
CHAPTER VI

IDELE CLASS GROUP AND THE UNIT THEOREM

The ring of adeles. Let k be an finite extension of the rational number field.
An element a of the direct product

∏

p kp of all completions kp is an adele of k if
every coordinate ap is in op except for a finite number of p. Let Ak denote the set
of adeles of k. Ak is a ring, and the idele group Ik is the group of units of Ak. As
with ideles, |ap|p is denoted simply by |a|p.

For the topology of Ak, basic neighborhoods are defined as follows. Choose any
finite set of primes E of k, and for each prime p in E choose a positive real εp. Then

{

b ∈ Ak

∣

∣ |b− a|p < εp for p ∈ E and |b− a|p ≤ 1 for p /∈ E
}

.

is a basic neighborhoods of adele a.

Lemma 6.1. Let p be a prime of k, let K/k be a finite extension, and let
℘1, . . . , ℘g be the primes of K which divide p. Then there is a natural isomorphism
σ : K⊗k kp → K℘1

⊕ · · · ⊕ K℘g
of algebras over kp.

Proof. Elements of k are denoted by lower case a, b; elements of finite extension
K by upper case A, X; elements of kp by α, β, γ. Let σi be the imbedding of K into
completion K℘i

. Then σ(A, β) =
(

σ1(A)β, . . . , σg(A)β
)

is a k-bilinear mapping of
K×kp to K℘1

⊕· · ·⊕K℘g
. There is a k-linear mapping σ : K⊗kkp → K℘1

⊕· · ·⊕K℘g

such that σ(A⊗ β) =
(

σ1(A)β, . . . , σg(A)β
)

. Both K ⊗k kp and K℘1
⊕ · · · ⊕ K℘g

are vector spaces over kp. We have σ
(

(A⊗β)(A′⊗β′)
)

= σ(A⊗β) sigma(A′⊗β′),
and σ is kp-linear.

Let X1, . . . , Xn be a basis for K over k. We want to show that X1⊗1, . . . , Xn⊗1
is a basis for K⊗k kp over kp. An element of K⊗k kp is a finite sum

∑m
k=1

Ak ⊗βk.
Let Ak =

∑n
i=1

Xiaik. Then

m
∑

k=1

Ak ⊗βk =
m
∑

k=1

((

n
∑

i=1

Xiaik

)

⊗ βk

)

=
m
∑

k=1

n
∑

i=1

Xi ⊗ aikβk =
n
∑

i=1

Xi ⊗
m
∑

k=1

aikβk.

Then every element of K⊗kkp is of the form
∑n

i=1
Xi⊗γi, soX1⊗1, . . . , Xn⊗1 span

K⊗kkp over kp. We will show that X1⊗1, . . . , Xn⊗1 are linearly independent over
48
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kp. Suppose that
∑n

i=1
Xi ⊗ γi = 0. Multiply both sides by Xj ⊗ 1 for 1 ≤ j ≤ n

to obtain a system of n linear equations.

n
∑

i=1

XiXj ⊗ γi = 0 1 ≤ j ≤ n.

The trace SK/k : K → k is k-linear, so we can apply SK/k ⊗ I : K ⊗k kp → kp to
both sides of each equation, obtaining

(

SK/k ⊗ I
)

n
∑

i=1

XiXj ⊗ γi =

n
∑

i=1

SK/k(XiXj)γi = 0 1 ≤ j ≤ n.

Matrix
(

SK/k(XiXj)
)

is non-singular by proposition 4.4, so γ1 = · · · = γn = 0.
This shows that X1 ⊗ 1, . . . , Xn ⊗ 1 are linearly independent over kp.

Since
∑g

i=1
[K℘i

: kp] = [K : k] = n then algebras K⊗k kp and K℘1
⊕ · · ·⊕K℘g

have the same dimension over kp. The isomorphism will be established if we can
show that ker(σ) = 0. If σ (X1 ⊗ γ1 + . . .Xn ⊗ γn) = 0, then multiply both sides
of the equation by σ(Xj ⊗ 1) for 1 ≤ j ≤ n to obtain the following system of linear
equations.

σ

(

n
∑

i=1

(XiXj ⊗ γi)

)

=
n
∑

i=1

σ (XiXj ⊗ γi ) = 0 for 1 ≤ j ≤ n.

In K℘1
⊕ · · · ⊕ K℘g

we have

(6.1)

(

n
∑

i=1

σ1 (XiXj) γi, . . . ,
n
∑

i=1

σg (XiXj) γi

)

= 0.

The trace function SK/k is the sum of local traces (1.5).

SK/k(A) =

g
∑

k=1

SK℘k
/kp

(

σk(A)
)

.

Each coordinate of (6.1) is zero, so we have

g
∑

k=1

SK℘k
/kp

(

n
∑

i=1

σk(XiXj)γi

)

= 0 for 1 ≤ j ≤ n,
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or

n
∑

i=1

(

g
∑

k=1

SK℘k
/kp

σk(XiXj)

)

γi =

n
∑

i=1

SK/k(XiXj)γi = 0 for 1 ≤ j ≤ n.

Since det
(

SKk(XiXj)
)

6= 0, we conclude that γj = 0 for 1 ≤ j ≤ n, and the proof
is complete.

Remark on the trace function. If prime p of k splits into primes ℘1, . . . , ℘g

in extension K, then for each prime ℘i we have the embedding σi : K → K℘i
, and

the mapping σ : K → K℘1
⊕· · ·⊕K℘g

, where σ(A) =
(

σ1(A), . . . , σg(A)
)

. Consider
the function S : K℘1

⊕ · · · ⊕ K℘g
→ kp defined by

S(A1, . . . , Ag) = SK℘1
/kp

(A1) + · · ·+ SK℘g /kp
(Ag).

Then for A in K we have SK/k(A) = S
(

σ(A)
)

. (Chapter I, norm and trace func-
tions.) On K ⊗k kp we have k-linear transformation SK/k ⊗ I, which is actually
kp-linear.

(6.2)

K ⊗k kp
σ⊗I

−−−−→
∑g

i=1
K℘i





y

SK/k⊗I





y
S

k ⊗k kp
ι

−−−−→ kp

In diagram (6.2), for A in K, on the one hand we have ι
(

SK/k ⊗ I
)

(A ⊗ 1) =

ι
(

SK/k(A)⊗1
)

= SK/k(A), and on the other we have S
(

(σ⊗I)(A⊗1)
)

= S
(

σ(A)
)

=
SK/k(A). Therefore ι(SK/k ⊗ I) and S(σ⊗ I) agree on elements A⊗ 1 in K⊗k kp.
If X1, . . . , Xn is a basis for K over k then ι(SK/k ⊗ I) and S(σ ⊗ I) agree on
X1 ⊗ 1, . . . , Xn ⊗ 1, which is a basis for K ⊗k kp over kp. Since K ⊗k kp and
∑g

i=1
K℘i

have the same dimension over kp, then ι(SK/k ⊗ I) and S(σ ⊗ I) agree
on all of K ⊗k kp, so we have

(6.3)
n
∑

i=1

SK/k(Ai)γi =

g
∑

j=1

SK℘j
/kp

(Y1) if (σ ⊗ I)(
n
∑

i=1

Ai ⊗ γi) = (Y1, . . . , Yg).
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Proposition 6.2. K ⊗k Ak ' AK, and if X1, . . . , Xn is a basis for K over k

then
X1Ak + · · ·+XnAk = AK.

Proof. The mapping Ak to AK is defined as follows. Each adele a in Ak

determines an adele ã in AK by ã℘ = ap, where p is the prime of k which ℘ divides.
An element A of K is mapped to the diagonal of AK. Each product Aã is an
adele because both |A|℘ ≤ 1 and |ã|℘ = |a|p ≤ 1 except for a finite number of
primes ℘. The map K×Ak → AK sending (A, a) to Aã induces a homomorphism
K ⊗k Ak → AK of algebras over k. We can identify a with its image ã, so the
homomorphism may be written simply as A⊗ a → Aa.

We need to show that K⊗k Ak is mapped onto AK. Choose a basis X1, . . . , Xn

for K over k. Then X1 ⊗ 1, . . . , Xn ⊗ 1 is a basis for K ⊗k kp. Let (A℘) be an
element of AK. For each prime p of k, let ℘1, . . . , ℘g be the primes of K that
divide p. We have the projection πp : AK →

∑g
i=1

K℘i
, and the isomorphism

(σ ⊗ I) : K ⊗k kp →
∑g

i=1
K℘i

. For each adele (A℘) of AK, there exist unique
coefficients γi(p) in kp, for 1 ≤ i ≤ n, so that

(6.4) (σ ⊗ I)

(

n
∑

i=1

Xi ⊗ γi(p)

)

= πp

(

(A℘)
)

=
(

A℘1
, . . . , A℘g

)

.

The γi(p) determine elements a1, . . . , an in
∏

p kp such that the p-coordinate of ai

is γi(p). Then
∑n

i=1
Xi ⊗ ai maps to (A℘), but we need to check that each ai

is an adele in Ak, i.e., that |γi(p)|p ≤ 1 except for a finite number of primes p.
Multiplying both sides of (6.4) by (σ ⊗ I)(Xj ⊗ 1) =

(

σ℘1
(Xj), . . . σ℘g

(Xj)
)

for
1 ≤ j ≤ n, we obtain a system of n equations for each prime p of k.

(6.5) (σ ⊗ I)

(

n
∑

i=1

XiXj ⊗ γi(p)

)

=
(

A℘1
σ℘1

(Xj), . . . , A℘g
σ℘g

(Xj)
)

, 1 ≤ j ≤ n.

Applying identity (6.3), we obtain

(6.6)
n
∑

i=1

SK/k(XiXj)γi(p) =

g
∑

k=1

SK℘k/kp

(

A℘k
σ℘k

(Xj)
)

, 1 ≤ j ≤ n.

Let E contain all primes p of k such that p is infinite, or
∣

∣det
(

SK/k(XiXj)
)
∣

∣

p
6= 1,

or p is divisible by a prime ℘ of K for which either |A|℘ > 1 or |σ℘(Xj)|℘ > 1 for
some j, 1 ≤ j ≤ n. For all p not in E, the right side of (6.6) satisfies
∣

∣

∣

∣

∣

g
∑

k=1

SK℘k/kp

(

A℘k
σ℘k

(Xj)
)

∣

∣

∣

∣

∣

p

≤ max
1≤k≤g

(

∣

∣

∣
SK℘k

/kp

(

A℘k
σ℘k

(Xj)
)

∣

∣

∣

p

)

≤ 1 for 1 ≤ j ≤ n.



52 VI. IDELE CLASS GROUP AND THE UNIT THEOREM

In system (6.6) for p not in E, all the coefficients SK/k(XiXj) are in op, the de-

terminant det
(

SK/k(XiXj)
)

is a unit of op, and the right side terms are all in op.
Therefore, we have γi(p) in op for 1 ≤ i ≤ n and p /∈ E, showing that ai is an adele.
Finally, since we identify a in Ak with its image in AK, every element of AK is of
the form (σ ⊗ I)(

∑n
i=1

Xi ⊗ ai) =
∑n

i=1
Xiai. This completes the proof.

Lemma 6.3. The group AQ/Q of adele classes is compact and there is a compact
subset C of AQ such that AQ = Q + C.

Proof. Since op is compact for each finite rational prime p then the subset C

defined by

C =
∏

finite p

op ×

[

−
1

2
,

1

2

]

⊂ AQ

is a compact subset of the adele group AQ. If a is an adele in AQ then there is
a finite set E of primes so that |a|p ≤ 1 if and only if p is not in E. For a finite
prime p in E, we have ap = up/p

np , where up is an element of op, and np ≥ 0. Put
up = mp +vpp

np where mp is a rational integer, 0 ≤ mp < pnp , and vp is an element
of op. Define α to be the rational number

α =
∑

p∈E

mp

pnp
.

For each finite p not in E we have |a − α|p ≤ max
(

|a|p, |α|p
)

= 1, and for each
finite p in E, we have

|a − α|p =

∣

∣

∣

∣

∣

∣

mp + vpp
np

pnp
−
mp

pnp
−

∑

q∈E, q 6=p

mq

qnq

∣

∣

∣

∣

∣

∣

p

=

∣

∣

∣

∣

∣

∣

vp −
∑

q∈E, q 6=p

mq

qnq

∣

∣

∣

∣

∣

∣

p

≤ 1.

At the infinite prime p = ∞, there exists a rational integer µ such that |a−α−µ|∞ ≤
1

2
. At all finite primes p, we have

|a − α− µ|p ≤ max (|a− α|p, |µ|p) ≤ 1.

We have shown that there is a rational number β = α+ µ so that a− β ∈ C. Then
the continuous homomorphism A → A/Q maps compact subset C onto A/Q, so
A/Q is compact

Lemma 6.4. If k is a finite extension of Q then the group Ak/k of adele classes
is compact, and there is a compact subset C of Ak so that Ak = k + C.

Proof. Let x1, . . . , xn be a basis for k over Q. Then Ak = x1AQ + · · ·+xnAQ

by lemma 6.2. If a is in Ak, let a = x1a1 + · · · + xnan where ai is in AQ for
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1 ≤ i ≤ n. By lemma 6.3, there is a compact subset C′ of AQ so that AQ = Q+C′,
so ai = βi + ci, where βi is in Q and ci is in C′, for 1 ≤ i ≤ n, and

a = (x1β1 + · · ·+ xnβn) + (x1c1 + · · ·+ xncn) ∈ k + x1C
′ + . . . xnC′.

Subset C = x1C
′ + . . . xnC′ is a compact subset of Ak and Ak = k + C. The

continuous homomorphism Ak → Ak/k maps C onto Ak/k, proving that Ak/k is
compact.

Haar measure. Both kp and Ak are locally compact topological groups so
Haar measures may be defined. For infinite primes p, take the ordinary Lebesgue
measure on R or C for the Haar measure mp on kp. For finite primes, the measure
mp is chosen so that mp(op) = 1. The cosets of pn are open subsets of compact
subset op, so the measure of each coset should be Np−n. Take the smallest σ-algebra
containing all cosets α+pn for α in kp. Since every coset of pn is the disjoint union
of cosets of pn+k for k > 0, then every union of cosets is equal to a union of cosets
of the same power of p.

Lemma 6.5. If S is a measurable set of kp and α is an non-zero element of kp

then mp(αS) = |α|pmp(S).

Proof. Let |α|p = Np−m, so α = uπm where u is in up, (π) = p, and m
may be positive, zero or negative. S is a union of cosets β + pn and we may take
n ≥ max(−m, 0). Then αS is a union of cosets αβ + pn+m where n +m ≥ 0, and
mp(α+pn+m) = Np−n−m = |α|pmp(β+pn). This shows that mp(αS) = |α|pmp(S).

Haar measure on the ring of adeles. Take F to be a finite set of primes of k

containing all infinite primes. For each p, let Ep be an open subset of kp for which
mp(Ep) is defined and for which Ep = op for all p not in F . Consider subsets E of
Ak of the form E =

∏

pEp. Every adele of Ak is in some E. Define the measure

m(E) to be

m(E) =
∏

p

m (Ep) .

The product is defined since mp(Ep) = mp(op) = 1 for all but a finite number of p.

Lemma 6.6. If E is a measurable set of AK and i is an element of Ik then
mp(iE) = |i|m(E).

Proof. It is enough to check sets of the form E =
∏

pEp such that Ep = op for

p not in some finite set F1. Suppose that |i|p = 1 except for p in finite set F2. Then

iE =
∏

p∈F1∪F2

ipEp ×
∏

p/∈F1∪F2

op.
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We have

m(iE) =
∏

p∈F1∪F2

mp(ipEp) =
∏

p∈F1∪F2

(

|i|pmp(Ep)
)

=
∏

p∈F1∪F2

|i|p
∏

p∈F1∪F2

mp(Ep) = |i|m(E).

Given an R-valued function f : Ak → R such that f(a) =
∑

α∈k f(a+α) exists,

the value f(a) depends only the coset a of a in Ak. Define f(a) =
∑

α∈k f(a + α).
If f is an integrable function on Ak then

∫

Ak

f(a) da =

∫

Ak/k

∑

α∈k

f(a + α) da =

∫

Ak/k

f(a) da

Ak/k is a compact group, so it must have finite measure.

Lemma 6.7. Let S be a measurable subset of Ak such that m(S) > m(Ak/k).
There exist a1 and a2 in S so that a1 6= a2 and a1 − a2 is an element of k∗.

Proof. Let χ be the characteristic function of S. Then
∑

α∈k χ(a + α) > 1 at
some a because otherwise we would have

m(S) =

∫

Ak

χ(a) da =

∫

Ak/k

(

∑

α∈k

χ(a + α)

)

da ≤

∫

Ak/k

1 da = m(Ak/k)

If
∑

α∈k χ(a+α) > 1 then there exist α1 and α2 in k so that α1 6= α2, a1 = a+α1 ∈
S and a2 = a + α2 ∈ S.

Lemma 6.8. k is a discrete subgroup of Ak.

Proof. Let α be an element of k. Choose any prime p0 of k. Then

U =

{

a ∈ Ak

∣

∣ |a − α|p ∈ op for p 6= p0 and |a− α|p0
<

1

2

}

is an open neighborhood of α, and U ∩ k = {α}.
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Proposition 6.9. Let I0k be the subgroup of Ik consisting of all ideles i such
that |i| = 1. Then I0

k contains k∗, and the group of idele classes I0
k/k

∗ is compact.

Proof. Lemma 6.6 insures that Ak has arbitrarily large compact subsets, so
choose a compact subset C ⊂ Ak so that m(C) > m (Ak/k). Subtraction (a, a′) →
a − a′ and multiplication (a, a′) → aa′ are continuous functions, so C′ = C − C

and C′′ = C′C′ are compact subsets of Ak. By lemma 6.8, K ∩ C′′ is a finite set.
Let K∩C′′ = {ξ1, . . . , ξn}. Then V = C′∪ ξ−1

1 C′∪ · · ·∪ ξ−1
n C′ is a compact subset

of Ak.
For any finite set E of primes of k, the subset

Ak(E) =
∏

p∈E

kp ×
∏

p/∈E

op

is open in Ak, and Ak ⊂ ∪EAk(E). There exists a finite number of sets E1, . . . , Em

so that compact set V is contained in Ak(E1)∪ . . .Ak(Em). If E0 = E1 ∪ · · · ∪Em

then Ak(E0) = Ak(E1) ∪ . . .Ak(Em), so V is contained in Ak(E0). For each p,
the function a → |a|p is continuous, so |a|p is bounded on compact set V. Since E0

is a finite set of primes, there exists a positive bound δ so that |a|p ≤ δ for a in V

and p in E0, and we have

(6.7) V ⊂
∏

p∈E0

{

α ∈ kp

∣

∣ |α|p ≤ δ
}

×
∏

p/∈E0

op.

Suppose that c is a unit of Ak (i.e., an element of Ik) such that c and c−1 are in
V. Then by (6.7) both c and c−1 are elements of W defined by

(6.8) W =
∏

p∈E0

{

α ∈ k∗
∣

∣ |α|p ≤ δ and |α−1|p ≤ δ
}

×
∏

p/∈E0

o∗
p,

which is a compact subset of the idele group Ik. (Group o∗
p is compact because it

is the union of Np− 1 cosets of ideal p, and each coset is compact because ring op

is compact.)
Suppose that i is an idele in I0k. If we can show that i is in k∗W, then I0k/k

∗

will be the image of compact set W, which will prove the proposition. Both iC

and i−1C are compact subsets of Ak. Since |i| = 1, we have m(iC) = m(C) and
m(i−1C) = m(C). By lemma 6.7, there exist elements ia1 and ia2 in iC so that
ia1 − ia2 is in k∗. Put c1 = a1 − a2. Then c1 is in C′ and ic1 is in k∗. Likewise,
there exist elements i−1b1 and i−1b2 in i−1C so that i−1b1 − i−1b2 is in k∗. Put
c2 = b1 − b2. Then c2 is in C′ and i−1c2 is in k∗.

The product
(

ic1

)(

i−1c2

)

= c1c2 is in k∗ ∩C′′, so c1c2 = ξi for some i. We have

c1 ∈ C′ ⊂ V. Also we have c−1
1 = ξ−1c2 so c−1

1 ∈ ξ−1
i C′ ⊂ V. Therefore c−1

1 is in

W, and i = (ic1) c
−1
1 is in k∗W, which completes the proof.
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Lemma 6.10. If E is a finite set of primes of k, let k∗(E) be the subgroup of
E-units in k.

k∗(E) = k∗ ∩ Ik(E).

Then
(

Ik(E) ∩ I0
k

)

/k∗(E) is compact.

Proof. In the following diagram, the kernel of µι is k∗(E), so induced homo-
morphism ι′ is an isomorphism onto a subgroup of I0k/k

∗.

Ik(E) ∩ I0
k

ι
−−−−→ I0k





y
µ′





y

µ

(

Ik(E) ∩ I0
k

)

/k∗(E)
ι′

−−−−→ I0k/k
∗

The map ι′ is open because if V is an open subset of
(

Ik(E) ∩ I0
k

)

/k∗(E) then

µ′−1
(V ) is open in Ik(E) ∩ I0

k, inclusion ι is an open mapping, and the natural
homomorphism µ is an open mapping. Therefore the image ι′

((

Ik(E)∩I0
k

)

/k∗(E)
)

is an open subgroup of I0k/k
∗. An open subgroup must be closed, so ι′

((

Ik(E) ∩

I0k
)

/k∗(E)
)

is a closed subgroup of compact group I0k/k
∗. Therefore

(

Ik(E) ∩

I0k
)

/k∗(E) is isomorphic to a compact subgroup.

Lemma 6.11. If E is a finite set of primes containing the infinite primes of k

then there exists a positive real number ε so that Ik(E) ∩ I0
k = k∗(E)Cε, where Cε

is the compact set defined by

(6.9) Cε =

{

i ∈ IK(E) ∩ I0
k

∣

∣

1

ε
≤ |i|p ≤ ε for p ∈ E

}

.

Proof. We need to show Ik(E) ∩ I0
k ⊂ k∗(E)Cε. We have the natural homo-

morphism

Ik(E) ∩ I0
k

µ′

−−−−→
(

Ik(E) ∩ I0
k

)

/k∗(E)

onto a compact group. For any given i in Ik(E) ∩ I0
k, the values |i|p for p in E are

bounded because E is a finite set. For positive real ε, the sets Cε form an open
covering of Ik(E)∩I0

k, so the images µ′(Cε) form an open covering of compact group
I0k/k

∗(E). There exist a finite number of the sets µ′(Cε) which cover I0k/k
∗(E). If

ε1 < ε2 then Cε1 ⊂ Cε2 . Therefore there exists a single set Cε so that µ′(Cε) covers
I0k
/

k∗(E). For any i in Ik(E)∩ I0
k, there exists an idele j in Cε so that µ′(i) = µ′(j),

so µ′(ij−1) = 1. The kernel of µ′ is k∗(E), so there exists an element α in k∗(E) so
that i = αj. Therefore Ik(E) ∩ I0

k ⊂ k∗(E)Cε.
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Lemma 6.12. k∗ is a discrete subgroup of Ik.

Proof. The set U defined by

(6.10) U =

{

i ∈ Ik
∣

∣ |i − 1|p ≤ 1 for p finite, |i − 1|p <
1

2
for p infinite

}

is an open subset of Ik which contains no element of k∗ other than 1.

Proposition 6.13 (Dirichlet unit theorem). If E is a finite set of pirmes
of k containing all the infinite primes and if the number of elements in E is s+ 1,
then k∗(E) is the product of a finite subgroup (the roots of unity in k∗) and a free
abelian group on s generators. That is, there exist in k∗(E) an m-th root of unity ω
and elements η1, . . . ηs such that every element η of k∗(E) may be uniquely expressed
as a product

η = ων0ην1

1 . . . ηνs
s 0 ≤ νo < m and νi ∈ Z (1 ≤ i ≤ s)

Proof. Let E contain infinite primes p0, . . . , pr. If E contains any finite primes
then let them be pr+1, . . . , ps. Let As be defined by

As =

{

(a0, . . . , as) ∈
(

R+
)s+1

∣

∣

∣

∣

s
∏

i=0

ai = 1

}

where R+ denotes the group of positive real numbers. Let f : Ik(E) ∩ I0
k → As be

defined by
f(i) = (|i|p0

, . . . , |i|ps
) .

The kernel of f is the group of i such that |i|p = 1 for all primes p, so ker(f) is
compact, and ker(f)∩k∗(E) must be a finite group because k∗(E) is discrete. Any
finite subgroup of k∗(E) must consist of roots of unity; conversely, any root of unity
in k∗(E) must be in the kernel of f . Let m-th of unity ω generate the group of
roots of unity in k∗(E).

Let B and H be the images in As of Ik(E) ∩ I0
k and k∗(E), respectively. H is a

discrete subgroup of As, because the only elements of k∗(E) in the open neighbor-
hood

{

(a0, . . . , as)

∣

∣

∣

∣

|ai − 1| <
1

2
0 ≤ i ≤ s

}

of (1, . . . , 1) are in the finite set ker(f) ∩ k∗(E). For subgroup B we have

B =

{

(b0, . . . , bs) ∈ As

∣

∣

∣

∣

bi > 0 for 0 ≤ i ≤ r; bi = Npui
i , ui ∈ Z for r < i ≤ s

}
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By lemma 6.11, there exists a compact set Cε such Ik(E) ∩ I0
k = k∗(E)Cε. Then

B = f(Ik(E) ∩ I0
k) = f

(

k∗(E)
)

f(Cε) = HC,

where C = f(Vε) is compact.
We next show that As = BV where V is compact. Put

V =

{

(a0, . . . , as) ∈ As

∣

∣

∣

∣

ai = 1 (0 ≤ i < r);

s
∏

i=r+1

(Npi)
−1

≤ ar ≤ 1; 1 ≤ ai ≤ Npi (r < i ≤ s)

}

.

Then V is certainly compact. If a ∈ As then choose b ∈ B so that

(ba)i = 1 0 ≤ i < r

1 ≤ |ba|i ≤ Npi r < i ≤ s

br =
s
∏

i=r+1

b−1
i .

The condition on br ensures that
∏s

i=0
bi = 1. We have a = b−1(ba). To show that

ba is in V , it is only necessary to check coordinate (ba)r. We have ar =
∏

i6=r a
−1
i

and br =
∏

i 6=r b
−1
i , so (ba)r =

∏

i6=r(ba)
−1
i . Since (ba)i = 1 for 0 ≤ i < r we have

(ba)r =
∏

r<i≤s(ba)
−1
i . Since Np−1

i ≤ |ba|i ≤ 1 for r < i ≤ s, then

∏

r<i≤s

Np−1
i ≤ (ba)r ≤ 1.

This shows that ba is in V , and that As = BV . Combining As = BV and B = HC
gives

As = HW,

where W = CV is a compact subset of As.

Let Vs be the s-dimensional vector space over R defined by

Vs =

{

(x0, . . . , xs) ∈ Rs+1

∣

∣

∣

∣

s
∑

i=0

xi = 0

}

We have the isomorphism ψ : As → Vs defined by

ψ(a0, . . . , as) = (log a0, . . . , log as) .
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Since As = HW , we have Vs = ψ(As) = ψ(HW ) = ψ(H) + ψ(W ). Put L = ψ(H)
and W ′ = ψ(W ). Then

Vs = L+W ′

where L is a discrete subgroup and W ′ is compact. We will show that L is a free
abelian group on s generators.

Let y1, . . . , yt be a maximal linearly independent subset of L. For y ∈ L, there
are real αi so that

y =
r
∑

i=1

αiyi =
r
∑

i=1

[αi]yi +
r
∑

i=1

{αi}yi,

where [αi] ∈ Z and 0 ≤ {αi} < 1 for i = 1, . . . , t. The term
∑r

i=1
{αi}yi is in the

intersection of L and a compact subset of Vs. Therefore, there is a finite set L0 such
that

L = Zy1 + · · ·+ Zyt + L0.

If t < s, then y1, . . . , yt can be extended to a basis y1, . . . , yt, yt+1, . . . , ys of Vs.
Since Vs = L+W ′ with W ′ compact, there is a constant c so that for any v in Vs,
we have

v =
t
∑

i=1

miyi +
s
∑

i=1

αiyi where αi < c.

But this is impossible since αt+1yt+1 must have unbounded coefficient αt+1. There-
fore t = s.

Let the elements of finite set L0 be z1, . . . , zν . By the pigeon-hole principle,
there are two distinct numbers j and j′ so that 0 ≤ j < j′ ≤ ν and jz1 − j′z1 =
∑s

i=1
miyi with mi ∈ Z. If we replace each yi by (j−j′)−1yi then z1 is an element of

Zy1 + . . .Zys, and we have L = Zy1 + . . .Zys +L′
0 where L′

0 contains ν−1 elements.
After a finite number of steps, we arrive at a set of free generators y1, . . . , ys for L.

Choose elements η1, . . . ηs in k∗(E) so that ψ
(

f(ηi)
)

= ys. If η ∈ k∗(E) then

there are unique integers ν1, . . . , νs so that ψ
(

f(η)
)

=
∑s

i=1
νiyi, so η

∏s
i=1

η−νi is
in ker(f) =< ω >. Therefore

η = ων0ην1

1 . . . ηνs
s .

This concludes the proof of the unit theorem.


