CHAPTER 1II

FUNDAMENTAL THEOREMS

Let k be a finite extension of the rational number field Q. K is an abelian
extension of k if K /k is a finite normal extension and the Galois group G(K : k) is
abelian. If p is a finite prime of k that is not ramified in K then the Artin symbol

(%) is defined by (1.7). Let E be a finite set of primes of k containing all infinite

primes and all primes that ramify in K. Let Iy { £} be the subgroup of idele group
I defined by
L{E}={icl|i,=1forpe E}.

Define ¢k /i : Ix {E} — G(K : k) by

(2.1) ok k(i) = H <KTk) i where \i|p = (Np) "™ forp ¢ E.
PEE

The homomorphism Ny /i : Ix — Ik of idele groups is defined by

(NK/ki)p = HNKp/kpip forie IK
lp

THEOREM 1. Homomorphism (2.1) can be extended in a unique way to a con-
tinuous homomorphism ¢k k. of Ik onto G(K : k) whose kernel contains k*. The
extension is independent of E, the image is all of G(K : k), and the kernel consists
exactly of the subgroup k* Ny /1 I.

THEOREM 2. The abelian extension K of k is uniquely determined by the kernel
of bk /x- If H is a closed subgroup of finite index in Iy and contains k* then there
is a unique abelian extension K of k such that H is the kernel of ¢x /x-

REMARK. Theorems 1 and 2 are the fundamental theorems of class field theory.
The proof of Theorem 1 is the subject of this chapter through chapter 8. Theorem
2 is proved in chapter 12. In this chapter, we develop basic properties of the
fundamental homomorphism ¢ /i -
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LEMMA 2.1. A closed subgroup of finite index in Iy contains a subgroup of the
form
ITw < [T Wi x T & x Ik
p¢E’ finite pe E’/ real p complex p
where E' is a finite set of finite primes, the €, are real numbers satisfying €, < 1
forp € E', sets u, and W}(ep) are defined by
u, ={ack] | lal, =1} W,(ep) = {a €k} |la—1], <&},

and k;)' ~ {m eR” ’ T > 0} for p infinite real.

PROOF. A closed subgroup H of finite index must be open, so there is a basic
neighborhood U(FE’, {€, }) of the identity of Iy contained in H. Take €, = min(e, 1)

for finite p and ¢, = min ( €ps 2) for infinite p. Then

UE A =]w x [ Wie) x [ Wie).

pgE’ finite p€ £’ infinite pe £’

o

H contains the subgroup generated by U(E’, {€,}) which is the subgroup claimed
by the lemma.

LEMMA 2.2 (CHINESE REMAINDER THEOREM). Let ay and as be non-zero ideals
of o and let ay and as be integers of o. There exists «a in o so that @ — oy € ay
and o — ag € ag if and only if a1 — as € a1 + as.

PrROOF. Remark: a; + as is the greatest common divisor of a; and as. Put
a = a1 +as. ais invertible, and a divides both a1 and as. Suppose that a3 —as € a.
ara”! 4+ asa”! = o, so there exist integers 5 € aja~! and By € aga~! so that
ﬁl + ﬂg =1. Put a= ﬁl(l/g + 62041. Then

a—ap=fi(az —a1) €a;

a—ag = fa(ar — ) € as

Conversely if « — a1 € a1 and a — ag € as then a; — as € a1 + as.

COROLLARY. Let p1,...,pr be distinct non-trivial prime ideals of o and let
ni,...,ng be rational integers greater than or equal to zero. Let ay, ..., be ele-
ments of o. There exists an element o of 0 so that o — a1 € pi*, ..., o — ap € p*.

PRrROOF. Since ideals have unique factorization then the greatest common divisor

Pt pE Tt + pik is 0. Use lemma 2.2 and induction.
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LEMMA 2.3. Let aq,...,qa, be a basis for k over Q. Let k have r1 real and ro
complex infinite primes, and let the distinct isomorphisms of k into R or C be
O1,...,0n, Where o1,... 0., are the ry isomorphisms into R and oy, 11,...,0, are

the 2rqy isomorphisms into C, Then det ||a;’ | is not zero.

PRrROOF. It is enough to show that the determinant is not zero for some basis.
Let a generate k over Q. Then 1, q, ..., a™ ! is a basis. The elements a°' ...a%"
are distinct, so || (@)~ || is a non-singular Vandermonde matrix.

LEMMA 2.4 APPROXIMATION THEOREM. Let E’ be a finite set of primes and for
each prime p in E' an element o, in k, and a positive real number €, are given.
Then there is an o in k so that |a — aylp < €, for all p in E'.

PROOF. There exists a non-zero 3 in o so that Sa, € o, for all finite p € E’. By
the corollary to lemma 2.2, there is an o € k satisfying the conditions o/ — fa,, €
p™» for all finite p in E’. By taking m,, sufficiently large we have |’ —Bay|, < |5]p€p,
or |37t — apl, < €, for the finite primes p in E/. Put o/ = 37'a/. Let a be an
ideal in o so that if v € a then |y|, < ¢, for the finite primes p in E’. Take a very
large rational integer m which is not divisible by any of the finite primes in E’, i.e.,
|m|, =1 for finite p in E’. Then

Ima’” — v — may,|, < max (||, [m(a” — ay,)|p) < €, for finite p in E’ and v € a.

Therefore
1! ,y

a”" — — —a,| <e¢, for finite p € ' and v € q,
m p

so a = o' — v/m satisfies our condition for the finite primes in £’. We must show

how to choose v and m so that a also satisfies the required condition for infinite

primes in E’. We claim that there is a positive constant M depending only on ideal

a, an element v = g in a, and an element 7 in k* so that,

(2) (@' m—apym)—(y0+n), < %p and |n|, < M for all infinite p in E'.
Then
M
’(O/I —ap) — o 2y [l < 2 1 " for all infinite pin E'.
mlp 2m m 2m  m

If integer m is chosen large enough so that % < %6, then

Yo
Oé”

— — —ap| <e¢€, forallinfinite p € E’
m
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It remains to establish the claim about M and to choose 7y and 7. It is possible
to choose a basis ag, ..., a, for k over Q so that each basis element «; belongs to
ideal a. If 01, ..., 0, are the distinct isomorphisms of k into R or C, then by lemma
2.3 the mapping

AN LY g U

takes a1Z + - - - + a, Z to a non-degenerate n-dimensional lattice. Any element in
R & C" can be closely approximated by an element uiaq + - - - + u, o, where the
u; are elements of Q. Write u; = k; + v; where k; is in Z and 0 < v; < 1. Choose
Yo = kiog + -+ kpa, and n = viay + - - - + vy Then 49 € a and the |n|,,, for
i =1,...,n, are all bounded by a constant M that depends only on the basis, so
condition (2) is satisfied. This completes the proof of the lemma.

LEMMA 2.5. Let E' be a finite set of primes and for each prime p in E' an
element vy, in K, and a positive real number €, are given. Then there is an « in k*

so that ‘aa;l — l‘p < €, and ‘oz_lozp — l}p < €.

PROOF. Put €, = min(1,¢,) for finite p in E', and put ¢, = min (%, %ep) for
infinite p in E’. By lemma 2.4 there is an o in k so that |a — ap[, < [aplye€, for all
pin E’. Therefore |ac, ' —1|, < €, for all p in E’. A simple calculation shows that
lata, — 1|, < €, for both finite p and infinite p in F'.

PROPOSITION 2.6. Let E be a finite set of primes of k. Let ¢1 and ¢o be two

homomorphisms of Ix into a finite group G with closed kernels that contain k*. If
@1 and ¢ agree on Ix{E} then ¢1 = ¢po on all of Ix.

PROOF. Put H = ker(¢;) Nker(¢s); H is a closed subgroup of finite index in G.
By lemma 2.1, H contains a closed subgroup U, where

U=J[w x [[Wie) x J[ X x Ik

p¢E’ finite peE’ real peE’ complex peE’

Take i in Ix. For infinite p take e; = % By lemma 2.5, there exists « in k* so that
a~ i, — 1‘p < ¢, for all p in E’. Define j and j’ in Iy as follows, so that j is in U,
and j' is in Ix{E'}.
=1 forp¢ E jp=ali,forpe E
j;:a_lipforpgéE =1 forpe E

(If p is in E but not E’ then j, =1, so j is in U.) Since the kernels of ¢; and ¢o
contain k*, we have

$1(1) = p1(a™M) = ¢1(J) = ¢1(') = 62(0') = d2(33) = d2(@™'1) = (i)
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PROPOSITION 2.7. If ¢ is a homomorphism from Ix{E} to a finite group and
the kernel of ¢ has closed kernel of finite index, then any extension of ¢ to Iy whose
kernel contains k* is independent of E.

PROOF. Suppose that ¢ defined on Ix{F;} and ¢, defined on I {F>} can be
extended to Iy with kernels containing k*. Then ¢; and ¢ agree on In{F; N Ey}.
Therefore ¢; = ¢ by Proposition 2.6.

Composite fields of finite extensions. Let (2 be an algebraic closure of k.
All of our extensions of k will be subfields of Q. If K; and K, are subfields of 2
then the composite field K1K, is the smallest subfield of €2 that contains K; and
Ko.

LemMA 2.8. If K; and Ko are finite extensions of k, then composite K1 Ky is
a finite extension of k and

[KlKQ : k] S [Kl : k] [KQ : k] .

If Kg = k(ﬂ) then KlKg = Kl(ﬂ)

Proor. Since K;/k and K /k are finite separable extensions, let « and 3 be
elements so that K; = k(«) and Ky = k(). Let [K; : k| = m and [Ks : k| = n.
The mn products ‘3 (0 < i < m, 0 < j < n) span an algebra A over k that is
contained in K;K5. It is enough to show that every non-zero element of A has an
inverse in A. Let « be a non-zero element of A.

n—1lm-—1

Y= Z Z Mijaiﬁj wij €k

=0 i=0

Let f(Y) be the polynomial

Then f(Y) is a polynomial in K;[Y] and f(8) = 7. Let ¢g(Y) be the minimum
polynomial of 5 over K;. Since f(/3) # 0 then f(Y) is not divisible by g(Y’). There
exist polynomials h1(Y') and ho(Y) in K1 (Y) so that

ha(Y)f(Y) +ha(Y)g(Y) = 1.

We have hy(8)f(5) =1, so v has an inverse in A. Since 3 can be any element that
generates Ko over k, we also have shown that K; Ky = k().
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LEMMA 2.9. If Ki/k and Ko /k are finite normal extensions then composite
K Ky /k is a finite normal extension.

PROOF. Suppose that o is an isomorphism of K;K5 into a subfield of Q and
o fixes elements of k. Then (K;K5)? contains both K¢ = K; and K3 = Kb, so
(K4 KQ)U O KiK. From the proof of lemma 2.8, elements of composite K; K
have the form y=>" Zg _o Mijor ‘47 with p;; in k, a in Ky, 8 in Ks. Then

=3, E] 0 u”( ) (87)7, so (K1K>)? € K;Kjs. This shows that K; Ko is
1nvar1ant under any isomorphism that fixes k.

LeEmMA 2.10. If Ki/k and Ko /k are finite normal extensions then
[KlKQ : Kl] = [KQ KN KQ] )
(Ki1Ks : k] = [K; : k] [K2 : K] if and only if K1 N Ky = k.

Proor. Let Ko = k(8). Then K;Ks = K;(5). Let f(x) be the minimum
polynomial of  over k. Let g(z) be the minimum polynomial of 3 over K;. Then
g(z) divides f(z). Since Ko /k is normal, f(x) splits completely into linear factors
over K;. The coefficients of g(z) must be in K; N Ko, so g(z) is the minimum
polynomial for 8 over K; N K. We have [K1K5 : K;| = deg(g) = [K2 : K1 N Kos].

Using the first equality, we have [K1Ks : k] = [K1Ks : Ki][K; : k] = [Ks :
K1 N KZHKI . k] Then [KlKQ : k] [Kl N K2 . k] = [KQ . k][Kl . k], so the second
equality holds if and only if [K; N Ky : k] = 1.

LEMMA 2.11. Let K;/k and K /k be finite normal extensions. There is a nat-
ural homomorphism

G(KlKQIk) — G(K1k>XG(K2k>

sending o in G (KK : k) to (0|Ky,0|Kz). The mapping is an injection, and the
image consists of all (o1,02) in G (K1 : k) x G (Ka : k) such that o1|(K; N K3) =
O'2|(K1 N Kg)

Proor. Put G = G (K1K; : k). Let H; be the subgroup of G that leaves
elements of K; fixed; Let Hy be the subgroup of G that leaves elements of K5 fixed.
Then H; N Hy = {1}. Both H; and Hs are normal subgroups of G, and we have
G(K; : k) = G/H; and G(Kj : k) = G/H,. The mapping 0 — (0|Ky, 0|Kz) is the
natural homomorphism

G f G G

— m X H

The smallest subgroup of GG containing Hy and Hy is H = HyHy = HyH,. We have
GKiNKs : k) =G/H. The restrictions from K; and K, to K; N K5 are the
natural homomorphisms G/H; 2~ G/H and G/H, 2% G/H. We have

f G G 9NXg2 G G
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Every element of G maps to the diagonal of G/H x G/H. The mapping f is an
injection because H; N Hy = {1}. The order of the image(f) is [G : 1], and

G :1] =[G : H|[H : H{]|[H; : 1].

The order of ker(gy X g2) is [H : Hy|[H : Hs|, so the number of pairs in G/H; X G/ Ho
which map to the diagonal of G/H x G/H is |G : H|[H : H1][H : H3]. By lemma
2.10 we have [H; : 1] = [H : Hs], so the number of pairs which map to the diagonal
is [G : 1]. This shows that the image of f consists exactly of pairs which map to
the diagonal, i.e., whose restrictions to K1 N Ky coincide.

LEMMA 2.12. IfK;/k and Ko /k are finite abelian extensions then the composite
K K5 is an abelian extension of k.

Proor. G(K;Ks : k) is isomorphic to a subgroup of abelian group G(K; :
k) x G(K3 : k).

LeMMA 2.13. If K/k is abelian and K D K’ D k, then K'/k is abelian and
Artin symbol (%) is the restriction of (%) to K’ when p is not ramified in K.
If Theorem 1 holds for K/k and K'/k, then ¢k )« is the restriction of ¢k )i to K'.

PROOF. The Artin symbol of K’ is the only automorphism of G(K' : k) satisfying
the condition

(3) o’ = a"?(mod ¢') for all @ € O, and ¢'|p

where O’ is the ring of integers in K’ and ¢’ is prime in O’. The Artin symbol of
K is the only automorphism of G(K : k) satisfying the condition

a’ = o™ ( mod p) for all @ € O and p|p

where O is the ring of integers in K and g is prime in O. If 0 = (Q> and o € O{p,

p
then
/

a® —al? e PN Oy, =
For every prime @’ of O’ there is a prime p of O so that O Np = ©'. Therefore the

restriction of (%) to K’ satisfies condition (3), proving the first assertion.

Assume that Theorem 1 holds for K/k and K’'/k. Let E contain all infinite

primes of k and all primes which ramify in K. For i in Ix{E}, the restriction of

>ordp(i)

¢k /(i) to K’ is the restriction of ] ¢ p (ﬁ to K’, which coincides with

P
Hng (szk
so the two homomorphisms Iy — G(K; : k) must be identical.

ord, (i)
) ’ , which coincides with ¢k /i (i). The extension to Iy is unique,
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COROLLARY. Let K;/k and Ky /k be finite abelian extensions, and suppose that
Theorem 1 holds for K1k, Ko/k and K1Ks/k. Then the homomorphism of lemma

2.11 maps ¢, K,/ k(i) to the pair (qﬁKl/k(i), ¢K2/k(i)) for all i in Iy.
PROPOSITION 2.14. Suppose that Theorem 1 holds for a given k and all finite

abelian extensions of k. Let K /k and Ky /k be finite abelian extensions. If ¢, /x
and ¢k, /x have the same kernels then Ky = Ka.

PrOOF. The map G(K;K; : k) — G(K; : k) x G(K3 : k) is an injection
(lemma 2) which maps ¢k, k,/k(i) to the pair (¢ (i), dK,/k(i)) (corollary to
lemma 2.13). Suppose that ker(¢k, k) = ker(¢k, k). If iis in ker(¢k, k) then
(qﬁKl/k(i), ¢K2/k(i)) is trivial, so ¢k, K, k(i) is trivial, showing that ker(¢k, /k) is
contained in ker(¢k,k,/k). Applying Theorem 1, we have [K; : k] > [K1 K3 : k].
By the same argument we have [Kj : k] > [K;1Kj : k]. This shows that K; = K,

PROPOSITION 2.15. Suppose that Theorem 1 holds for a given k and all finite
abelian extensions of k. Let K1 /k and Ko /k be finite abelian extensions then Ky D

K if and only if ker(ék, /i) C ker(ok, /k)-

PrOOF. Assume that K; D Kj. Then ¢k, /k(i)|K2 = ¢k, (i), just as in the
proof of proposition 2.14. If ¢k, k(i) = 1 then ¢k, (i) = 1, so ker(¢k, k) C

ker(qﬁKz/k).

Assume that ker(¢k, /) C ker(ék, k). According to theorem 1, Iy /ker(¢k, /i) is
isomorphic to G(Kj : k). Let the image of ker(¢xk, /x)/ker(¢Kk, /x) be subgroup G’ of
G(K; : k). Let K’ be the subfield of K; fixed by G”. Then ker(¢k- k) = ker(¢k, /x)

because

i€ ker(¢ ) <= k(i) =1 <= ¢k, (K =1
= ¢k, x(i) € G <= i€ ker(¢xk, k).

Then K’ = K5 by proposition 2.14, so K; D Ko.

LEMMA 2.16. Let T/k be a finite extension, and let K/k be a finite abelian
extension. Then KT/T is abelian. Let p be a prime ideal of T, and let p = p N o.
If p is not ramified in K then @ is not ramified in KT. Put Np = (Np)f. Then

(55 (5%)

Proor. We first show that KT /T is normal. (This is like the proof of lemma
2.10, except that here T/k may not be normal.) Let K = k(«) and let f(z) be
the minimum polynomial for @ over k. Then KT = T(«) by lemma 2.8. Let g(z)
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be the minimum polynomial for a over T. Then g(z) divides f(x) in T(z). Since
f(z) splits completely into linear factors over K (and over KT) then g(x) splits
completely over KT. Therefore KT /T is normal. By restriction to K we have a
homomorphism G(KT : T) — G(K/k). The kernel is trivial, so G(KT : T) is
isomorphic to a subgroup of G(K/k). Therefore G(KT : T) is abelian.

Let g’ be any prime of KT that divides p. Let p’ = ¢’ N Ok be the prime of K
that o' divides. We need to show that p is not ramified in KT. Let S, (KT : T)
be the splitting group of @' in G(KT : T). Automorphisms ¢’ in S, (KT :T)
satisfy the condition (p')” = ¢'. We have (p' N OK)U/ = ¢ N Ok, or p’al =p.
(0% = Ok because K/k is normal.) Therefore o’ restricted to K is in the splitting
group S, (K : k), and extends to an automorphism of K, over k,,.

To show that p is not ramified in KT we need to show that the inertial subgroup
of So/(KT/T) is trivial (Chapter 1, normal extensions). An automorphism ¢’ in
the inertial subgroup satisfies the condition

/7
ag

a’ = a(mod @) for all « € O.

The restriction of ¢’ to K satisfies

’

a’ = a(mod o' N O,) for all « € O

The restriction of ¢’ to K is therefore trivial since the inertial group of p’ is trivial,
so ¢’ is trivial on both K and T.
Let ¢’ be the Artin symbol (%) Then o = ¥ (mod ') for all @ in Oy,

so we have

’

a’ —a € ¢ N0, foralla € O,.
Since Np = (Np)/, we have

a® — o) ¢ p' for all « € Oy .

f
By (1.14"), this shows that o’ restricted to K is (%) as claimed.

REMARK 2.1. To say that “¢k i can be defined on Ix” means that the homo-
morphism ¢k /i defined by (1) on I {E} for some finite set of primes E can be
extended to a continuous homomorphism defined on all of Ix. By propositions 2.7
and 2.8, the extension is unique and does not depend on the choice of E.

REMARK 2.2. The subgroups of lemma 2.1 may also be described using the fact
that p-adic valuations take only discrete values {Np~™»} for rational integers m,.
We have

w, (Np_(mp_l)) = {oz ek, Ja—1],< Np_(mp_l)}

= {a € kp’ la—1], < Np_mp}.
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Put
W, (my) = W/ (Np_(mp_1)> .
Note that W), (0) = u,. For real infinite p put W,(0) = k3 and W, (1) = k;}; for

complex infinite p put W,(0) = W,(1) = k*. We can choose integers m,,, taking
m, = 0 for p not in E’, so that the subgroup of lemma 2.1 can be written

(4) H Wy (my) .

Since all but a finite number of m,, are zero, the formal product Hp p™? over finite
and infinite primes is a generalized ideal or modulus of k. Subgroup (4) is the
subgroup belonging to Hp pe.
LEMMA 2.17. Let T, /k, be a finite extension of local fields with p = p°. If o
in O, satisfies o = 1(mod p°™) then
N, e, (@) = 1(mod p™).

PROOF. Let 7 be a generator of principal ideal p in 0,. Then p*" = 7" O, .
Or, is a free o,-module of degree n = ef, so let x1,...,z, be a basis. If a =
1(mod p°™) then (o — 1)z; € ™ so

(a—1Dz; =7 (a1 + -+ ajppxy) fori=1,... n.
The matrix with respect to basis z1,...,x, for linear transformation T, satisfies
T, = I(mod p™). Therefore Nt_ /i, (o) = det(T,) = 1(mod p™).

LEMMA 2.18. Let T/k be a finite extension, let i be an element of I, and let
a= Hp p™ be an ideal of o. There exists 3 in T* so that 3711 is in the subgroup
belonging to ideal aOr, and then we have NT/k(ﬁ_li) 15 in the subgroup belonging
to [, p™.

P

PROOF. In the extension T, pOr splits into a product p = p{* ... p,° of primes
©; of O. By lemma 2.5, we can find 3 in T* so that 3~ 'i is in the subgroup of It be-
longing to aOr = [], ], ™. By Lemma 2.17, Nt _/p, (87 t,) = 1(mod p™»)
if m, > 0 and p finite. If m, = 0 then S 'i, is in u,, and INT_/k, (B_lip) lp =
187 i,l, = 1, so N, /k, (ﬂ_lip), which is in u,. If p is complex infinite and p is
real infinite then N/, (5_1ip) = (ﬁ_lip) (8~1ig,), which is in k;. Therefore

= 1(mod p™») if m, > 0 and p finite,

(NT/k(ﬁ_li))p - HNTgo/kp(ﬁ_lip) € up if mp = pr ﬁnite,
elp € k:;' if p real and p complex

€g

Therefore NT/k(ﬂ_li) is in the subgroup belonging to Hp pe.
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PROPOSITION 2.19. Let T /k be a finite extension, and let K/k be a finite abelian
extension. Suppose that ¢k jx can be defined on Iy and the kernel contains k*, and
that gxr T can be defined on It and the kernel contains T*. Then

¢k T(1) = ¢k /K (N1 A1) fori € It

PROOF. By lemma 2.1, ker(¢xr 1) contains a subgroup of It belonging to ideal
[l cp 9"e of T, and ker(¢k k) contains a subgroup belonging to ideal [] . p™*
of k. Add to F all primes g of T which are infinite or ramified in TK. Add to F'
all primes p of k which are infinite or ramified in T. Now to F' all primes divisible
by a prime of E, then add to E all primes which divide a prime of F. A prime of
T is in F if and only if it divides a prime of F. For those finite primes added to
E (or F) set my, = 0 (or m, = 0; for those infinite primes added to E (or F) set
mg =1 (or my, = 1).

Let i be an element of Iy. We claim that we can choose ( in T* so that (8i),, is
in W, (ny,) for all finite p in ' and N¢_ /i (8i) is in Wj,(m,,) for all finite p in F.
By lemma 2.18, the latter condition will be satisfied if (B1)p is in Wy (epmy,) for all
p dividing finite p in F'. Both conditions can be satisfied by applying lemma 2.5,
choosing (3 so that (31i), is in W, (max(n,, e,m,,)) for finite p in E.

Define j and j’ in It so that

o= (Bi), for pe £ .]K,:l forp¢ E
jp=1 forpe E = (Bi), for p ¢ E

Then j is in ker(¢xr,/T) and N/ (j) is in ker(qSK/k). We have
oxr (i) = dxr/T(61) = dxr/T(J) = P/ ()

b
KT: T\
- H < ) where | j'[, = [Bi], = N~

pEE v

By lemma 2.16, we have
K : k K : k2o /o
(5) ¢k /T (i) H H ( ) = H ( ) |
p¢F olp

We turn to the computation of ¢k /x (N /i (i)), which is equal to ¢k /i (N1 /k(81))
because N /() is in k*, 4.e., in the kernel of ¢ /. Since

NT/kl HNT /kp lp forie IT,
wlp
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we have
INz(B1)], = [T N, e, (Big)], = T 1811, = [[Ne
plp plp plp
_ H Np~fobe = Np~ D i fobe
plp
Therefore

K k)zmpf@bp

(6) ¢ /x(Nr/k(i) = ¢x /(N1 /i (81)) = H < D

pgF

Comparison of (5) and (6) shows that ¢k ,T(i) = ¢/ k(N1 ki), as claimed by the
proposition.

PROPOSITION 2.20. If ¢k can be extended to a homomorphism of Iy to G(K : k)
with closed kernel containing k*, then the kernel contains Nk nJIk-

ProOF. Apply proposition 2.19 with T = K. If i is in Ik, we have

ok /x(Nk/ k() = o/ (i)

But ¢k /k maps Ik to a trivial group G(K : K).

REMARK 2.3. The proof of theorem 1 will require the following fundamental
inequalities of class field theory, which will be proved in chapter 7 and chapter 8,
respectively.

FIRST FUNDAMENTAL INEQUALITY OF CLASS FIELD THEORY. If Z is a finite
cyclic extension of k then subgroup k*Ng i (Iz) of Iy is a closed subgroup of finite
index in I and the index [Iy : k*Ng x (Iz)] is divisible by [Z : K].

SECOND FUNDAMENTAL INEQUALITY OF CLASS FIELD THEORY. If K is a finite
abelian extension of k then subgroup k*Ny /i Ik is closed and of finite index in Iy
and the index [Iy : k*Nk i (Ix)] divides [K : K].

PROPOSITION 2.21 (COROLLARY TO THE FIRST FUNDAMENTAL INEQUALITY).
Let K/k be a finite abelian extension. If ¢k can be extended to a continuous

homomorphism of Ix whose kernel contains k*, then the image of Iy is all of G(K :
k).

PROOF. Suppose that the image M of ¢k k(Ik) is not all of G = G(K : k). We
will show this to be impossible. Let L be the fixed field of M. Take E to be the set
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of primes of k containing all infinite primes and all finite primes which are ramified
in K. ¢k /k is defined on I{ E'} by (2.1), and by proposition 2.7. Let p be a prime of
k that is not in E. Ideal p of o, is principal, so p = (7) for an element 7 of o,. Take
idele i to have component i, = 71 take all other components of i to be 1. Then

(%) = ¢k,/xk(i), so the Artin symbol (%) is an element of M for each prime

p not in K. By lemma 2.13, (%) is the restriction to L of (%), SO (%) =1
because L is the fixed field of subgroup M.

The finite abelian group G/M is not trivial, so there exists a subgroup M’ so
that M C M’ C G and G/M’ is a non-trivial cyclic group. Let Z be the fixed field
of M’. Then L D Z D k and G(Z/k) is a cyclic group isomorphic to G/M’.

Artin symbol (%) is the restriction of (%) to Z, so (%) = 1. The Artin

symbol (%) generates the Galois group G(Z,, : k,) for each prime p of Z that

divides an unramified prime p (Chapter 1, normal extensions). Therefore if p is
unramified in K then Z, = k,. For each i in Ix{E'}, this allows us to construct an
idele j in Iz such that Nz /k(j) = i. For each prime p not in F, select one prime
©(p) of Z which divides p. Put j,) = i, and put j, = 1 at other primes p dividing
p. At primes p of Z dividing primes in F, put j, = 1. We have

j 1 Nz (p)/kp(jp(p)> =i, forpe F

plp

Therefore Ix{F} is contained in Ng /klz. Consider two homomorphisms from Iy
to I /k*Nz /i Iz. The first is the natural homomorphism sending each idele to its
own coset and the second sends each idele to 1. Both homomorphisms agree on
Ix{E}. Both are continuous homomorphisms whose kernels are closed and contain
k*. By proposition 2.6, the two homomorphisms are identical, so Iy/k*Ngz i Iz
must be trivial. By the first fundamental inequality, degree [Z : k| divides index
Ty : k*Nz /x Iz], so the group Ik /k*Ngz i Iz cannot be trivial, and we have reached
our contradiction. It must be that M is all of G(K : k).

PROPOSITION 2.22 (COROLLARY TO THE SECOND FUNDAMENTAL INEQUAL-
ITY). Suppose K/k is a finite abelian extension. If ¢,k can be extended to a
continuous homomorphism of Iy whose kernel contains k*, then the kernel of ¢k /x
18 k*NK/k IK

PROOF. By proposition 2.1, ¢k /i maps Ix onto G(K : k), so [Ik : ker(qbK/k)} =
[K : k]. By proposition 2.20, k*Ng /i Ik is contained in ker(¢k /x), so

[Ik : k*NK/k IK] = [Ik : ker(¢K/k)} [ker(¢K/k) : k*NK/k IK} .
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Therefore [K : k| divides [Ix : k*Ng i Ik]. [Tk : kK*Ng i Ik] divides [K : k] by
the second fundamental inequality, so [ker(gbK k) K*Ng/k IK} = 1, which proves
the proposition.

REMARK 4. We have shown that if ¢k /x can be extended to a homomorphism
of Iy whose kernel contains k* then the extension is unique (proposition 2.6), is
independent of E (proposition 2.7), and the kernel is exactly k*Ng /i Ik. It remains
to show that ¢k /i can be extended, and to prove the two fundamental inequalities.



