
CHAPTER IV

THEOREM 1: PROOF FOR CYCLIC EXTENSIONS

Non-degeneracy of the trace in separable extensions. In this section, k

may be either a finite field or an algebraic number field. (The result for finite
fields is needed in the proof of proposition 4.7.) SK/k(xy) is a k-bilinear form of K

represented by matrix Sij = SK/k(αiαj) with respect to basis α1, . . . , αn of K over
k. If x = a1α1 + · · ·+ anαn and y = b1α1 + · · ·+ bnαn, then

SK/k(xy) = SK/k(
n
∑

i=1

n
∑

j=1

aiαiαjbj)

=

n
∑

i=1

n
∑

j=1

aiSK/k(αiαj)bj =

n
∑

i=1

n
∑

j=1

aiSijbj = (Xt)SY.

Lemma 4.1. If K/k is a finite normal separable extension with Galois group
G = G(K : k) then

NK/kα =
∏

σ∈G

ασ and SK/kα =
∑

σ∈G

ασ.

Proof. Let [k(α) : k] = n and [K : k(α)] = m. Let G be the Galois group of
K over k and H be the subgroup of G that fixes k(α). Let {ρ1, . . . , ρn} be a set of
representatives for the distinct right cosets of H in G. The minimum polynomial
f(x) = xn + a1x

n−1 + · · ·+ an of α over k has factorization (x− αρ1) . . . (x−αρn),
so a1 = −

∑n
k=1 αρk and an = (−1)n

∏n
k=1 αρk . The matrix representing Tα as a

linear transformation of k(α) with respect to basis 1, α, . . . , αn−1 is

T =













0 0 . . . 0 −an

1 0 . . . 0 −an−1

0 1 . . . 0 −an−2

...
...

. . .
...

...
0 0 . . . 1 −a1












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Then Nk(α)/kα = det(T) = (−1)n+1(−an) =
∏n

k=1 αρk and Sk(α)/kα = trace(T) =

−a1 =
∑n

k=1 αρk . We have

NK/kα = Nk(α)/kNK/k(α)α = Nk(α)/kαm,

SK/kα = Sk(α)/kSK/k(α)α = mSk(α)/kα.

Let H = {τ1, . . . , τ
m}. Then the nm products τjρk run over G. We have

∏

σ∈G

ασ =

m
∏

j=1

n
∏

k=1

ατjρk =

(

n
∏

k=1

αρk

)m

= NK/kα

∑

σ∈G

ασ =
m
∑

j=1

n
∑

k=1

ατjρk = m
n
∑

k=1

αρk = SK/kα.

Lemma 4.2. If K/k is a finite normal separable extension then matrix S is
non-singular.

Proof. Let {σ1, . . . , σn} be the automorphisms in Galois group G(K : k). By
lemma 4.1, Sij =

∑n
k=1 ασk

i ασk
j , so Sij = AAt where Aik = ασk

i . With respect

to a simple basis {1, α, α2, . . . , αn−1}, A has the form Aik = (ασk)i−1, which is a
Vandermonde matrix V (ασ1 , . . . , ασn). There are n distinct conjugates of generator
α, so A is non-singular and so is S.

Lemma 4.3. Let K be a finite normal extension k. Matrix (Sij) is non-singular
if and only if for every non-zero element y of K there exists an element x of K so
that SK/k(xy) 6= 0.

Proof. SK/k(xy) = (Xt)SY. Suppose S non-singular. If y 6= 0 then SY 6= 0,

so there is a vector X so that (Xt)SY 6= 0. conversely, if S is singular then SY = 0
for some non-zero y, and SK/k(xy) = 0 for every x in K.

Proposition 4.4. Let L be a finite separable (not necessarily normal) extension
of k. Then the trace SL/k(xy) is non-degenerate: for every non-zero y in L there
is an x in L so that SL/k(xy) 6= 0.

Proof. Let y be a non-zero element of L. Then L is contained in a finite normal
extension K, and

SK/k(xy) = SL/k

(

SK/L(xy)
)

= SL/k

(

SK/L(x)y
)

.

Choose x in K so that SK/k(xy) 6= 0. Then SK/L(x) is the desired element of L.

Remark. In lemma 4.5, let the images modulo ℘ and p of elements β in O℘ and

b in op be denoted by β and b, respectively.
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Lemma 4.5. Suppose that p-adic extension K℘/kp is not ramified. Let F (q)
denote finite field op/p where q = Np; let F (qf ) denote finite field O℘/℘ where
qf = N℘. Then

NK℘/kp
α = NF (qf)/F (q)α and SK℘/kp

α = SF (qf)/F (q)α.

Proof. Choose w1, . . . , wf in O℘ so that w1, . . . , wf is a basis for F (qf ) over
F (q). Let p = (π) for π ∈ op. Suppose a1w1 + · · · + anwn = 0 with ai ∈ kp.
After multiplying by a power of π, we may take the coefficients ai in op. Then
each coefficient ai is 0 modulo p, so ai = πa′

i with a′
i in op. Dividing by π, we

have a′
1w1 + · · ·+ a′

nwn = 0. In this fashion we can show that each ai is divisible
by an arbitrarily large power of π, so each ai = 0 and w1, . . . , wf must be linearly
independent over kp. We have [K℘/kp] = f , so w1, . . . , wf is a basis of K℘ over
kp. With respect basis w1, . . . , wf , let the matrix representing Tα be ( aij ). With
respect to basis w1, . . . , wf , the matrix representing Tα as a linear transformation

of O℘/℘ over op/p will be ( aij ). We have det ( aij ) = det ( aij ) and trace ( aij ) =
trace ( aij ), which proves the lemma.

Every unit is a norm in unramified p-adic extensions. If K/k is a finite
extension of algebraic numbers then O℘/℘ is a finite field containing N℘ elements;
op/p is finite field containing Np elements. Let these finite fields be denoted by
F (qf ) and F (q), where q = Np and qf = N℘.

Lemma 4.6. Every element in F (q) is the norm of an element in F (qf ).

Proof. The Galois group of F (qf ) over F (q) is generated by σ where ασ = αq.
Then

NF (qf)/F (q)(α) = ααq . . . αqn−1

= α1+q+···+qn−1

= α

(

qn
−1

q−1

)

.

NF (qf)/F (q)(0) = 0, so we have to show that the q − 1 non-zero elements of F (q)

are norms. Take α to be a generator of F (qf )∗. Then

NF (qf)/F (q)(α
u) = α

u

(

qn−1

q−1

)

.

For u = 0, 1, . . . , q − 2 we have 0 ≤ u(qn − 1)/(q − 1) < qn − 1. Since α has order
qn − 1, there are q − 1 distinct values of NF (qf)/F (q)(α

u).

Proposition 4.7. If K℘ is an finite unramified extension of p-adic field kp,
then every unit in kp is the norm of an element in K℘.

Proof. Let β be a unit in kp. By lemma 4.6, there is an α1 in K℘ so that
NK℘/kp

α1 = β(mod p). Suppose that we have already found αn in K℘ so that
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NK℘/kp
αn = β(mod pn). Let p = (π). The extension K℘/kp is not ramified, so

pO℘ = ℘, and ℘n = πnO℘ for n ≥ 0. Then
(

NK℘/kp
αn

)−1
β = 1+δπn(mod pn+1).

Put αn+1 = αn(1 + xπn). The condition NK℘/kp
αn+1 = β(mod pn+1) will be

satisfied if we can find x in K℘ so that

(4.1) NK℘/kp
(1 + xπn) = 1 + δπn(mod pn+1).

Let (xij) be the matrix representing Tx in K℘ over kp with respect to some basis.
then the matrix representing T1+xπn is









1 + x11π
n x12π

n . . . x1fπn

x21π
n 1 + x22π

n . . . x2fπn

...
...

. . .
...

xf1π
n xf2π

n . . . 1 + xffπn









.

We therefore have

NK℘/kp
(1 + xπn) = 1 + (x11 + · · ·+ xff )πn = 1 + πnSK℘/kp

x(mod pn+1).

Condition (4.1) is therefore

1 + πnSK℘/kp
x = 1 + δπn(mod pn+1),

or
SK℘/kp

x = δ(mod p).

By lemma 4.3, the trace S : O℘/℘ → op/p is non-degenerate; there exists an
element γ ∈ O℘ so that SK℘/kp

γ = ε 6= 0(mod p). Then SK℘/kp
γε−1 = 1(mod p),

and SK℘/kp
γε−1δ = δ(mod p). Therefore αn+1 = αn(1 + γε−1δπn) satisfies (4.1).

The sequence {αn} converges to a limit α in K℘ satisfying NK℘/kp
α = β.

Exponential and logarithm functions. In the following discussion of expo-
nential and logarithm functions, let ℘ denote a prime of k and (p) = ℘ ∩ Z the
rational prime that ℘ divides, with p > 0.

Lemma 4.8. Let ℘ be a finite prime of k. The series

(4.2) exp(x) = 1 + x +
x2

2!
+ · · ·+

xk

k!
+ . . .

converges for x in k℘ if ord℘(x) > b
p−1 where b = ord℘(p).

Proof. The series converges if and only if limk→∞

∣

∣xk/k!
∣

∣

℘
= 0. The exact

power to which rational prime p divides k! is

ordp(k!) =

[

k

p

]

+

[

k

p2

]

+

[

k

p3

]

+ . . . .
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Let k = a0 + a1p + a2p
2 + · · ·+ arp

r where 0 ≤ ai < p. Then

[

k
p

]

= a1 + a2p + . . . + arp
r−1

[

k
p2

]

= a2 + . . . + arp
r−2

...

Summing each column, we have

ordp(k!) = a0
p0 − 1

p− 1
+ a1

p1 − 1

p− 1
+ a2

p2 − 1

p− 1
+ · · ·+ ar

pr − 1

p− 1
,

or

ordp(k!) =
k − (a0 + a1 + · · ·+ ar)

p− 1
≤

k − 1

p− 1
.

Since b = ord℘(p), we have

(4.3) ord℘(k!) = b

(

k − (a0 + a1 + · · ·+ ar)

p− 1

)

≤ b

(

k − 1

p− 1

)

.

Then

ord℘(xk/k!) = k ord℘(x)− ord℘(k!)

≥ k ord℘(x)− b

(

k − 1

p− 1

)

= k

(

ord℘(x)−
b

p− 1

)

+
b

p− 1
,

so ord℘(xk/k!)→∞ if ord℘(x)− b/(p− 1) > 0.

Lemma 4.9. If ord℘(x) > b
p−1

then ord℘

(

exp(x)− 1
)

= ord℘(x).

Proof. We have

exp(x)− 1 = x +
x2

2!
+ · · ·+

xk

k!
+ . . . .

We need to show |xk/k!|℘ < |x|℘, or |xk−1/k!|℘ < 1 for k ≥ 2. We have ord℘(k!) ≤

b
(

k−1
p−1

)

, so if ord℘(x) > b
p−1 and k ≥ 2 then

ord℘

(

xk−1

k!

)

= (k − 1)ord℘(x)− ord℘(k!) > (k − 1)
b

p− 1
− b

k − 1

p− 1
= 0.
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Lemma 4.10. Let ℘ be a finite prime of k. The infinite series

log(1− x) = −x−
x2

2
−

x3

3
− · · · −

xk

k
− . . .

converges for x in k℘ if |x|℘ < 1.

Proof. If ord℘(x) > 0 we show that
∣

∣xk/k
∣

∣

℘
→ 0, or k ord℘(x)− ord℘(k)→∞.

Let k = upv where (u, p) = 1. Then k = plogp(k), so ord℘(k) = bv ≤ b logp(k). If

ord(x) > 0 then for large k we have
logp(k)

k
< 1

2b
ord℘(x), and

k ord℘(x)− ord℘(k) = k

(

ord℘(x)−
ord℘(k)

k

)

≥ k

(

ord℘(x)−
b logp(k)

k

)

>
k

2
ord℘(x)→∞.

Lemma 4.11. If ord℘(x) > b
p−1 then ord℘

(

log(1− x)
)

= ord℘(x).

Proof. If ord℘(x) > b
p−1

, we need to show

∣

∣

∣

∣

x2

2
+

x3

3
+ · · ·+

xk

k
+ . . .

∣

∣

∣

∣

℘

< |x|℘.

It is enough to show |xk/k|℘ < |x|℘, or

k ord℘(x)− ord℘(k) > ord℘(x) for k ≥ 2.

Put k = upv, where (u, p) = 1. We need upvord℘(x)− bv > ord℘(x), or

(upv − 1) ord℘(x)− bv > 0

Since u ≥ 1, we need (pv − 1)ord℘(x)− bv > 0, or
(

pv − 1

p− 1

)

ord℘(x)−
bv

p− 1
> 0.

If ord℘(x) > b
p−1 then we need

(

pv − 1

p− 1

)(

b

p− 1

)

−
bv

p− 1
≥ 0,

or
pv − 1

p− 1
− v = (1 + p + · · ·+ pv−1)− v ≥ 0.

The last inequality is certainly valid, since p ≥ 2 and v ≥ 0.
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Lemma 4.12. For s and t in k℘, if ord℘(s) > b
p−1 and ord℘(t) > b

p−1 then

log
(

(1− s)(1− t)
)

= log(1− s) + log(1− t)

exp
(

log(1− s)
)

= 1− s

exp(s) exp(t) = exp(s + t)

log
(

exp(s)
)

= s

Proof. That each of the above series converges follows from the four previous
lemmas.

Lemma 4.13. If n > 0 and ord℘(n) = a, then every element in the set

{

y ∈ k∗
℘

∣

∣ ord℘(y − 1) >
b

p− 1
+ a

}

is the n-th power of an element in
{

x ∈ k∗
℘

∣

∣ ord℘(x− 1) > b
p−1

}

.

Proof. If ord℘(y − 1) > b/(p− 1) + a then log
(

1 − (y − 1)
)

= log(y) is de-

fined, and ord℘

(

log(y)
)

= ord℘(y − 1). Then ord℘(log(y)/n) > b/(p− 1), so

x = exp
(

log(y)/n
)

and exp
(

log(y)
)

are defined. We have

xn =

(

exp

(

log(y)

n

))n

= exp
(

log(y)
)

= y,

and

ord℘(x− 1) = ord℘

(

exp

(

log(y)

n

)

− 1

)

= ord℘

(

log(y)

n

)

>
b

p− 1
.

Remark. We revert to the usual notation: p is a prime of k and ℘ a prime of
finite extension field K.

Lemma 4.14. NK℘/kp
K∗

℘ is an open subgroup of k∗
p.

Proof. Let [K℘ : kp] = n. If α is in k∗
p then NK℘/kp

α = αn, so Every n-th
power of an element in k∗

p is in NK℘/kp
K∗

℘. If ordp(n) = a then every element in

open set {α | ordp(α − 1) > b
p−1

+ a} is an n-th power by lemma 4.13. Subgroup

NK℘/kp
K∗

℘ contains an open set, so NK℘/kp
K∗

℘ is open.
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Proposition 4.15. If E is a finite set of primes of k containing all infinite
primes and all primes that are ramified in K, then

Ik{E}k
∗NK/kIK = Ik.

Proof. Given i in Ik, let F be the set of prime for which |ip|p 6= 1. By lemma
2.4, there exists an element α in k∗

p so that α−1ip is arbitrarily close to 1 at primes

p in E∪F . In particular, we want α−1ip ∈ NK℘/kp
K∗

℘ for the finite primes in E∪F

and α−1ip ∈ R+ for the real infinite primes of k. Define i1 and i2 so that

i1 =

{

1 for p /∈ E ∪ F

α−1ip for p ∈ E ∪ F
i2 =

{

α−1ip for p /∈ E ∪ F

1 for p ∈ E ∪ F
.

Then i = αi1i2 where α ∈ k∗, i1 ∈ NK/kIK, and i2 ∈ Ik{E ∪ F} ⊂ Ik{E}.

Two number-theoretic lemmas. Put Tr =
(

avr

−1
)

/
(

avr−1

−1
)

, where r > 0,
a > 1, v > 1. We have

avr

− 1 =
((

avr−1

− 1
)

+ 1
)v

− 1

=
(

avr−1

− 1
)v

+ · · ·+

(

k

v

)

(

avr−1

− 1
)k

+ · · ·+ v
(

avr−1

− 1
)

(4.4) Tr =
(

avr−1

− 1
)v−1

+ v
(

avr−1

− 1
)v−2

+ · · ·+ v

Lemma 4.16. If r > 0, a > 1, and v is prime then

(1) if q is a prime so that q|Tr and q|(avr−1

− 1) then q = v,

(2) if v|Tr then v|(avr−1

− 1),
(3) if v > 2 or r > 1 then Tr 6= 0(mod v2).

Proof. (1) If q|Tr and q|(avr−1

− 1) then by (4.4), q must divided v, so q = v.

(2) If v|Tr then v divides every term of (4.4) except possibly (avr−1

− 1)v−1, so v

divides that term too. Therefore v divides avr−1

− 1.
(3) Assume Tr = 0(mod v2). Then v divides avr−1

− 1 by (2). If v > 2 then v2

divides every term of (4.4) except v; then v2 cannot divide Tr, so v > 2 is impossible.

If r > 1 then (since v = 2) we have Tr = (a2r−1

− 1) + 2. If a is even then Tr is odd

(impossible), so a is odd. a2r−1

is a square so a2r−1

= 1(mod 4) and Tr = 2(mod 4)
(impossible). It must be that r = 1.
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Lemma 4.17. Given positive integers m, a, and prime power vh > 1, we can
find prime q not dividing am so that the order of a modulo q is vl where l ≥ h.

Proof. Let q1, . . . , qs be the primes dividing m. If qi divides some avr

− 1 then
let qi divide avri

− 1. Take r0 greater than h and also greater than any of the ri

that are defined. We claim that there is a prime q dividing Tr0
so that q is not

equal to v or any of the qi. Then q also divides avr0
− 1, so avr0

= 1(mod q).

If avr0−1

= 1(mod q) then by (4.4) we would have Tr0
= v(mod q) (impossible).

Therefore the order of a modulo q is vr0 , which is greater than vh.
We need to show how to find q. By (4.4) we must have Tr0

> v. If Tr0
were a

power of v then by (3) of lemma 4.16 we would have r0 = 1. But r0 was chosen
greater than 1, so Tr0

has some prime divisor q that is not v. Then q divides avr0
−1.

Suppose that q = qi. Since qi divides avri
− 1 and ri < r0, then qi would divide

avr0−1

− 1. By (1) of lemma 4.16, qi = v (impossible). Therefore q 6= qi.

Existence of cyclic extensions with given properties.

Proposition 4.18. Let finite prime p of Q, finite extension T of Q, and prime
power vh > 1 be given. Then there exists a cyclic extension Z of Q so that
(1) Z is contained in a cyclotomic extension of Q,
(2) p is not ramified in Z,

(3) Artin symbol
(

Z:Q
p

)

has order vh,

(4) Z ∩T = Q, and
(5) [Z : Q] is a power of v and [Z : Q] ≥ vh.

Proof. Look at all of the fields Q (ζm)∩T; choose m0 so that [Q (ζm0
)∩T : Q]

is maximum. We first want to show that if m is relatively prime to m0 then
Q(ζm) ∩ T = Q. We have Q(ζm) ∩ T ⊂ Q(ζmm0

) ∩ T. Also, Q(ζm0
) ∩ T ⊂

Q(ζmm0
) ∩T, but by the choice of m0, we must have Q(ζm0

) ∩T = Q(ζmm0
) ∩T.

Therefore Q(ζm) ∩T ⊂ Q(ζm) ∩Q(ζm0
) = Q as claimed.

By lemma 4.17, given m0, p, and vh, we can find prime q relatively prime to p
and m0 so that the order of p modulo q is vl and l ≥ h. Let k = Q(ζq), a cyclic

extension with Galois group isomorphic to Z∗
q . By lemma 3.2 we have

(

k:Q
p

)

ζ = ζp.

The order of
(

k:Q
p

)

is the order of p modulo q, which is vl. Let σ be a generator

of G = G(k : Q); the order of σ is q − 1. Then
(

k:Q
p

)

= σrvk

, where v does not

divide r. Since σrvk+l

=
(

k:Q
p

)vl

= 1, and vk+l is the smallest power for which this

is true, it follows that vk+l is the exact power of v dividing q − 1.

Take Z to be the fixed field of the subgroup H generated by σvk+h

. By lemma

2.13,
(

Z:Q
p

)

= σrvk

. Then
(

Z:Q
p

)vh

= σrvk+h

∈ H. Therefore
(

Z:Q
p

)vh

= 1. If
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j < h then
(

Z:Q
p

)vj

= σrvk+j

/∈ 〈σvk+h

〉, so
(

Z:Q
p

)vj

6= 1; therefore
(

Z:Q
p

)

is order

vh.
We have (1) Z is contained in Q(ζq), (2) p does not divide q and so is not ramified

in Z, (3) Artin symbol
(

Z:Q
p

)

has order vh, (4) Z ∩ T ⊂ Q(ζq) ∩ T ⊂ Q, and (5)

[Z : Q] = [G : H] = [< σ >:< σvk+h

>] = vk+h.

Remark. It is possible to choose the roots of unity so that ζn
mn = ζm. (Choose

an embedding of the algebraic closure of Q into the complex field such that ζn is
mapped to e2πi/n for each n > 1.) This relation will simplify the proof of proposition
4.19.

Lemma 4.19. If (n, m) is the greatest common divisor of n and m then

Q(ζn)Q(ζm) = Q(ζnm/(n,m)).

Proof. There exists integers u and v so that un + vm = (n, m), and we have

ζu
mζv

n = ζun+mv
nm = ζ

(n,m)
nm = ζnm/(n,m), so Q(ζnm/(n,m)) is contained in Q(ζn)Q(ζm).

Since ζ
n/(n,m)
mn/(n,m) = ζm and ζ

m/(n,m)
mn/(n,m) = ζn we also have Q(ζn)Q(ζm) contained in

Q(ζnm/(n,m)). Therefore Q(ζn)Q(ζm) = Q(ζnm/(n,m)).

Proposition 4.20. Let finite prime p of Q, finite extension T of Q, and positive
integer n be given. Then there exists a cyclic extension Z of Q so that
(1) Z is contained in a cyclotomic extension of Q.
(2) p is not ramified in Z,

(3) Artin symbol
(

Z:Q
p

)

has order n,

(4) Z ∩T = Q,
(5) n divides [Z : Q], and the only primes dividing [Z : Q] are those dividing n.

Proof. If n is a prime power then proposition 4.20 reduces to proposition 4.18.
Suppose that the conclusion of Proposition 4.20 holds for relatively prime n1 and
n2. We must show that the conclusion holds for n1n2. Let Z1 = Z(p, n1,T) satisfy
the conclusion for n1, and let Z2 = Z(p, n2,Z1T) satisfy the conclusion for n2.

Choose Z to be Z1Z2. Then Z1 is contained in Q(ζm1
) and Z2 is contained in

Q(ζm2
). By lemma 4.19, Z is contained in Q(ζm), where m is the least common

multiple of m1 and m2, showing (1). p is not ramified in Z1, so any prime of Z2

dividing p is not ramified in Z1Z2/Z2 by lemma 2.16. Since p is not ramified in
Z2/Q then p is not ramified in Z1Z2/Q, showing (2).

We must that Z/Q is cyclic. We have Z1 ∩ Z2 ⊂ Z1T ∩ Z2 = Q. Therefore by
lemmas 2.10 and 2.11, we have G(Z1Z2 : Q) = G(Z1 : Q)×G(Z2 : Q). Let cyclic
group G(Z1 : Q) of order r1 be generated by σ1, and let cyclic group G(Z2 : Q)
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of order r2 be generated by σ2. The only primes dividing r1 are those dividing n1,
and the only primes dividing r2 are those dividing n2. Then r1 and r2 are relatively
prime, and the order of (σ1, σ2) must be r1r2. The isomorphism corresponding to
(σ1, σ2) generates G(Z1Z2 : Q), so Z/Q is cyclic of degree r1r2, and the only primes
dividing [Z : Q] are those dividing n1n2 showing (5).

Artin symbol
(

Z:Q
p

)

corresponds to the pair
((

Z1:Q
p

)

,
(

Z2:Q
p

))

by the corollary

to lemma 2.13. These Artin symbols for Z1 and Z2 have orders n1 and n2, re-

spectively. Therefore
(

Z:Q
p

)

has order n1n2, showing (3). Finally, [Z1Z2T : Z2] =

[Z1T : Z2∩Z1T] = [Z1T : Q], so [Z1Z2T : Z2][Z2 : Q] = [Z1T : Q][Z2 : Q]. There-
fore [Z1Z2T : Q] = [Z1T : Q][Z2 : Q]. By lemma 2.10, it follow that Z1Z2∩T = Q,
showing (4).

Proposition 4.21. Let k be a finite extension of Q. Let finite prime ℘ of k,
finite extension T of k, and positive integer n be given. Then there exists a cyclic
extension Z of k so that
(1) Z is contained in a cyclotomic extension of k.
(2) ℘ is not ramified in Z,

(3) Artin symbol
(

Z:k
℘

)

has order n,

(4) Z ∩T = k,
(5) n divides [Z : k].

Proof. Let (p) be the prime of Q that ℘ divides; let N℘ = pf . Let Z′ be the
cyclic extension of Q satisfying the conclusion of proposition 4.20 for p, nf and T.
Take Z = Z′k. Since Z′ ⊂ Q(ζm), we have Z ⊂ k(ζm), showing (1). Since p is not
ramified in Z′ then ℘ is not ramified in Z by lemma 2.16, showing (2). Artin symbol
(

Z′:Q
p

)

has order nf , and by lemma 2.16 we have
(

Z:k
℘

)

=
(

Z′:Q
p

)f

. Therefore
(

Z:k
℘

)

has order n, showing (3).

We want to show Z ∩T = k. We have

[ZT : T] = [Z′T : T] = [Z′ : Z′ ∩T] = [Z′ : Q] ≥ [Z′k : k] = [Z : k] ≥ [ZT : T].

Therefore [Z : k] = [ZT : T] = [Z : Z ∩ T] so k = T ∩ Z, showing (4). Finally,
G(Z : k) contains an element of order n by (3), so n divides [Z : k], showing (5).

Proposition 4.22. If K1k is a finite abelian extension and Theorem 1 holds
for K1/k, then Theorem 1 holds for any extension K2/k such that K1 ⊃ K2 ⊃ k.

Proof. Theorem 1 holds for K2/k if and only φK2/k of (2.1) can be extended
onto Ik so that the kernel contains k∗. The restriction of φK1/k(i) as defined by
(2.1) to K2 coincides with φK2/k(i) for i ∈ Ik{E}. Since φK1/k can be extended to
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all of Ik so that the kernel contains k∗, we may define φK2/k(i) for I ∈ Ik to be the
restriction of φK1/k(i) to K2.

Remark. The cyclic extension Z/k guaranteed by proposition 4.21 is contained
in a cyclotomic extension of k. Since we have proved Theorem 1 for cyclotomic
extensions, then Theorem 1 holds for the extensions Z = Z(p, n,T)/k.

Proof of theorem 1 for cyclic extensions. Let K/k be a cyclic extension
of degree n, and let σ0 be a generator of G(K : k). There is an isomorphism
χ : G(K : k) −→ C to n-th roots of unity in defined by

χ(σx
0 ) = exp

(

2πix

n

)

.

By the first and second fundamental inequalities (to be proved in chapters 7 and
8), we have [Ik : k∗NK/kIK] = n. Finite abelian group Ik/(k∗NK/kIK) is a direct
product of cyclic groups

Ik

k∗NK/kIK
= H1 × · · · ×Hr,

where Hk is a cyclic group of order nk generated by hk. Every element of the
quotient group can be written as a product

hx1

1 . . . hxr
r where 0 ≤ xk < nk.

For each r-tuple ω = (ω1, . . . , ωr) with 0 ≤ ωk < nk, there is a homomorphism
χω : H1 × · · · ×Hr → C defined by

χω (hx1

1 . . . hsr
r ) = exp

(

2πiω1x1

n1

)

. . . exp

(

2πiω1x1

n1

)

.

The number of homomorphisms χω is n. Each homomorphism uniquely determines
the r-tuple ω because the image exp(2πiωk/nk) of hk determines ωk.

Choose a prime p of k. By proposition 4.21, there is a cyclic extension Z =
Z(p, n,K) contained in a cyclotomic extension of k such that [Z : k] is divisible

by n, prime p is not ramified in Z, Artin symbol
(

Z:k
p

)

has order exactly n, and

Z ∩K = k. Let ρ0 generate the Galois group G(Z : k), and let rn = [Z : k]. There
is an isomorphism Θ : G(Z : k)→ C defined by

Θ(ρx
0) = exp

(

2πix

rn

)

.
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Since Z ∩K = k, we have

G(ZK : k) = G(Z : k)×G(K : k) =
{

(ρx
0 , σy

0)
∣

∣ 0 ≤ x < rn, 0 ≤ y < n
}

.

Let S = S(a) be the fixed field of
{

(ρx
0 , σy

0)
∣

∣ xa− yr = 0(mod rn
}

. Then ZS ⊂ ZK.
If (ρx

0 , σy
0) fixes Z then x = 0(mod rn), and if (ρx

0 , σy
0) fixes S then xa − yr =

0(mod rn). If ZS is fixed then yr = 0(mod rn), or y = 0(mod n), so only the
identity of G(ZK : k) fixes ZS. Therefore ZS = ZK.

Z is contained in a cyclotomic extension of k, so ZS is contained in a cyclotomic
extension of S. Therefore Theorem 1 holds for ZS/S. G(ZS : S) is isomorphic to
a subgroup of G(Z : k). Let ρx0 generate G(ZS : S), and we can take x0 to be the
least positive power of ρ that is in G(ZS : S) (i.e., that fixes S), so x0 divides rn.

Since NS/k maps ker(φZS/S) = S∗NZS/SIZS to ker(χω) = k∗NK/kIK, there
is an induced homomorphism f : G(ZS : S) → C so that fφZS/S = χωNS/K.
(See diagram (4.7), noting that NS/kNZS/S = NK/kNZK/K because ZS = ZK.)
The image of ρx0

0 must be an (rn/x0)-th root of unity, so there is an integer u
so that f(ρx0

0 ) = Θ(ρ0)
ux0 = Θ(ρx0

0 )u. Since ρx0

0 generates the image of φZS/S,

we have f
(

φZS/S(i)
)

= Θ
(

φZS/S(i)|Z
)u

. The restriction φZS/S(i)|Z of φZS/S(i) to
Z is φZ/k(NS/ki) (proposition 2.19). Therefore there is an integer u = u(a, p,Z)
depending on the choices of a, p and Z so that

(4.5) χω

(

NS/ki
)

= Θ
(

φZ/k

(

NS/ki
))u

for i ∈ IS.

IZK IZS Diagram (4.7)




y

NZK/K





y

NZS/S

IK IS −−−−→
IS

S∗NZS/SIZS

φZS/S

−−−−→ G(ZS : S) 〈ρx0

0 〉




y

NK/k





y

NS/k





y
f

Ik Ik −−−−→
Ik

k∗NK/kIK

χω
−−−−→ C

Θ
←−−−− G(Z : k)

Let Z′ = Z′(p′, n,K) be another cyclic extension satisfying the conclusion of
proposition 4.21, where p′ is a prime of k. (Note: Z′ will be used to show that
certain later results are independent of p and of Z.) Now let W = W(p, n,ZZ′K)
be a cyclic extension of k satisfying the conclusion of proposition 4.21. Then W

is a cyclic extension contained in a cyclotomic extension of k, [W : k] is divisible

by n, Artin symbol
(

W:k
p

)

has order n, and W ∩ ZZ′K = k. Let [W : k] = sn,

and let τ0 be a generator of cyclic group G(W : k). There is an isomorphism
Ξ : G(W : k)→ C defined by

Ξ(τz
0 ) = exp

(

2πi

sn

)

.
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We repeat the previous argument, with W in place of Z. Since W∩ZZ′K = k, we
have

G(KW : k) = G(K : k)×G(W : k) =
{

(σy
0 , τ z

0 )
∣

∣ 0 ≤ y < n, 0 ≤ z < sn
}

.

Let T be the fixed field of
{

(σy
0 , τ z

0 )
∣

∣ ys− z = 0(mod sn
}

. Then WT ⊂ KW.
If (σy

0 , τ z
0 ) fixes W then z = 0(mod sn), and if (ρx

0 , σy
0) fixes T then ys − z =

0(mod sn). If TW is fixed then ys = 0(mod sn), or y = 0(mod n), so only the
identity of G(KW : k) fixes TW. Therefore TW = KW.

Since W is contained in a cyclotomic extension of k then TW is contained in a
cyclotomic extension of T. Therefore Theorem 1 holds for TW/T. G(TW : T) is
isomorphic to a subgroup of G(W : k). Let τz0 generate G(TW : T), and we can
take z0 to be the least positive power of τ that is in G(TW : T) (i.e., that fixes
T), so z0 divides sn.

Since NT/k maps ker(φTW/W) = T∗NTW/WITW to ker(χω) = k∗NK/kIK,
there is an induced homomorphism g : G(TW : T) → C so that gφTW/W =
χωNT/k. (See diagram (4.8), noting that NT/kNTW/T = NK/kNKW/K because
TW = KW.) The image of τz0

0 must be an (sn/z0)-th root of unity, so there
is an integer v so that g(τ z0

0 ) = Ξ(τ0)
vz0 = Ξ(τz0

0 )v. Since τz0

0 generates the

image of φTW/W, we have g
(

φTW/W(i)
)

= Ξ
(

φTW/W(i)|W
)u

. The restriction
φTW/W(i)|W of φTW/T(i) to W is φW/k(NT/ki) (proposition 2.19). Therefore
there is an integer v = v(p, p′,Z,Z′) depending on the choices of p, p′, Z and Z′ so
that

(4.6) χω

(

NT/ki
)

= Ξ
(

φT/k

(

NT/ki
))v

for i ∈ IT.

IKW ITW Diagram (4.8)




y

NKW/K





y

NTW/T

IK IT −−−−→ IT
T∗NTW/WITW

φTW/T

−−−−−→ G(TW : T) 〈τz0

0 〉




y

NK/k





y

NT/k





y

g

Ik Ik −−−−→ Ik
k∗NK/kIK

χω
−−−−→ C

Ξ
←−−−− G(W : k)

Multiply both sides of (4.6) by Θ
(

φZ/k(NT/ki)
)−u

to obtain

(4.9) χω(NT/ki)Θ
(

φZ/k(NT/ki)
)−u

= Θ
(

φZ/k(NT/ki)
)−u

Ξ
(

φT/k

(

NT/ki
))v

for i ∈ IT.
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Given j ∈ IST, if i = NST/T j then NT/ki = NS/k(NST/S j) = NST/k j. The kernel

of the mapping Ik → C by i → χω(i)Θ(φZ/ki)
−u contains NS/kIS by (4.5). If we

evaluate (4.9) at i = NST/T j, we obtain

(4.10) 1 = Θ
(

φZ/k(NST/k j)
)−u

Ξ
(

φW/k(NST/k j)
)v

for j ∈ IST.

We have ZS = ZK contained in a cyclotomic extension of S and TW = KW con-
tained in a cyclotomic extension of T, so ZKW = ZSW = ZTW is contained in a
cyclotomic extension of TS. Therefore Theorem 1 holds for ZKW/TS. The restric-
tion of φZKW/TS to ZST is φZST/TS(i) = φZ/k(NST/k(i)), and the restriction of
φZKW/TS to STW is φSTW/TS(i) = φW/k(NST/k(i)). (Let σ1 denote the restric-

tion of φZKW/TS to K.) The mapping (ρ, σ, τ)→ Θ(ρ)−uΞ(τ)v is a homomorphism

G(ZKW : k)→ C which maps φZKW/ST(i) =
(

φZ/k(NST/ki), σ1, φW/k(NST/ki)
)

to 1 by (4.10). The homomorphism φZKW/ST maps IST onto G(ZKW : ST).
Therefore

Θ(ρ)−uΞ(τ)v = 1 for any (ρ, σ, τ) ∈ G(ZKW : k) leaving ST fixed.

In particular, the automorphism (ρr
0, σ

a
0 , τas

0 ) leaves both S and T fixed. Therefore

Θ (ρr
0)

−u
Ξ (τas

0 )
v

= 1.

We have exp
(

2πir/(rn)
)−u

exp
(

2πias/(sn)
)v

= exp
(

2πi(−u/n + av/n)
)

= 1, or

(4.11) u = av(mod n).

We show that v is independent of Z and Z′. The construction leading from W to
v is symmetric in Z and Z′. We can reverse the roles of Z and Z′, and the v(Z,Z′)
that satisfies (4.11) for u(Z) also satisfies (4.11) for u(Z′).

v(W,Z,Z′)a = u(a,Z)(mod n)

v(W,Z,Z′)a = u(a,Z′)(mod n)

We can also start from either Z′ or Z′′, obtaining

v(W,Z′,Z′′)a = u(a,Z′)(mod n)

v(W,Z′,Z′′)a = u(a,Z′′)(mod n)

We choose a = 1 to conclude that v(W,Z,Z′) = u(1,Z) = u(1,Z′) = v(W,Z′,Z′′).
In like manner we have v(W,Z′,Z′′) = v(W,Z′′,Z′′′). Therefore vW is independent
of Z and Z′.
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v is independent of W. If W′ is chosen then, since u is independent of W, we
have

v(W)a = u(a,Z) = v(W′)a(mod n).

Choose a = 1 to conclude that v(W) = u(1,Z) = v(W′)1(mod n).
v is independent of p and p′. The construction leading from W to v is symmetric

in p and p′. We can start from either Z = Z(p, n,K) or Z′ = Z′(p′, n,K), concluding
that

v(p, p′)a = u(p,Z)(mod n)

v(p, p′)a = u(p′,Z′)(mod n)

We can start from Z′ = Z(p′, n,K) or Z′′ = Z′′(p′′, n,K), concluding that

v(p′, p′′)a = u(p′,Z′)(mod n)

v(p′, p′′)a = u(p′′,Z′′)(mod n)

Choose a = 1 to conclude that v(p, p′) = v(p′, p′′)(mod n). Likewise, v(p′, p′′) =
v(p′′, p′′′)(mod n). Therefore v is independent of p. We have shown the indepen-
dence of u and v from p, Z and W.

Now let p be a prime not ramified in K. Choose Z = Z(p, n,K). Artin symbol
(

Z:k
p

)

has order n. Since [Z : k] = rn, we have

(4.12)

(

Z : k

p

)

= ρx1r
0 where (x1, n) = 1.

Artin symbol
(

K:k
p

)

is some power of σ0, so let

(4.13)

(

K : k

p

)

= σy1

0 .

S is the fixed field of
{

(ρx
0 , σy

0)
∣

∣ xa− yr = 0(mod n)
}

.
(

S:k
p

)

and
(

K:k
p

)

are the

restrictions of
(

ZK:k
p

)

to S and K, respectively, so

(

ZK : k

p

)

=

(

(

Z : k

p

)

,

(

K : k

p

)

)

= (ρx1r
0 , σy1

0 ) .

Choose a so that x1a− y1 = 0(mod n). Then

rx1a− ry1 = 0(mod n),
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so
(

ZK:k
p

)

fixes S, so
(

S:k
p

)

= 1. If ℘ is a prime of S dividing p then
(

S:k
p

)

generates G(S℘/kp), so S℘ = kp.

For α ∈ kp, let i = i(α, p) be the idele in Ik so that

iq =

{

α at q = p

1 at q 6= p

Since S℘ = kp, choose j = j(α, ℘) for a prime ℘ of K dividing p. Then

NS/k j(α, ℘) = i(α, p)

and by (4.5) we have

(4.14) χω

(

i(α, p)
)

= χω

(

NS/k j(α, ℘)
)

= Θ
(

φZ/k(NS/k j(α, ℘)
)u

= Θ
(

φZ/k i(α, p)
)u

Prime p is not ramified in Z, so

(4.15) φZ/k

(

i(α, p)
)

=

(

Z : k

p

)b

where |α|p = Np−b.

By (4.14), (4.15), and (4.12) we have

χω

(

i(α, p)
)

= Θ

((

Z : k

p

))bu

= Θ
(

ρrx1bu
0

)

= exp

(

2πirx1bu

rn

)

= exp

(

2πix1bu

n

)

Since va = u(mod n), and since a was chosen so that x1a = y1(mod n), we have
x1bu = x1bva = y1bv(mod n). By 4.13, we have

χω

(

i(α, p)
)

= exp

(

2πiy1bv

n

)

= χ
(

σy1bv
0

)

= χ

((

K : k

p

))bv

.

To summarize, suppose that p is not ramified in K, α is an element of kp, and
i = i(α, p) is an idele in Ik with components iq = α at prime q = p and iq = 1 at
primes q 6= p. Then there is an integer v independent of p so that 0 < v < n and

(4.16) χω

(

i(α, p)
)

= χ

((

K : k

p

))bv

where |α|p = Np−b
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If i ∈ Ik{E}, then (2.1) defines φK/k by

φK/k(i) =
∏

p6=E

(

K : k

p

)bp

where Ip = Np−bp .

The only non-trivial terms of the product over E are for primes in F =
{

p
∣

∣ |ip| 6= 1
}

,
so

χ
(

φK/k(i)
)v

=
∏

p/∈F

χ

(

K : k

p

)bpv

=
∏

p/∈F

χω

(

i(ip, p)
)

.

Idele i in Ik{E} as a direct product is

i =
∏

p∈F

i(ip, p)×
∏

p/∈F

i(ip, p)

For a prime p not in F , each component ip is the norm of an β℘ element in K℘

for prime ℘ of K dividing p, by proposition 4.7. By setting j℘ = β at one prime ℘
dividing each prime p not in F and j℘ = 1 otherwise, we have

∏

p/∈F

i(ip, p) ∈ NK/k IK ⊂ ker(χω)

therefore

(4.17) χ
(

φK/k(i)
)v

= χω





∏

p∈F

i(ip, p)



 = χω(i) for i ∈ Ik{E}.

Since Ik = Ik{E}k
∗NK/kIK, then χω(i) is completely determined by its values

at i in Ik{E}. The n functions χω are all distinct because if χω1
= χω2

then
1 = χω1

(i)χω2
(i)−1 = χ(ω1−ω2)(i). But if ω1 − ω2 6= (0) then χ(ω1−ω2)(i) 6= 1

for some i in Ik{E}, so we must have ω1 = ω2. There are n homomorphisms
χω corresponding to n values of v, so the correspondence is one-to-one. There is
therefore some ω0 that corresponds to v = 1, and we have

(4.18) χ
(

φK/k(i)
)

= χω0
(i) for i ∈ Ik{E}.

The right side of (4.18) is defined for all i in Ik. χ is an isomorphism from G[K : k]
to the n-th roots of unity. Define

(4.19) φK/k(i) = χ−1
(

χω0
(i)
)

for i ∈ Ik.

This definition agrees with (2.1) for i in Ik{E} and the kernel contains k∗. This
completes the proof of theorem 1 for cyclic extensions.


