CHAPTER III

THEOREM 1: PROOF FOR CYCLOTOMIC EXTENSIONS

Cyclotomic extensions will play an important role in the proof for cyclic exten-
sions in Chapter 4. It will be shown (proposition 4.22) that Theorem 1 holds for
every subfield of a cyclotomic extension, and (proposition 4.21) that there exist
cyclotomic extensions containing subfields with prescribed properties.

If ¢, is a primitive n-th root of unity, then the conjugates of ¢, are powers ¢’ for
0 < i < n and i relatively prime to n. The Galois group G(Q((n) : Q) is isomorphic
to the multiplicative group Z; (Chapter 1, cyclotomic extensions).

LEMMA 3.1. Let n be a positive rational integer and (,, a primitive n-th root of
unity. Rational prime p is ramified in Q((,)/Q only if p divides n.

PROOF. Let O be the ring of integers in Q((,). If p is ramified in Q((,) then
there exists a non-trivial automorphism o so that

a’ = a(mod p) for a € O

where p is a prime of Q((,) dividing p. If (¢ = ¢!, then ¢!~! = 1(mod p). Since
¢f=1 £ 1 then (/7' is a root of 27! + .- 4+ x4+ 1. Setting x = (‘7! yields
n = 0(mod ), so n is an element of p N Z = (p). Therefore p divides n.

LEMMA 3.2. If rational prime p does not divide n then p is unramified in Q((y)
and the action of the Artin symbol in Q((y) is

(Ae:Q) g

p

ProoOF. The Artin symbol raises (,, to some power ¢, where 0 < a < n, a is
relatively prime to n, and (¢ = (P(mod p), where p is a prime of Q((,) dividing
p. Suppose that a # p(mod n). Then (?~* = 1(mod p) and (P~* # 1, s0 (P is a
root of x™ 1 + ... + 2 + 1. Setting z = (7% yields n = 0(mod ), so (p) = pNZ
divides n. That is impossible, so a = p(mod n).
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LEMMA 3.3. Let k be a finite extension of Q. Let ¢ be a prime of k that divides
rational prime p, and p does not divide n. Prime g is not ramified in k((,), and
the action of the Artin symbol for ¢ is

PROOF. By lemma 2.16, p is not ramified in k((,), and the Artin symbol for g
raises ¢, to the power of pf where f is the degree of p in extension k/Q, i.e., to
the power Ngp.

LEMMA 3.4. Let k be a finite extension of Q. Let o be an element of k*. Then

HN@“P = |Ny/q| where |af, =Np™v.
pla

PROOF. Principal fractional ideal (Ny, qa) is the norm Ny q(«a) of principal
fractional ideal () (chapter 1, norm and trace functions). Let the prime factoriza-
tion of () into primes of k be () =[], p¢. Note that Ny /qp = (p) = @) =
(Ngp). Then

Ni/q(a) = [[Nijqe™ = [[(Np)™ = | [ Ne

pla pla plo

Therefore || ol Np® and Ny, qa generate the same fractional ideal of Q.

REMARK. In proposition 3.5, primes of k will be denoted by p and rational
primes by p.

PROPOSITION 3.5. Let k be a finite extension of Q, and let K = k((,) be a
cyclotomic extension of k. Let E contain all infinite primes of k and all finite
primes which are ramified in K. For v of k*, define

K:k\

v =[] <—) . where |y], = (Np)~“.
o

p¢E

Let the factorization of n into rational primes be n = [[p™. For each prime p
dividing n, we have (p) = [[ p° in o. Set my, = eyn,. For real infinite primes of
k, set mg, = 1. If y € W, (my,) for p € E then ¢ (y) = 1.
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PRrROOF. Let us first show that the conclusion holds for an element « in o*.
Suppose « is in W, (my,) for p in E. Then p divides («) only if p is not in E. Using
lemma 3.3 and lemma 3.1, if |a|, = Np~° then

K k)% o e
¢(Q)Cn = H (—) Cn — QlL_IWZENp — le_[gsla Ng )

peE &

Applying lemma 3.4, we have

¢(a)€n = JlNk/Qal .

Since the norm is the product of local norms, at p = p,, we have

Nk/QOé = H Nkp/ono(l/.

©|Poo

Since we have chosen mg, = 1 at all real infinite primes, every local norm in the
above product is positive. Therefore Ny ,qa > 0, so we have

(@) Cn = Cn /2%

If p is a finite prime in E and « is in W,(e,np), then (o — 1) = p%"r = (p)"»,
so a = 1+ p"a’ for o in o,. We therefore have Ny, ,qa = 1(mod p™»). This
holds for every rational prime dividing n, so Ny /qa = 1(mod n). We conclude that
P(a)Cn = Cn, s0 Y(a) = 1.

For the general case, suppose that v is in k* and in Wp(m,,) for p in E. If we can
find a positive rational integer b so that b is in W, (my,) for p in E and ~b is in o*,
then a = b is also in Wp(my,) for p in E. We have already shown (o) = 1, and
the same argument applies to b, so 1(b) = 1. Therefore () = 1(a)y(b)~! = 1.

To find b, we will have vb in o* if b is divisible by sufficiently high powers of
rational primes p that are divisible by the primes o which occur to negative powers
in the factorization of () in o. (None of those p are in E.) In addition, b will be
in W, (my,) for the finite primes in E if b — 1 divisible by sufficiently high powers
of primes p that are divisible by finite primes in F. By lemma 2.2, there exists a
rational integer satisfying the congruences. Let b be a positive solution by adding
a large multiple of all the prime powers occurring in the congruences. Then b is in
W (my,) for all primes of E.

REMARK. We return to the usual notation: o and p denote primes of K and k,
respectively.
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PROPOSITION 3.6. Let k be a finite extension of Q, and let K = k((,) be a
cyclotomic extension of k. Homomorphism ¢k of (2.1) can be estended to a
continuous homomorphism of Ix to G[K : k| whose kernel contains k*.

PrOOF. Let E consist of all infinite primes of k and all finite primes that are
ramified in K. Choose integers m,, for p in E so that the conditions of proposition
3.5 are satisfied. ¢k is defined on Ix{E} by (2.1). Let i be any idele in Ix. By
lemma 2.5, and using the notation of remark 2.2, we can choose « in k* so that ai
is in Wp(m,) for p in E. Define ¢k /i by

. K:k\“ ] a
(3.1) i k(i) = H <—) where ||, = Np~ .
PEE P

The kernel contains k*, because if i is in k* then choose o = i~!. The definition
agrees with (2.1) when i is in Ix{E'} because we can take a = 1.

We must show that the above definition of ¢ does not depend on the choice
of a. Suppose that 8 also satisfies i € W,(m,) for p in E. Then oi = ~(pi)
where v = (ai)(3i) 7!, so v is an element of k* and is in W,(m,) for p in E. Let
|Bil, = Np~b and |y|, = Np~¢ for p in E. By proposition 3.5, 1(y) = 1, so

K:k\% K : kT K:k\" K:k\
1;[(7) E(p) :1;[<T) 1}(7)
)

pg¢E

showing that [ and « produce the same value of ¢k (i).

REMARK. When the base field k is the rational number field Q and K = Q(¢,),
the set E consists of primes dividing n and the real infinite prime p.,. The integers
m, become simply m, = n,, for finite primes in £ and m,__ = 1. The definition of
¢K/q is as follows. If i is any idele in Iq, choose v in Q* so that ai is in W, (n,)
for p in E. Let n be the modulus (n)ps. Then

K:Q

ap
) where |ai], = p .
p

(3.2) oxsa) = (

pin

This will be of use in the proof of Kronecker’s theorem (chapter 9).



