CHAPTER IV

THEOREM 1: PROOF FOR CYCLIC EXTENSIONS

Non-degeneracy of the trace in separable extensions. In this section, k
may be either a finite field or an algebraic number field. (The result for finite
fields is needed in the proof of proposition 4.7.) Sk /k(zy) is a k-bilinear form of K
represented by matrix S;; = SK/k(aiaj) with respect to basis aq, ..., «a, of K over
k. f x =a100 +---+a,a, and y = by + - - - + by, then

SK/k(ﬂﬁy SK/k ZZCE a;a;b;

1=1 j5=1

—ZZGZSK/kO‘% b —Zzazsmb - Xt>S

i=1 j5=1 i=1 j5=1

LEMMA 4.1. If K/k is a finite normal separable extension with Galois group
G = G(K : k) then

Nk /o= H a’ and Sgja= Z af.
ceG ceG

PRrROOF. Let k() : k] = n and [K : k()] = m. Let G be the Galois group of
K over k and H be the subgroup of G that fixes k(«). Let {p1,...,pn} be a set of
representatives for the distinct right cosets of H in G. The minimum polynomial
f(x) =2" +az" '+ -+ a, of a over k has factorization (z — o) ...(z — a’"),

soa; = —Y ,_,a’* and a, = (—1)"[[;_; a”*. The matrix representing T, as a
linear transformation of k(a) with respect to basis 1,c,...,a" s
00 ... 0 —a®
1 0 ... 0 —ap_1
T = 0o 1 ... 0 —Qp—2
0 0 1 —aq
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Then Ny(o) ke = det(T) = (=1)"T!(—ay,) = [[;_; a”* and Sy(q) ke = trace(T) =
—ay =Y p_, a”*. We have

Nk k@ = Ni(a)xkNk /k(a)@ = Ni(a)xa™,

Sk /K = Sk(a)/kSK/k(a)¥ = MSk(a) /KO-

Let H = {m,...,7™}. Then the nm products 7;p; run over G. We have

H o’ = ﬁ ﬁ aTIPE = (ﬁ a/%) — NK/ka

ceG j=1k=1 k=1
m n n
Z o’ = ZZoﬁp"’ = mZaP"’ = Sk /kQ.
e j=1k=1 k=1

LemMA 4.2. If K/k is a finite normal separable extension then matriz S is
non-singular.

ProOF. Let {01,...,0,} be the automorphisms in Galois group G(K : k). By
lemma 4.1, S;; = >, _; af’“a?’“, so S;; = AA" where A, = af’“.‘ With respect
to a simple basis {1,a,a?,...,a" '}, A has the form A;, = (a°%)*"!, which is a
Vandermonde matrix V(a%t, ..., a’"). There are n distinct conjugates of generator

a, so A is non-singular and so is S.

LEMMA 4.3. Let K be a finite normal extension k. Matriz (S;;) is non-singular
if and only if for every non-zero element y of K there exists an element x of K so

that Sk x(zy) # 0.

PROOF. Sk /k(zy) = (X*)SY. Suppose S non-singular. If y # 0 then SY # 0,
so there is a vector X so that (X*)SY # 0. conversely, if S is singular then SY = 0
for some non-zero y, and Sk /x(zy) = 0 for every z in K.

PROPOSITION 4.4. Let L be a finite separable (not necessarily normal) extension
of k. Then the trace Sy, x(wy) is non-degenerate: for every non-zero y in L there
is an x in L so that S,/ (zy) # 0.

PrROOF. Let y be a non-zero element of L. Then L is contained in a finite normal
extension K, and

SK/k(ﬂﬁy) = SL/k(SK/L(Qﬁy)) = SL/k(SK/L(l’)y)-
Choose z in K so that Sk /i (zy) # 0. Then Sk 1,(z) is the desired element of L.

REMARK. Inlemma 4.5, let the images modulo p and p of elements 3 in O, and
b in o, be denoted by 3 and b, respectively.
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LEMMA 4.5. Suppose that p-adic extension K /k, is not ramified. Let F(q)
denote finite field o,/p where ¢ = Np; let F(q') denote finite field O /p where
¢’ = Np. Then

Nk, /k,@ = Npr)/rig@ and Sk, /k,@ = SFgf)/Fq0-

Proor. Choose wy,...,ws in O, so that wy,...,wy is a basis for F(q7) over
F(q). Let p = (m) for m € 0,. Suppose ajw; + --- + a,w, = 0 with a; € k,.
After multiplying by a power of 7, we may take the coefficients a; in o,. Then
each coefficient a; is 0 modulo p, so a; = ma; with a} in o,. Dividing by =, we
have ajw; + - -+ 4+ al,w,, = 0. In this fashion we can show that each a; is divisible
by an arbitrarily large power of 7, so each a; = 0 and wy, ..., w; must be linearly
independent over k,. We have [K/k,] = f, so wi,...,wy is a basis of K, over
k,. With respect basis wi,...,wy, let the matrix representing T;, be (a;; ). With
respect to basis wy, ..., Wy, the matrix representing T as a linear transformation
of Op/p over o,/p will be (@;; ). We have det (a;; ) = det (@;; ) and trace (a;; ) =
trace (@;; ), which proves the lemma.

Every unit is a norm in unramified p-adic extensions. If K/k is a finite
extension of algebraic numbers then O, /p is a finite field containing Np elements;
0,/p is finite field containing Np elements. Let these finite fields be denoted by
F(q’) and F(q), where ¢ = Np and ¢/ = Ng.

LEMMA 4.6. Every element in F(q) is the norm of an element in F(q').

PROOF. The Galois group of F(q’) over F(q) is generated by o where a® = af.
Then

n—1 n—1 q"—1
Nphypg(a) =aal...af = qlfat+a " — a( g1 )

N (47)/F(q)(0) = 0, so we have to show that the ¢ — 1 non-zero elements of F'(q)
are norms. Take a to be a generator of F((q/)*. Then

1

u<qn71>
Nr@npgla®) =a X707
For w = 0,1,...,g — 2 we have 0 < u(q" —1)/(¢ — 1) < ¢" — 1. Since « has order
q" — 1, there are ¢ — 1 distinct values of Np,r)/r(q) ().

ProrosITION 4.7. If K, is an finite unramified extension of p-adic field k,,
then every unit in k,, is the norm of an element in K.

Proor. Let 8 be a unit in k,. By lemma 4.6, there is an a; in K, so that
Nk, /x,01 = B(mod p). Suppose that we have already found «,, in K, so that
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Nk, /k,@n = B(mod p"). Let p = (m). The extension K, /k;, is not ramified, so
pO, = g, and p" = 7" 0O, for n > 0. Then (NKp/kpan)_l B = 1+d7"(mod p"T1).
Put apy1 = an(l 4+ zn™). The condition Nk /k, ant1 = B(mod p"*') will be
satisfied if we can find x in K, so that

(4.1) Nk, /x, (1 +27") =1+ 07" (mod p" ).

Let (z;;) be the matrix representing 7, in K, over k, with respect to some basis.
then the matrix representing 77 zrn is

1+ zqy7™ Tiom" ... T1pm"”
xrom" 14 xoom™ ... Topm"
T xpom” coo 14 mppm™

We therefore have
Nk, jx,(1+27") =1+ (11 + - +zpp)7" =1+ 7"Sk /i, z(mod Pt
Condition (4.1) is therefore
1+ 7"Sk,/k,* =1+ dr"(mod p" ),
or
Sk, /k,z = d(mod p).

By lemma 4.3, the trace S : O,/p — 0,/p is non-degenerate; there exists an
element v € O, so that Sk_/i,7 = € # 0(mod p). Then SKp/kp'ye_l = 1(mod p),
and Sk _,k, 7€ '0 = d(mod p). Therefore ayi1 = oy, (1 4+ ve~'dn™) satisfies (4.1).
The sequence {ay,} converges to a limit « in K, satisfying Nk _ /i, = 3.
Exponential and logarithm functions. In the following discussion of expo-

nential and logarithm functions, let o denote a prime of k and (p) = p N Z the
rational prime that p divides, with p > 0.

LEMMA 4.8. Let p be a finite prime of k. The series
x? z"
(4.2) exp(z)=1+zxz+—=+ -+ —+...
2! k!
converges for x in k, if ordg,(z) > :1% where b = ordy,(p).
PrROOF. The series converges if and only if limg_, . }xk / k’!’p = 0. The exact
power to which rational prime p divides k! is

oty = [E]  [E] o [5] ..
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Let k = ag + a1p + agp® + - - - + a,p” where 0 < a; < p. Then

[%] = a; + ap + ... + ap !

[p%] = a + ... + ap?

Summing each column, we have

0 1 2 r
p’ —1 p-—1 p“—1 p"—1
d (k) =
ord, (k!) aop—1+a1p—1+a2p—1+ —i—arp_l,
. k- ( ) k-1
— a0+a1+...+ar —
d,(k!) = :
ordy (k!) p—1 =51
Since b = ord,,(p), we have
k—(a0+a1—|—'-«—i—ar) k—1
4. do(k) =10 <bl——=).
43 oy —p (PN =

Then

ord,, (" /k!) = kord,(z) — ord,, (k!)

k-1 b b
- kordp(m)_b(sz - (Ordp(m)_p—l) HPESh

so ord,,(z* /k!) — oo if ord,(z) — b/(p — 1) > 0.
LEMMA 4.9. If ordg,(z) > 1% then ord,, (exp(z) — 1) = ordy,(z).

PrRoOOF. We have
2 k

x x
exp(x)—1:x+§+-~-—|—ﬁ+....

We need to show |z¥/k!|, < |z, or |£F71/k!|, < 1 for k > 2. We have ord,,(k!) <

b (%), so if ord,(x) > ]% and k > 2 then

okl | b kE—1
ord,, )= (k — 1)ordy,(z) — ordy,(k!) > (k — 1)p — bp — = 0.
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LEMMA 4.10. Let p be a finite prime of k. The infinite series

logl—-2)=—2—————++-— — —

converges for x in k,, if |z|, < 1.

Proor. If ord,(z) > 0 we show that }xk/k”p — 0, or kord,(x) —ord, (k) — oo.

Let k = up” where (u,p) = 1. Then k = p'°&*) 50 ord,, (k) = bv < blog, (k). If

log,, (k)

ord(z) > 0 then for large k£ we have —%

< gzordy(z), and

kordy (x) — ordy (k) = k <Ordp(x) _ M)

k
bl k k
>k <ordp(ac) - %()) > gordp(ac) — 00.

LEMMA 4.11. If ord,(x) > p—fl then ord, (log(1l — z)) = ord,(z).

Proor. If ord,(x) > 1%’ we need to show
LA A (P
2 3 k o v

It is enough to show |z*/k|, < |z|,, or
kord,(z) — ord, (k) > ordy(z) for k > 2.
Put k = up’, where (u,p) = 1. We need up’ord,(z) — bv > ord,(x), or
(up” —1)ord,(x) —bv >0
Since u > 1, we need (p¥ — 1)ord,(x) — bv > 0, or

p' —1 bv
( . ) ordg,(z) — 1> 0.

p— p—

If ord,(z) > p—fl then we need

pv 1

p—1
The last inequality is certainly valid, since p > 2 and v > 0.

or
—v=14p+--+p"H—v>0.
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LEMMA 4.12. For s and t in k,, if ord,(s) > p—ﬁl and ord,(t) > p—ﬁl then

Proor. That each of the above series converges follows from the four previous
lemmas.

LEMMA 4.13. Ifn > 0 and ord,(n) = a, then every element in the set

) b
{yekp | ordp(y—1)>ﬁ+a}

15 the n-th power of an element in {CE € ki, } ord,(z — 1) > }%}.

PRroOF. If ordg,(y — 1) > b/(p— 1) + a then log (1 — (y — 1)) = log(y) is de-
fined, and ord,(log(y)) = ord,(y — 1). Then ord,(log(y)/n) > b/(p—1), so
z = exp (log(y)/n) and exp (log(y)) are defined. We have

o — (exp (bgrfy)))n = exp (log(y)) =y,

and

ordy (z — 1) = ord,, <exp <1°grfy)) - 1) = ord,, <1°grfy)) > pi -

REMARK. We revert to the usual notation: p is a prime of k and @ a prime of
finite extension field K.

LEMMA 4.14. Nx /i, K5 s an open subgroup of k.

ProoF. Let [K,, :ky] = n. If ais in kj then Nk _/,,a = a", so Every n-th
power of an element in k; is in Ng_ /i, Kj,. If ord,(n) = a then every element in
open set {a | ord,(a — 1) > 1% + a} is an n-th power by lemma 4.13. Subgroup
NKp/ka; contains an open set, so NKgo/ka;J is open.
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PrROPOSITION 4.15. If E s a finite set of primes of k containing all infinite
primes and all primes that are ramified in K, then

L {E}k* Nk /i Ik = .

PROOF. Given i in I, let F' be the set of prime for which |i,|, # 1. By lemma
2.4, there exists an element « in ki, so that o~ ', is arbitrarily close to 1 at primes
pin EUF. In particular, we want a1, € Nk, /x, K, for the finite primes in EUF
and Oz_lip € R for the real infinite primes of k. Define i; and i, so that

) 1 forp¢ FEUF ) a i, forpg EUF
i, = = .
! a_lip forpe FUF 2 1 forpe FUF

Then i = aiyip; where a € k¥, iy € Nk ilk, and ip € kl{EU F} C I {E}.

Two number-theoretic lemmas. Put T, = (a”r —1)/(@”71 —1), where r > 0,
a>1,v>1. We have

s r—1 v
a’ —1:(<a“ —1)+1> 1

r— v—1 r_ v—2
(44) TT:(CLU 1_1) +'U(CLU 1_1) —|—+'U

LEMMA 4.16. Ifr >0, a > 1, and v is prime then
(1) if q is a prime so that ¢|T, and q|(a®” " —1) then q = v,
(2) if v|T, then v](a¥" —1),
(3) ifv>2 orr > 1 then T, # 0(mod v?).

Proor. (1) If ¢|T, and g|(a®" — 1) then by (4.4), ¢ must divided v, so ¢ = v.

(2) If v|T, then v divides every term of (4.4) except possibly (a® —1)*~1, so v
divides that term too. Therefore v divides a*”  — 1.
(3) Assume T, = 0(mod v2). Then v divides a®"  — 1 by (2). If v > 2 then v2
divides every term of (4.4) except v; then v? cannot divide T}, so v > 2 is impossible.
If » > 1 then (since v = 2) we have T, = (aQT*1 — 1)+ 2. If a is even then T, is odd
(impossible), so a is odd. a2 is a square so a> = 1(mod 4) and T, = 2(mod 4)
(impossible). It must be that r = 1.
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LEMMA 4.17. Given positive integers m, a, and prime power v® > 1, we can
find prime q not dividing am so that the order of a modulo q is v* where | > h.

PROOF. Let q1,...,qs be the primes dividing m. If ¢; divides some a*" — 1 then
let ¢; divide a¥"* — 1. Take ry greater than h and also greater than any of the r;
that are defined. We claim that there is a prime ¢ dividing 7}, so that ¢ is not
equal to v or any of the g;. Then ¢ also divides a*® — 1, so a¥° = 1(mod q).
If o = 1(mod ¢) then by (4.4) we would have T,, = v(mod ¢) (impossible).
Therefore the order of @ modulo ¢ is v™, which is greater than v".

We need to show how to find ¢. By (4.4) we must have T}, > v. If T,, were a
power of v then by (3) of lemma 4.16 we would have ro = 1. But ry was chosen
greater than 1, so 7},, has some prime divisor g that is not v. Then ¢ divides a’’’ —1.
Suppose that ¢ = ¢;. Since ¢; divides @’ — 1 and r; < ro, then ¢; would divide

U""O_l

a — 1. By (1) of lemma 4.16, ¢; = v (impossible). Therefore q # g;.
Existence of cyclic extensions with given properties.

PROPOSITION 4.18. Let finite prime p of Q, finite extension T of Q, and prime
power v > 1 be given. Then there exists a cyclic extension Z of Q so that
(1) Z is contained in a cyclotomic extension of Q,
(2) p is not ramified in Z,
(3) Artin symbol ( - ) has order v",
(4)
(5)

4)ZNT=Q, and
5) [Z: Q] is a power of v and [Z : Q] >

PRrROOF. Look at all of the fields Q ((,,) N'T; choose mg so that [Q (¢, ) NT : Q]
is maximum. We first want to show that if m is relatively prime to mg then

Q(lm)NT = Q. We have Q(¢n) N T C Q(Cmmy) N'T. Also, Q((m,) N'T C
Q(Cmmy) N'T, but by the choice of mg, we must have Q((m,) N T = Q(Cmm,) N'T.

Therefore Q((m) N'T C Q(Gn) N Q(Cny) = Q as claimed.
By lemma 4.17, given myg, p, and v, we can find prime ¢ relatively prime to p
and mg so that the order of p modulo ¢ is v' and I > h. Let k = Q((,), a cyclic

extension with Galois group isomorphic to Z;. By lemma 3.2 we have (ﬁ> ¢ =(P.
The order of (% is the order of p modulo ¢, which is v!. Let o be a generator

of G = G(k : Q); the order of o is ¢ — 1. Then (%) =o" k, where v does not
l

divide r. Since o™ = (%) =1, and v**! is the smallest power for which this

is true, it follows that v**! is the exact power of v dividing ¢ — 1.
Take Z to be the fixed field of the subgroup H generated by A By lemma
h h

2.13, (%) — ™", Then <ﬂ> = o™ ¢ H. Therefore (%) =1.1If

p
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'Uj . 'Uj
j < h then (%) = g ¢ (a”Hh}, SO (%) # 1; therefore (%) is order

vh.

We have (1) Z is contained in Q((,), (2) p does not divide ¢ and so is not ramified
in Z, (3) Artin symbol ( ) has order v", (4) ZNT C Q({) NT C Q, and (5)

[Z:Q]:[G.H]:[<a>.<a”+h >] = okth,

REMARK. It is possible to choose the roots of unity so that (., = (. (Choose
an embedding of the algebraic closure of Q into the complex field such that ¢, is
mapped to e2™*/™ for each n > 1.) This relation will simplify the proof of proposition
4.19.

LEMMA 4.19. If (n,m) is the greatest common divisor of n and m then

Q(Cn)Q(gm) = Q(Cnm/(”:m)>'

PROOF. There exists integers u and v so that un + vm = (n,m), and we have

Cu Cv = un—l—mv = 7(17:7,1771) = Cnm/(n m), SO Q(Cnm/(n m)) is contained in Q(Cn)Q(Cm)

Since Cn/n(;L(;nzn) (m and Q:;é(/?nm%) = (,, we also have Q((,)Q((,,) contained in

Q(gnm/(n,m)) Therefore Q(Cn)Q(gm) = Q(Cnm/(n,m))
PROPOSITION 4.20. Let finite prime p of Q, finite extension T of Q, and positive
integer n be given. Then there exists a cyclic extension Z of Q so that
1) Z is contained in a cyclotomic extension of Q.
p is not ramified in Z,

)7

(2)

(3) Artin symbol ( ) has order n,
(4)

(5)

4H)ZNT=Q,
5) n divides [Z : Q], and the only primes dividing [Z : Q| are those dividing n.

ProOF. If n is a prime power then proposition 4.20 reduces to proposition 4.18.
Suppose that the conclusion of Proposition 4.20 holds for relatively prime n; and
ny. We must show that the conclusion holds for nyjng. Let Z; = Z(p, n1, T) satisfy
the conclusion for ny, and let Zs = Z(p, no, Z1T) satisfy the conclusion for ns.

Choose Z to be Z1Zy. Then Z; is contained in Q((,,,) and Zs is contained in
Q((m,)- By lemma 4.19, Z is contained in Q((,,), where m is the least common
multiple of m; and mq, showing (1). p is not ramified in Z;, so any prime of Zs
dividing p is not ramified in Z;Zs/Zs by lemma 2.16. Since p is not ramified in
Z,/Q then p is not ramified in Z,Z,/Q, showing (2).

We must that Z/Q is cyclic. We have Zy NZy C Z1 T NZs = Q. Therefore by
lemmas 2.10 and 2.11, we have G(Z1Z3 : Q) = G(Z;1 : Q) X G(Z2 : Q). Let cyclic
group G(Z; : Q) of order r; be generated by o7, and let cyclic group G(Zs : Q)
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of order r5 be generated by o3. The only primes dividing r; are those dividing nq,
and the only primes dividing ro are those dividing ns. Then r; and ro are relatively
prime, and the order of (01,02) must be r17r2. The isomorphism corresponding to
(01,02) generates G(Z1Zs : Q), so Z/Q is cyclic of degree riry, and the only primes
dividing [Z : Q] are those dividing nin9 showing (5).

Artin symbol (%) corresponds to the pair ((%) , (%)) by the corollary
to lemma 2.13. These Artin symbols for Z; and Z, have orders n; and no, re-

spectively. Therefore (%) has order nino, showing (3). Finally, [Z1Z>T : Z5] =
[ZlT : Zgﬂle] = [ZlT : Q], SO [leQT : ZQ][ZQ : Q] = [ZlT : Q][ZQ : Q] There-
fore [Z1Z>T : Q] = [Z1 T : Q][Z2 : Q]. By lemma 2.10, it follow that Z1Z>NT = Q,
showing (4).

PROPOSITION 4.21. Let k be a finite extension of Q. Let finite prime p of k,
finite extension T of k, and positive integer n be given. Then there exists a cyclic
extension Z of k so that
(1) Z is contained in a cyclotomic extension of k.

(2) g is not ramified in Z,

(3) Artin symbol (ZTOI‘) has order n,
(4) ZNT =k,

(5) n divides [Z : k.

PROOF. Let (p) be the prime of Q that g divides; let Np = pf. Let Z’ be the
cyclic extension of Q satisfying the conclusion of proposition 4.20 for p, nf and T.
Take Z = Z’k. Since Z' C Q((n), we have Z C k((y,), showing (1). Since p is not
ramified in Z’ then p is not ramified in Z by lemma 2.16, showing (2). Artin symbol

/7 /7 f
(%) has order nf, and by lemma 2.16 we have (%) = (ZI;Q) . Therefore

Z?“) has order n, showing (3).

We want to show ZNT = k. We have

[ZT :T]=[Z'"T:T]=[Z":Z'NnT|=[Z":Q]>[Zk:k|=[Z:k] > [ZT : T].
Therefore [Z : k| = [ZT : T] = [Z : ZN T] so k = T N Z, showing (4). Finally,
G(Z : k) contains an element of order n by (3), so n divides [Z : k|, showing (5).

ProrosiTIiON 4.22. If K1k is a finite abelian extension and Theorem 1 holds
for Kq/k, then Theorem 1 holds for any extension Ko /k such that K; D Ko D k.

PRrROOF. Theorem 1 holds for K;/k if and only ¢k, /k of (2.1) can be extended
onto Ix so that the kernel contains k*. The restriction of ¢k, /k(i) as defined by
(2.1) to K3 coincides with ¢k, /(i) for i € Ix{E}. Since ¢k, /x can be extended to
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all of Iy so that the kernel contains k*, we may define ¢k, /i (i) for I € Iy to be the
restriction of ¢k, /(i) to K.

REMARK. The cyclic extension Z/k guaranteed by proposition 4.21 is contained
in a cyclotomic extension of k. Since we have proved Theorem 1 for cyclotomic
extensions, then Theorem 1 holds for the extensions Z = Z(p,n, T)/k.

Proof of theorem 1 for cyclic extensions. Let K/k be a cyclic extension
of degree n, and let op be a generator of G(K : k). There is an isomorphism
X : G(K : k) — C to n-th roots of unity in defined by

x(0G) = exp <2m'x> :

n

By the first and second fundamental inequalities (to be proved in chapters 7 and
8), we have [Ix : k*Ng ik Ik]| = n. Finite abelian group Iy /(k*Ng i Ik) is a direct
product of cyclic groups

where Hj, is a cyclic group of order nj generated by hy. Every element of the
quotient group can be written as a product

hi*...hi" where 0 < xp < ny.

For each r-tuple w = (wq,...,w,) with 0 < wy < ng, there is a homomorphism
Xw : H1 X -+ x H,, — C defined by

271 27
Yo (B3 ) = exp (M) exp (M) |

ni n

The number of homomorphisms x,, is n. Each homomorphism uniquely determines
the r-tuple w because the image exp(2miwy /ny) of hy determines wy.

Choose a prime p of k. By proposition 4.21, there is a cyclic extension Z =
Z(p,n,K) contained in a cyclotomic extension of k such that [Z : k| is divisible
by n, prime p is not ramified in Z, Artin symbol (%) has order exactly n, and

ZNK = k. Let py generate the Galois group G(Z : k), and let rn = [Z : k|. There
is an isomorphism O : G(Z : k) — C defined by

6(p) = exp (27”“’) |

rn
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Since Z N K = k, we have
G(ZK : k) =G(Z : k) x G(K : k) = {(p§,08) |0 <z <rn,0<y <n}.

Let S = S(a) be the fixed field of {(p§, 08) | za — yr = 0(mod rn}. Then ZS C ZK.,
If (pE,0f) fixes Z then z = 0(mod rn), and if (pg,of) fixes S then za — yr =
O(mod rn). If ZS is fixed then yr = 0(mod rn), or y = 0(mod n), so only the
identity of G(ZK : k) fixes ZS. Therefore ZS = ZK.

Z is contained in a cyclotomic extension of k, so ZS is contained in a cyclotomic
extension of S. Therefore Theorem 1 holds for ZS/S. G(ZS : S) is isomorphic to
a subgroup of G(Z : k). Let p™ generate G(ZS : S), and we can take x( to be the
least positive power of p that is in G(ZS : S) (i.e., that fixes S), so x( divides rn.

Since Ng i maps ker(¢zs/s) = S*Ngzg/slzs to ker(xn) = k*Nk Ik, there
is an induced homomorphism f : G(ZS : S) — C so that f¢zg/;s = xwNs/k-
(See diagram (47), noting that NS/kNZS/S = NK/kNZK/K because ZS = ZK)
The image of pg° must be an (rn/xg)-th root of unity, so there is an integer u
so that f(pp°) = ©(po)"™ = O(py°)". Since pj° generates the image of ¢zg/s,
we have f (¢zs/s(i)) = © (¢zs/s(i)|z) . The restriction ¢zg/s(i)|z of ¢zs/s(i) to
Z is ¢z/k(Ng/ki) (proposition 2.19). Therefore there is an integer u = u(a,p,Z)
depending on the choices of a, p and Z so that

(4.5) Xo (Ns/id) = © (¢z/x (Nspid))”  foriels.

IZK — Izs Diagram (47)

Nzk/k Nzs/s

$zs/s x

0% Ig SN sTas G(ZS:S) —— (p)

Nk /x Ns/x Jf

I Xw C] .

I Ik N nT C —— G(Z:k)
Let Z' = Z'(p',n,K) be another cyclic extension satisfying the conclusion of

proposition 4.21, where p’ is a prime of k. (Note: Z’ will be used to show that
certain later results are independent of p and of Z.) Now let W = W(p,n, ZZ'K)
be a cyclic extension of k satisfying the conclusion of proposition 4.21. Then W
is a cyclic extension contained in a cyclotomic extension of k, [W : k] is divisible
by n, Artin symbol (%) has order n, and W N ZZ'K = k. Let [W : k] = sn,

and let 79 be a generator of cyclic group G(W : k). There is an isomorphism
Z:G(W : k) — C defined by

— 271
E(715) = exp <—) :

sn
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We repeat the previous argument, with W in place of Z. Since W NZZ'K = k, we
have

GKW :k)=GK k) x G(W :k) = {(08,75) |0y <n,0< z < sn}.

Let T be the fixed field of {(cf,7§) ’ ys —z =0(mod sn}. Then WT C KW.
If (0f,7§) fixes W then z = 0(mod sn), and if (p§,0f) fixes T then ys — z =
O(mod sn). If TW is fixed then ys = 0(mod sn), or y = 0(mod n), so only the
identity of G(KW : k) fixes TW. Therefore TW = KW.

Since W is contained in a cyclotomic extension of k then TW is contained in a
cyclotomic extension of T. Therefore Theorem 1 holds for TW/T. G(TW : T) is
isomorphic to a subgroup of G(W : k). Let 7%° generate G(TW : T), and we can
take zp to be the least positive power of 7 that is in G(TW : T) (i.e., that fixes
T), so zp divides sn.

Since Nt/ maps ker(¢rw/w) = T*Now/wlrw to ker(x,) = k*Ng Ik,
there is an induced homomorphism g : G(TW : T) — C so that gorw,w =
XwNt/k. (See diagram (4.8), noting that N/ Nrw,r = Nk /kNkw/k because
TW = KW.) The image of 7;° must be an (sn/zp)-th root of unity, so there
is an integer v so that g(75°) = Z(m)"*° = Z(7°)”. Since 7;° generates the
image of ¢w, w, we have g (qﬁTW/W(i)) =E (c;STW/W(i)]W)u. The restriction
¢rw w(i)|lw of ¢rw/ (i) to W is ¢w k(N1 ki) (proposition 2.19). Therefore
there is an integer v = v(p, p’, Z,Z’) depending on the choices of p, p’, Z and Z’ so
that

(4.6) Xo (Nt /ii) = Z (¢ /1 (Npsid))” for i € Ip.
Ixw Itw Diagram (4.8)

J/NKW/K J/NTW/T

¢Tw,T z
Ik It T*NTVIVT/WITW G(TW:T) —— (7°)
J{NK/k J{NT/k lg
I Xew = )

I, —— Iy k*NKk/kIK C —— G(W:k)

Multiply both sides of (4.6) by © (qﬁz/k(NT/ki))_u to obtain

u

(4.9)  Xw(Np/i)O (¢z/x(Np i)
=0 (¢Z/k(NT/ki))_u E (ér/x (NT/ki))v for i € I.



42 IV. THEOREM 1: PROOF FOR CYCLIC EXTENSIONS

Givenj S IST, ifi= NST/Tj then NT/ki = NS/k(NST/Sj> = NST/kj' The kernel
of the mapping Ix — C by i — x,,(1)©(¢z/i) ™" contains NgIs by (4.5). If we
evaluate (4.9) at i = Ngp,T j, we obtain

(4.10) 1=0 (¢z/x(Nst/kd)) = (¢wx(Nsr/ii))" for j € IsT.

We have ZS = ZK contained in a cyclotomic extension of S and TW = KW con-
tained in a cyclotomic extension of T, so ZKW = ZSW = ZTW is contained in a
cyclotomic extension of TS. Therefore Theorem 1 holds for ZKW /T'S. The restric-
tion of ¢zxw /s to ZST is ¢zst/rs(i) = ¢z/k(Nst/k(i)), and the restriction of

dzxw/Ts to STW is ¢srw/rs(i) = dw/k(Ngr/k(i)). (Let o1 denote the restric-
tion of ¢pzxw /s to K.) The mapping (p,o,7) — ©(p) "“Z(7)" is a homomorphism

G(ZKW : k) — C which maps ¢zxw/st(i) = (¢z/x(Nst/ki), 01, dw/x(Ns/ki))
to 1 by (4.10). The homomorphism ¢zgw/ /st maps Ist onto G(ZKW : ST).
Therefore

O(p) “E(r)" =1 for any (p,o,7) € G(ZKW : k) leaving ST fixed.
In particular, the automorphism (pf, 0§, 7§°) leaves both S and T fixed. Therefore

6 (pf) "2 (r8)" = 1.

We have exp(2m’r/(rn))_u exp(2m’as/(sn))v = exp(27i(—u/n + av/n)) =1, or
(4.11) u = av(mod n).

We show that v is independent of Z and Z'. The construction leading from W to
v is symmetric in Z and Z'. We can reverse the roles of Z and Z’, and the v(Z,Z’)
that satisfies (4.11) for u(Z) also satisfies (4.11) for u(Z').

v(W,Z,Z"Ya = u(a,Z)(mod n)
v(W,Z,Z"Ya = u(a, Z")(mod n)

We can also start from either Z’ or Z”, obtaining

v(W,Z',Z")a = u(a, Z")(mod n)
v(W,Z',Z"a = u(a, Z")(mod n)

We choose a = 1 to conclude that v(W,Z,Z") = u(1,Z) = u(1,Z") = v(W,Z',Z").
In like manner we have v(W,Z',Z") = v(W,Z",Z""). Therefore vw is independent
of Z and Z'.
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v is independent of W. If W’ is chosen then, since u is independent of W, we
have
v(W)a = u(a,Z) = v(W')a(mod n).

Choose a = 1 to conclude that v(W) = u(1,Z) = v(W’)1(mod n).

v is independent of p and p’. The construction leading from W to v is symmetric
in p and p’. We can start from either Z = Z(p,n,K) or Z' = Z'(p’, n, K), concluding
that

v(p,p')a = u(p, Z)(mod n)
v(p,p")a = u(p’, Z")(mod n)
We can start from Z' = Z(p',n,K) or Z"" = Z" (p", n, K), concluding that
v(p',p")a = u(p’, Z")(mod n)
(@', p")a = u(p”,Z")(mod n)

Choose a = 1 to conclude that v(p,p’) = v(p/,p”)(mod n). Likewise, v(p’,p") =
v(p”,p"")(mod n). Therefore v is independent of p. We have shown the indepen-
dence of u and v from p, Z and W.

Now let p be a prime not ramified in K. Choose Z = Z(p,n,K). Artin symbol

(%) has order n. Since [Z : k] = rn, we have

Z:k
(4.12) <—) =pot" where (xz1,n) = 1.
D

Artin symbol (%) is some power of gg, so let

(4.13) <K—k) — o,

p

S is the fixed field of {(p§,08) | za — yr = 0(mod n)}. (%) and (—k) are the

p

restrictions of (ZK k) to S and K, respectively, so

(55) - ((55)-(51)) -

Choose a so that x1a —y; = 0(mod n). Then

reia — ry; = 0(mod n),
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SO (%) fixes S, so (%) = 1. If p is a prime of S dividing p then (%)
generates G(S,/kp), so S, = k.

For a € kp, let i = i(a, p) be the idele in Ij so that

. aatg=p
MT \tatg#p

Since S, = k,,, choose j = j(«, p) for a prime p of K dividing p. Then
Ns/ (o, p) = i(a, p)
and by (4.5) we have
(4.14) X (i(a,p)) = Xw (NS/kj(% @))
= 0(¢z/k(Nspi(e 9))" = O(dz/ci(op))"

Prime p is not ramified in Z, so

N
(4.15) oz (i(a,p)) = <%) where |a], = Np~°.

By (4.14), (4.15), and (4.12) we have

Yo (i(a,p)) = © ((%))bu ~ o (s

2mirx1bu 2miz1bu
= exp — = exp —

Since va = u(mod n), and since a was chosen so that zja = y;(mod n), we have
x1bu = z1bva = y1bv(mod n). By 4.13, we have

Yo (i(a;p)) = exp (2m’zlbv) —y (aé’lb“> _ ((%))bv

To summarize, suppose that p is not ramified in K, « is an element of k,,, and
i =i(a,p) is an idele in Iy with components i; = « at prime ¢ = p and i, = 1 at
primes g # p. Then there is an integer v independent of p so that 0 < v < n and

@16 (i) = x ((%)) where Jal, = Np~*
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If i € In{E}, then (2.1) defines ¢k /i by

K:k\>
¢xd) =[] <T) where I, = Np~b.
p7E

The only non-trivial terms of the product over E are for primes in F' = { P ‘ lip| #1 },

i ¢K/k H X (K k) H Xw (i(ip,p))

PEF pEF
Idele i in Ix{F} as a direct product is

t= L) L 160

pEF pPEF

For a prime p not in F', each component i, is the norm of an 3, element in K
for prime g of K dividing p, by proposition 4.7. By setting j, = 3 at one prime g
dividing each prime p not in F' and j, = 1 otherwise, we have

[1iG,.p) € NkjiIx C ker(x)
p¢F

therefore

(4.17) X(¢K/k(i))v = Xw H i(ip,p) | = xw(i) for i € L{E}.

peEF

Since Iy = I {F}k*Ngk /kIk, then (i) is completely determined by its values
at i in Ix{F}. The n functions yx, are all distinct because if x,, = X, then

1= le(i)sz(i)_l = X(w1—w2)(i)’ But if w1 — W2 7& (0) then X(w1— wz)() 7é 1
for some i in Ix{F}, so we must have w; = wy. There are n homomorphisms
Xw corresponding to n values of v, so the correspondence is one-to-one. There is
therefore some wy that corresponds to v = 1, and we have

(4.18) X(¢x /(i) = xwo () forie L{E}.

The right side of (4.18) is defined for all i in Ix. x is an isomorphism from G[K : k]
to the n-th roots of unity. Define

(4.19) b = X (o) forie I

This definition agrees with (2.1) for i in Ix{E} and the kernel contains k*. This
completes the proof of theorem 1 for cyclic extensions.



