we have k-linear transformation Sk ® I, which is actually
k,-linear.

K ®x kp L@ Z?:l Ksoz'
(62) J{SK/k®I J{S
kokk, —— k,

In diagram (6.2), for A in K, on the one hand we have ¢ (Sk/ ® 1) (A® 1) =
t(Sk/k(A)®1) = Sk /k(A), and on the other we have S((c®I)(A®1)) = S(c(A)) =
Sk /k(A). Therefore ((Sk/kx ® I) and S(o ® I') agree on elements A® 1 in K @y k.
If X1,...,X, is a basis for K over k then ((Sk,x ® I) and S(oc ® I) agree on
X1 ®1,...,X, ®1, which is a basis for K ®x k, over k,. Since K ®x k, and

7, K, have the same dimension over k,, then +(Sk/x ® I) and S(o ® I) agree
on all of K ®x k,;,, so we have

(6.3) ZSK/k(Ai)'Yi = stpj/kp(lﬁ) if (o0® I)(Z A @) = (Y1,...,Y,).

=1
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PrROPOSITION 6.2. K ®yx Ax ~ Ak, and if X1,...,X,, is a basis for K over k
then
XA+ + X, Ax = Ak.

PrROOF. The mapping Ax to Ak is defined as follows. Each adele a in Ay
determines an adele a in Ak by a,, = a,, where p is the prime of k which g divides.
An element A of K is mapped to the diagonal of Akg. Each product Aa is an
adele because both |A|, < 1 and |a], = |a|, < 1 except for a finite number of
primes p. The map K x Ay — Ak sending (A4, a) to Aa induces a homomorphism
K ®x Ax — Ax of algebras over k. We can identify a with its image a, so the
homomorphism may be written simply as A ® a — Aa.

We need to show that K ®x Ak is mapped onto Ak. Choose a basis X1,..., X,
for K over k. Then X; ® 1,...,X,, ® 1 is a basis for K ®x k,. Let (A,) be an
element of Ak. For each prime p of k, let p1,...,p, be the primes of K that
divide p. We have the projection m, : Ax — >.7_, K., and the isomorphism
(c®I): Kok, — > 7 K, For each adele (A,) of Ak, there exist unique
coefficients ~;(p) in k,, for 1 <1i <n, so that

(6.4) (c®1I) <Z X;® %(p)) =m((4p)) = (Agy, .. Ay, -

The 7;(p) determine elements ay, ..., a, in [] k, such that the p-coordinate of a;
is vi(p). Then Y | X; ® a; maps to (A,), but we need to check that each a;
is an adele in Ay, i.e., that |y;(p)|, < 1 except for a finite number of primes p.
Multiplying both sides of (6.4) by (0 @ I)(X; ® 1) = (0, (X}),...0p,(X;)) for
1 < 5 < n, we obtain a system of n equations for each prime p of k.

(6.5) (o0 ®1) (Z X:X; ® %(p)> = (Ap,00,(X;), ..., A, 00, (X)), 1< j <n.

Applying identity (6.3), we obtain

n g
(66) > Swmw(XiX;)i(p) = D Skppsi, (A0 (X)), 1<j<n.
=1 k=1

Let E contain all primes p of k such that p is infinite, or ‘ det (SK/k(Xin)) ‘p #1,
or p is divisible by a prime p of K for which either |A|, > 1 or |o,(X;)|, > 1 for
some j, 1 < j < n. For all p not in FE, the right side of (6.6) satisfies

g
Z SKm/kp (Am O o (Xj))
k=1

p

< max (\Ska/kP (400, (X)) )p) <1 forl<j<m
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In system (6.6) for p not in E, all the coefficients Sk /i (X;X;) are in o,, the de-
terminant det (SK k(XX ])) is a unit of o,, and the right side terms are all in o,,.
Therefore, we have 7;(p) in o, for 1 <1i <n and p ¢ E, showing that a; is an adele.
Finally, since we identify a in Ay with its image in Ak, every element of Ak is of
the form (e ® I)(>_1; X; ® a;) = Y., X;a;. This completes the proof.

LEMMA 6.3. The group Aq/Q of adele classes is compact and there is a compact
subset C of Aq such that Aq = Q + C.

PROOF. Since o, is compact for each finite rational prime p then the subset C

defined by
1 1
C = HO;DX|:_§7§:|CAQ
finite p

is a compact subset of the adele group Aq. If a is an adele in Aq then there is
a finite set E of primes so that |a|, < 1 if and only if p is not in E. For a finite
prime p in F, we have a, = u,/p"?, where u,, is an element of o,, and n, > 0. Put
u, = my, +vpp"? where my, is a rational integer, 0 < m,, < p"?, and v,, is an element
of 0,. Define o to be the rational number

a:Z]ZLL};'

peEE

For each finite p not in E we have |a — a|, < max (|a],,|a|,) = 1, and for each
finite p in E, we have

My, + Up,p"? m m m
|a_a|p — P p. R Z Z q — ,Up_ Z q Sl

Mp Mp Ng Mg
p p q€E, q#p q » g€, q#p q p

At the infinite prime p = oo, there exists a rational integer p such that [a—a— oo <
%. At all finite primes p, we have

la—a— pl, < max(Ja— al,, ul,) < 1.

We have shown that there is a rational number = o+ p so that a— g € C. Then
the continuous homomorphism A — A/Q maps compact subset C onto A/Q, so
A /Q is compact

LEMMA 6.4. Ifk is a finite extension of Q then the group Ay /k of adele classes
1s compact, and there is a compact subset C of Ay so that Ay =k + C.

Proor. Let x1,...,2, be a basis for k over Q. Then Ay = z1Aq+---+2,Aq
by lemma 6.2. If a is in Ay, let a = z1a; + --- + z,a, where a; is in Aq for
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1 <i < n. By lemma 6.3, there is a compact subset C’ of Aq so that Aq = Q+C’,
so a; = [3; + ¢;, where 3; is in Q and ¢; is in C’, for 1 < i < n, and

a=(z161+ - +x.8,) + (xr101 + -+ 25¢,) € k+2:C' +...2,C".

Subset C = 21C’ + ...2,C’ is a compact subset of Ay and Ay = k + C. The
continuous homomorphism Ay — Ay /k maps C onto Ag/k, proving that Ay /k is
compact.

Haar measure. Both k, and Ay are locally compact topological groups so
Haar measures may be defined. For infinite primes p, take the ordinary Lebesgue
measure on R or C for the Haar measure m, on k,,. For finite primes, the measure
my, is chosen so that my(o,) = 1. The cosets of p" are open subsets of compact
subset 0, so the measure of each coset should be Np™". Take the smallest o-algebra
containing all cosets a+p" for v in k,,. Since every coset of p" is the disjoint union
of cosets of p"t* for k > 0, then every union of cosets is equal to a union of cosets
of the same power of p.

LEMMA 6.5. If S is a measurable set of k,, and o is an non-zero element of k,,
then my,(aS) = |alpm,(S).

PROOF. Let |al, = Np™™, so a = un"™ where u is in u,, (7) = p, and m
may be positive, zero or negative. S is a union of cosets § + p"™ and we may take
n > max(—m,0). Then a5 is a union of cosets af + p"*™ where n +m > 0, and
mp(a+p"t™) = Np~ "™ = |a|,m,(8+p™). This shows that m,(aS) = |a|,m,(S).

Haar measure on the ring of adeles. Take F to be a finite set of primes of k
containing all infinite primes. For each p, let E, be an open subset of k,, for which
my(Ep) is defined and for which E, = o, for all p not in F'. Consider subsets E of
Ay of the form E =[] Ej. Every adele of Ay is in some E. Define the measure
m(E) to be

m(E) =[[m(E,).

The product is defined since my,(E,) = my(0,) = 1 for all but a finite number of p.

LEMMA 6.6. If E is a measurable set of Ak and i is an element of Iy then
my(iB) = [ijm(E).

PrOOF. It is enough to check sets of the form E = Hp E, such that E, = o, for
p not in some finite set F;. Suppose that |i|, = 1 except for p in finite set F,. Then

iE= [] LB, x [] o

pEF1UF> pEF1UF>
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We have

m(iE) = H my(ip Ep) = H (|i|pmp(Ep))

peEF1UF> pEF1UF>

= H lilp H my(Ep) = [ijm(E).

pEF1UF> peEF1UF>

Given an R-valued function f : Ax — R such that f(a) =Y ., f(a+a) exists,

the value f(a) depends only the coset @ of a in Ag. Define f(a) = > o f(a+ ).
If f is an integrable function on Ay then

Akf(a)da:/Ak/kaf(ajLa)da:/ (a) da

A /k

Ay /k is a compact group, so it must have finite measure.

LEMMA 6.7. Let S be a measurable subset of Ax such that m(S) > m(Ax/k).
There exist a1 and as in S so that a; # as and a; — as is an element of k*.

PROOF. Let x be the characteristic function of S. Then ) ., x(a+a) > 1 at
some a because otherwise we would have

m(S) :/Ak x(a) da:/Ak/k (Z X(a+a)> da < /Ak/kldﬁzm(Ak/k)

ck

If Zaek x(a+a) > 1 then there exist a3 and oy in k so that a; # ag, a1 = a+a; €
Sand as =a-+ag €S.

LEMMA 6.8. k is a discrete subgroup of Ay.

PRrROOF. Let a be an element of k. Choose any prime py of k. Then

1
U:{aEAk | la—al, € o, for p # po and |a — alp, <§}

is an open neighborhood of «, and U Nk = {a}.
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PROPOSITION 6.9. Let I) be the subgroup of Iy consisting of all ideles i such
that |i| = 1. Then I contains k*, and the group of idele classes I)) /k* is compact.

ProOOF. Lemma 6.6 insures that Ay has arbitrarily large compact subsets, so
choose a compact subset C C Ay so that m(C) > m (Ag/k). Subtraction (a,a’) —
a — a’ and multiplication (a,a’) — aa’ are continuous functions, so C' = C — C
and C” = C'C’ are compact subsets of Ax. By lemma 6.8, KN C” is a finite set.
Let KNC"” = {&,...,&,}. Then V = C'U& 'C/U---UE, 1C is a compact subset
of Ak.

For any finite set E of primes of k, the subset

Aw(E) =[] kp x [] o

peE p¢ E

is open in Ay, and Ax C UgAg(FE). There exists a finite number of sets Ey, ..., E,,
so that compact set V is contained in Ax(E1)U...Ax(E,,). If By = E1U---UE,,
then Ayx(Fp) = Ax(E1) U...Ak(FEy), so V is contained in Ag(Ey). For each p,
the function a — |a|, is continuous, so |a|, is bounded on compact set V. Since Ej
is a finite set of primes, there exists a positive bound ¢ so that |a|, < J forain V
and p in Ey, and we have

(6.7) ve [[{eek, |la, <} x [] o

pEEy p¢ Eo

Suppose that c is a unit of Ay (i.e., an element of Ij) such that c and ¢™! are in
V. Then by (6.7) both ¢ and c~! are elements of W defined by

(6.8) W = H {a ek ||al, <dand o', <6} x H oy,

pEEy p&Ey

which is a compact subset of the idele group Ix. (Group 0, is compact because it
is the union of Np — 1 cosets of ideal p, and each coset is compact because ring o,
is compact.)

Suppose that i is an idele in I). If we can show that i is in k*W, then I{ /k*
will be the image of compact set W, which will prove the proposition. Both iC
and i~1C are compact subsets of Ay. Since |i| = 1, we have m(iC) = m(C) and
m(i~'C) = m(C). By lemma 6.7, there exist elements ia; and iaz in iC so that
ia; —ias is in k*. Put ¢; = a; — as. Then c¢; is in C’ and ic; is in k*. Likewise,
there exist elements i~'b; and i~ 'bs in i7'C so that i 'b; — i~ 'by is in k*. Put
Cco = b; — bsy. Then c5 is in C’ and i~ e, is in k*.

The product (icl) (i_lcg) = cice isin k*NC", so cieo = &; for some i. We have
c; € C' C V. Also we have c; ' = ¢ ey so ¢! € ¢ 1C/ € V. Therefore ¢; ! is in
W, and i = (ic;) c; ! is in k*W, which completes the proof.
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LEMMA 6.10. If E is a finite set of primes of k, let k*(E) be the subgroup of
E-units in k.
k*(E) =k" NIk(E).

Then (Ie(E) N 1Y) /k*(E) is compact.

PROOF. In the following diagram, the kernel of u¢ is k*(F), so induced homo-
morphism ¢/ is an isomorphism onto a subgroup of I /k*.

L

L (E)NI? .

| [

(L(B) N 1) /k* () —— 10 /K"

The map ¢/ is open because if V is an open subset of (Ix(E) N I{)/k*(E) then

,u’_l(V) is open in Ix(E) N I?, inclusion ¢ is an open mapping, and the natural

homomorphism y is an open mapping. Therefore the image ¢/ ((Ik(E) ﬂIﬁ) / k*(E))
is an open subgroup of IY /k*. An open subgroup must be closed, so ¢/ ((Ik(E) N
I)/k*(E)) is a closed subgroup of compact group I{/k*. Therefore (Ix(E) N
Iﬁ) /k*(FE) is isomorphic to a compact subgroup.

LEMMA 6.11. If E is a finite set of primes containing the infinite primes of k
then there exists a positive real number € so that Ix(E) NI) = k*(E)C,, where C,
is the compact set defined by

1
(6.9) Cez{iEIK(E)ﬁIQ | Eg]i\pgeforpeE}.

PROOF. We need to show Ix(F) NI) C k*(E)C.. We have the natural homo-
morphism

’

L(E)NI} —— (I(F)NI))/k*(E)

onto a compact group. For any given i in I (E) NI, the values |i|, for p in E are
bounded because E is a finite set. For positive real €, the sets C. form an open
covering of I (E)N1Y, so the images p/(C,) form an open covering of compact group
I{ /k*(E). There exist a finite number of the sets /(C.) which cover IY /k*(E). If
€1 < €9 then C, C C¢,. Therefore there exists a single set C, so that ' (C.) covers
I) /k*(E). For any i in I (E) NIY, there exists an idele j in C. so that p/(i) = 1/(j),
so 4/ (ij71) = 1. The kernel of 1/ is k*(FE), so there exists an element « in k*(E) so
that i = aj. Therefore I (E) NI C k*(F)C..
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LEMMA 6.12. k* s a discrete subgroup of Iy.

PrROOF. The set U defined by
. . T 1 P
(6.10) U= {1 e Iy ‘ li— 1|, <1 for p finite, |i — 1|, < 3 for p infinite }

is an open subset of I, which contains no element of k* other than 1.

PROPOSITION 6.13 (DIRICHLET UNIT THEOREM). If E is a finite set of pirmes
of k containing all the infinite primes and if the number of elements in E is s+ 1,
then k*(E) is the product of a finite subgroup (the roots of unity in k*) and a free
abelian group on s generators. That is, there exist in k*(E) an m-th root of unity w
and elements 1y, ...ns such that every element n of k*(E) may be uniquely expressed
as a product

140 121

n=w"nt. . .n O<vi<mandy, €Z (1<i<s)

PRrROOF. Let E contain infinite primes py, ..., p,. If E contains any finite primes
then let them be p,11,...,ps. Let Ag be defined by

As = {(ao, S, ag) € (RJF)‘H—1

ffo ]

1=0

where R denotes the group of positive real numbers. Let f : Ix(E) NI — Ay be
defined by

F@) = (lilpo, - [ilp.) -

The kernel of f is the group of i such that [i|, = 1 for all primes p, so ker(f) is
compact, and ker(f) Nk*(E) must be a finite group because k*(F) is discrete. Any
finite subgroup of k*(E) must consist of roots of unity; conversely, any root of unity
in k*(F) must be in the kernel of f. Let m-th of unity w generate the group of
roots of unity in k*(E).

Let B and H be the images in A of I (E) NI and k*(E), respectively. H is a
discrete subgroup of Ay, because the only elements of k*(F) in the open neighbor-
hood

1
{(ao,...,as) ’ |a2~—1|<§ ng‘gs}

of (1,...,1) are in the finite set ker(f) Nk*(E). For subgroup B we have

7

B:{(bo,...,bs)EAS b; >0for 0<i<r; b =Np" U¢€Zforr<i§5}
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By lemma 6.11, there exists a compact set C, such Ix(E) NI} = k*(E)C.. Then
B = f(I(E)NL) = f(k*(E)) f(Ce) = HC,

where C' = f(V,) is compact.
We next show that A, = BV where V is compact. Put

V:{(ao,...,as)eAS a;=1(0<i<r)

S

IT Wpi)™'<a, <15 1<a; <Np; (r<i< 3)}.
1=r+1

Then V is certainly compact. If a € As then choose b € B so that

(ba); =1 0<i<r
1§|ba|Z§NpZ r<i1<s

b, = H b; !

i=r+1

The condition on b, ensures that [[_,b; = 1. We have a = b~ *(ba). To show that
ba is in V, it is only necessary to check coordinate (ba),. We have a, =[], . ai_l
and b, = [, b;*, so (ba), = H#r(ba);l. Since (ba); = 1 for 0 < i < r we have
(ba); = [1,-s<.(ba); ', Since Np; ' < |bal; <1 for r < i < s, then

IT Npit < (ba), < 1.

r<i<s

This shows that ba is in V', and that A, = BV. Combining A, = BV and B = HC
gives

As = HW,
where W = CV is a compact subset of A;.

Let Vi be the s-dimensional vector space over R defined by

V, = {(mo,...,xs) e Rt!
i=0

We have the isomorphism 1) : A, — Vi defined by

Y(ag,...,as) = (logag,...,logas).
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Since A; = HW, we have Vs = ¢(As) = (HW) =¢(H) +¢(W). Put L = ¢(H)
and W' = ¢(W). Then
Vi=L+W

where L is a discrete subgroup and W’ is compact. We will show that L is a free
abelian group on s generators.
Let y1,...,y: be a maximal linearly independent subset of L. For y € L, there

are real a; so that
T

y=>Y awi= lalyi+ > {aity,
i=1 i=1 i=1
where [o;] € Z and 0 < {o;} < 1for i =1,...,t. The term y ._,{a;}y; is in the
intersection of L and a compact subset of V. Therefore, there is a finite set Ly such
that
L =2y +---+ Zy, + Ly.

If t < s, then y1,...,y: can be extended to a basis y1,..., vy, Ys+1,...,Yys of V.
Since Vi, = L + W’ with W' compact, there is a constant ¢ so that for any v in V,
we have

t s
v = Z miy; + Z a;y; where a; < c.
i=1 i=1

But this is impossible since a;41y:1+1 must have unbounded coefficient ay41. There-
fore t = s.

Let the elements of finite set Ly be z1,...,2,. By the pigeon-hole principle,
there are two distinct numbers 7 and j’ so that 0 < j < j/ < v and jz; — j'21 =
S0 miy; with m; € Z. If we replace each y; by (j—j') "'y, then z; is an element of
Zy,+. .. 2y, and we have L = Zy; +. .. Zys + L{, where L{, contains v — 1 elements.
After a finite number of steps, we arrive at a set of free generators ¥, ...,ys for L.

Choose elements 7y, ...7, in k*(E) so that ¢ (f(1;)) = ys. If n € k*(E) then
there are unique integers vy, ..., v, so that ¥(f(n)) = >0 viyi, so n[[i_y n™" is
in ker(f) =< w >. Therefore

Vo V1 Vs

n=w""mnm ...MNg.

This concludes the proof of the unit theorem.



