
CHAPTER XII

PROOF OF THEOREM 2 (EXISTENCE THEOREM)

Let k be a finite extension of the rational field Q and let K be an abelian
extension of k. In this section, p will denote a rational prime and ℘ will denote a
prime of k.

Lemma 12.1. Let H be a closed subgroup of finite index in Ik containing k∗. If

there exists an abelian extension L/k such that ker(φL/k) ⊂ H, then there exists an

abelian extension K/k such that ker(φK/k) = H.

Proof. Let K be the fixed field of the image of H in G(L : k) under the
homomorphism φL/k. Then φK/k is the restriction of φL/k to K. The kernel of
φK/k is precisely H.

Lemma 12.2. Let H be a closed subgroup of finite index in Ik containing k∗,

and let Z/k be a cyclic extension. Let H ′ be the inverse image of H under the

homomorphism NZ/k : IZ → Ik. If Theorem 2 holds for subgroup H ′ of IZ, then

there exists an abelian extension K of k such that ker(φK/k) = H.

Proof. Let us check that H′ has the required properties. We have Z∗ contained
in H ′, and H ′ is closed because NZ/k is continuous. We need to show that [IZ : H ′]

is finite. Since H ′ = N−1

Z/kH then NZ/kH ′ = H ∩ NZ/kIZ, so

IZ
H ′

'
NZ/kIZ

H ∩ NZ/kIZ
'

HNZ/kIZ

H
⊂ Ik

H
.

Therefore [IZ : H ′] is finite. By the hypothesis, there exists an abelian extension
T of Z so that ker(φT/Z) = H ′. We want to show that T/k is abelian. First, we
show that T/k is normal. Let σ be a generator of G(Z : k). The automorphism σ
can be extended to an isomorphism (also denoted σ) of T to a conjugate field T′.
By lemma 10.42, for i in IZ we have

φT′/Z(σi) = σ
(

φT/Z(i)
)

σ−1.
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We have NZ/kσ(i) = NZ/ki, so NZ/k

(

i−1σ(i)
)

= 1, so i−1σ(i) is in H ′. Therefore i

is in H ′ if and only if σ(i) is in H ′, which is the same as σ−1(j) is in H ′ if and only
if j is in H ′. Putting i = σ−1(j), we have

φT′/Z(j) = σ
(

φT/Z(σ−1(j)
)

σ−1.

This shows that ker(φT′/Z) = H ′, and therefore T′ = T. Since σ(T) = T and σ
generates G(Z : k), then T is invariant under every extension of every automorphism
in G(Z : k). This shows that T is normal over k.

To show that T/k is abelian, we have φT/Z

(

i−1σ(i)
)

= 1 since i−1σ(i) is in

H ′. Then φT/Z

(

σ(i)
)

= φT/Z

(

i
)

, so σ
(

φT/k(i)
)

σ−1 = φT/Z(i). Since φT/Z is onto
G(T : Z) then σ commutes with every automorphism in G(T : Z). Every element
of G(T : k) is of the form σaτ with τ in G(T : Z), so G(T : k) is abelian.

We now know that φT/k is defined. The kernel of φT/k is k∗NT/kIT. Then

k∗NT/kIT = k∗NZ/k(NT/ZIT) ⊂ k∗NZ/k(H ′) ⊂ H.

Since ker(φT/k) is contained in H, then by lemma 12.1 there exists an abelian
extension K/k such that ker(φK/k) = H. This completes the proof.

Lemma 12.3. Suppose that p is a prime number, k contains the p-th roots of

unity, H is a closed subgroup of finite index in Ik containing k∗ and [Ik : H] = p.
Then there exists an abelian extension K/k such that ker(φK/k) = H.

Proof. Let E be a set of primes of k containing all infinite primes, all primes
dividing p, all primes dividing the conductor of H, and so that Ik = k∗Ik(E). By
corollary 8.20, there exists an abelian extension L/k such that the kernel of φL/k is
k∗Ip

k
(E). Since [Ik : H] = p then we have

∏

℘∈E

(k∗

℘)p
∏

℘/∈E

{1} ⊂ H

and since E contains all primes dividing the conductor of H then

∏

℘∈E

{1}
∏

℘/∈E

u℘ ⊂ H.

Therefore Ip
k
(E) is contained in H, so the kernel of φL/k is contained in H. By

lemma 12.1, there exists an abelian extension K/k such that ker(φK/k) = H.
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Lemma 12.4. Suppose that p is a prime number, H is a closed subgroup of finite

index in Ik containing k∗ and [Ik : H] = p. Then there exists an abelian extension

K/k such that ker(φK/k) = H.

Proof. Let Z be the field obtained by adjoining the p-th roots of unity to k.
Then Z/k is a cyclic extension. Define H′ to be the inverse image of H as in the
hypothesis of lemma 12.2. As in the proof of lemma 12.2, we have that [IZ : H ′] is
a divisor of [Ik : H]. Since p is prime, then [IZ : H ′] is 1 or p. In the former case,
take T = Z. In the latter case, we apply lemma 12.3 to Z and H ′. There exists an
abelian extension T/Z such that ker(φT/Z) = H ′. By lemma 12.2, there exists an
abelian extension K/k such that ker(φK/k) = H.

Proposition 12.5. If H is a closed subgroup of finite index in Ik and contains

k∗, then there is an abelian extension K of k such that H is the kernel of φK/k.

Proof. We proceed by induction on the number of (not distinct) prime divisors
of [Ik : H] = n. Choose a subgroup H1 so that H ⊂ H1 ⊂ Ik and [Ik : H1] = p
where p is prime. By lemma 12.4, there exists an abelian extension Z/k such that
ker(φZ/k) = H1. Let H ′ be the inverse image of H under the homomorphism
NZ/k : IZ → Ik. We have

IZ
H ′

'
HNZ/kIZ

H
⊂ H1H

H
=

H1

H
.

Therefore [IZ : H ′] divides n/p and so has fewer prime divisors than n. By induction
there exists an abelian extension T/Z such that ker(φT/Z) = H ′. By lemma 12.2,
there exists an abelian extension K/k such that φK/k = H.

Theorem 2 - existence theorem. The abelian extension K of k is uniquely

determined by the kernel of φK/k. If H is a closed subgroup of finite index in Ik
and contains k∗, then there is a unique abelian extension K of k such that H is the

kernel of φK/k

Proof. Proposition 12.5 shows that K exists, and proposition 2.15 shows that
K is uniquely determined by H.

Existence theorem for local fields. In this section, p denotes a prime of k
and ℘ denotes a prime of K. Primes of other extensions of kp may be denoted by
℘′, or by q, q′, etc. The norm residue symbol will be denoted by (α,K℘/kp). The
lemmas and proofs for local fields are essentially line-for-line translations of their
counterparts for global fields.
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Lemma 12.6. If K℘ and L℘′ are abelian extensions of kp, then NK℘/kp
K∗

℘ =
NL℘

′/kp
L∗

℘′ if and only if K℘ = L℘′ .

Proof. By proposition 2.11, the natural homomorphism

G(K℘L℘′ : kp) → G(K℘ : kp) × G(L℘′ : kp)

is an injection and the image of (α,K℘L℘′/kp) is
(

(α,K℘/kp), (α,L℘′/kp)
)

. If
α is in NK℘L

℘′/kp
(K℘L℘′)∗ then (α,K℘L℘′/kp) = 1, so (α,K℘/kp) = 1 and

(α,L℘′/kp) = 1, and therefore α is in NK℘
K∗

℘ and in NL
℘′

L∗

℘′ . Suppose that

NK℘/kp
K∗

℘ = NL
℘′/kp

L∗

℘′ . If α is in NK℘/kp
K∗

℘, then both symbols (α,K℘/kp)

and (α,L℘′/kp) are trivial, so (α,K℘L℘′/kp) is trivial, so α is in NK℘L
℘′

(K℘L℘′)∗,

and therefore NK℘/kp
K∗

℘ = NK℘L
℘′

(K℘L℘′)∗ = NL
℘′/kp

L∗

℘′ . This implies that

[K℘ : kp] = [K℘L℘′ : kp] = [L℘′ : kp], so K℘ = K℘L℘′ = L℘′ .

Lemma 12.7. If n is prime and kp contains the n-th roots of unity, then there

exists an abelian extension K℘/kp such that NK℘/kp
K∗

℘ = (k∗

p)
n.

Proof. By proposition 8.12, if p does not divide n, then [k∗

p : (k∗

p)
n] = n2. If p

divides n, then [k∗

p : (k∗

p)
n] = n2(Np)a where nop = pa, and since n is prime then

Np = nf so n2(Np)a = n2+af . Put m = 2 in the former case and m = 2 + af

in the latter. Then k∗

p/
(

k∗

p

)n
must be the product of m cyclic groups order n,

so let β1, . . . , βm generate k∗

p modulo (k∗

p)
n. By lemma 8.5 (which applies to any

field containing the n-th roots of units), K℘ = kp

(

n
√

β1, . . . ,
n
√

βm

)

has degree nm

over kp with Galois group isomorphic to the product of m cyclic groups order n.
Therefore k∗

p/
(

NK℘/kp
K∗

℘

)

is also isomorphic to the product of m cyclic groups of
order n, so (k∗

p)
n is contained in NK℘/kp

K∗

℘ Both of these subgroups have index
nm in k∗

p, so they must coincide. This completes the proof.

Lemma 12.8. Let H be a closed subgroup of finite index in k∗

p. If there exists an

abelian extension L℘′/kp such that NL
℘′/kp

L∗

℘′ ⊂ H, then there exists an abelian

extension K℘/kp such that NK℘/kp
K∗

℘ = H.

Proof. Let K℘ be the fixed field of the image of H under the mapping α →
(α,L℘′/kp). Since (α,K℘/kp) coincides with the restriction to K℘ of (α,L℘′/kp)
then (α,K℘/kp) is trivial if and only if α is in H. Therefore H is the kernel of
(α,K℘/kp), so NK℘/kp

K∗

℘ = H.

Lemma 12.9. Let H be a closed subgroup of finite index in k∗

p, and let Z℘′/kp

be a cyclic extension. Let H ′ be the inverse image of H under the homomorphism

NZ
℘′/kp

: Z∗

℘′ → k∗

p. Then H ′ is a closed subgroup of finite index in Z∗

℘′ . If there
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exists an abelian extension Tq of Z℘′ such that NTq/Z
℘′

T∗

q = H ′, then there exists

an abelian extension K℘ of kp such that NK℘/kp
K∗

℘ = H.

Proof. H ′ is closed because NZ
℘′/kp

is continuous, so we need to show that

[Z∗

℘′ : H ′] is finite. Since H ′ = N−1

Z
℘′/kp

H then NZ
℘′/kp

H ′ = H ∩NZ
℘′/kp

Z∗

℘′ , so

Z∗

℘′

H ′
'

NZ
℘′/kp

Z∗

℘′

H ∩NZ
℘′/kp

Z∗

℘′

'
HNZ

℘′/kp
Z∗

℘′

H
⊂

k∗

p

H
.

Therefore [Z∗

℘′ : H ′] is finite. By the hypothesis, there exists an abelian extension

Tq of Z so that NTq/Z
℘′

T∗

q = H ′. We want to show that Tq/kp is abelian. First, we

show that Tq/kp is normal. Let σ be a generator of G(Z℘′ : kp). The automorphism
σ can be extended to an isomorphism (also denoted σ) of Tq to a conjugate field
T′

q′ . By lemma 10.42, for α in Z℘′ we have

(α,T′

q′/Z℘′) = σ
(

σ−1(α),Tq/Z℘′

)

σ−1.

We have NZ
℘′/kp

σ−1(α) = NZ
℘′/kp

α, so NZ
℘′/kp

(

α−1σ−1(α)
)

= 1, so α−1σ−1(α)

is in H ′. Therefore σ−1(α) is in H ′ if and only if α is in H ′. This shows that
(α,T′

q′/Z℘′) = 1 if and only if α is in H ′, so NT
q′

/Z
℘′

Tq′ = H ′ and therefore

T′

q′ = Tq. Since σ(Tq) = Tq and σ generates G(Z℘′ : kp), then Tq is invariant

under every extension of every automorphism in G(Z℘′ : kp). This shows that Tq

is normal over kp.
To show that Tq/kp is abelian, we have

(

α−1σ(α),Tq/Z℘′

)

= 1, since α−1σ(α)

is in H ′. Then
(

σ(α),Tq/Z℘′

)

=
(

α,Tq/Z℘′

)

, so
(

α,Tq/Z℘′

)

= σ
(

α,Tq/Z℘′

)

σ−1.
Since the norm residue symbol maps Z∗

℘′ onto G(Tq : Z℘′) then σ commutes with

every automorphism in G(Tq : Z℘′). Every element of G(Tq : kp) is of the form
σaτ with τ in G(Tq : Z℘′), so G(Tq : kp) is abelian.

We now know that the norm residue symbol is defined for Tq/kp is defined, and
the kernel is NTq/kp

T∗

q . Then

NTq/kp
T∗

q = NZ
℘′/kp

(NTq/Z
℘′

T∗

q) = NZ
℘′/kp

(H ′) ⊂ H.

Since NTq/kp
T∗

q is contained in H, then by lemma 12.8 there exists an abelian
extension K℘/kp such that NK℘/kp

K∗

℘ = H. This completes the proof.

Lemma 12.10. Suppose that n is a prime number, kp contains the n-th roots of

unity, H is a closed subgroup of finite index in k∗

p and [k∗

p : H] = n. Then there

exists an abelian extension K℘/kp such that NK℘/kp
K∗

℘ = H.

Proof. By lemma 12.7, there exists an abelian extension corresponding to the
subgroup (k∗

p)
n. Since [k∗

p : H] = n then (k∗

p)
n ⊂ H. By lemma 12.8, there exists

an abelian extension K℘/kp such that NK℘/kp
K∗

℘ = H.
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Lemma 12.11. Suppose that n is a prime number, H is a closed subgroup of

finite index in k∗

p and [k∗

p : H] = n. Then there exists an abelian extension K℘/kp

such that NK℘/kp
K∗

℘ = H.

Proof. Let Z℘′ be the field obtained by adjoining the n-th roots of unity to
kp. Then Z℘′/kp is a cyclic extension since G(Z℘′ : kp) ⊂ G(Z : k). Define H ′ to
be the inverse image of H as in the hypothesis of lemma 12.9. As in the proof of
lemma 12.9, we have that [Z℘′ : kp] is a divisor of [k∗

p : H]. Since n is prime, then
[Z℘′ : kp] is 1 or n. In the former case, take Tq = Z℘′ . In the latter case, we apply
lemma 12.10 to Z℘′ and H ′. There exists an abelian extension Tq/Z℘′ such that
NTq/Z

℘′
T∗

q = H ′. By lemma 12.8, there exists an abelian extension K℘/kp such

that NK℘/kp
K∗

℘ = H.

Proposition 12.12. If H is a closed subgroup of finite index in k∗

p, then there

is an abelian extension K℘ of kp such that NK℘/kp
K∗

℘ = H.

Proof. We proceed by induction on the number of (not distinct) prime divisors
of [k∗

p : H] = m. Choose a subgroup H1 so that H ⊂ H1 ⊂ k∗

p and [k∗

p : H1] = n
where n is prime. By lemma 12.4, there exists an abelian extension Z℘′/kp such
that NZ

℘′/kp
Z∗

℘′ = H1. Let H ′ be the inverse image of H under the homomorphism

NZ
℘′/kp

: Z∗

℘′ → k∗

p. We have

IZ
H ′

' HNZ/kIZ

H
⊂ H1H

H
=

H1

H
.

Therefore [IZ : H ′] divides m/n and so has fewer prime divisors than m. By
induction there exists an abelian extension Tq/Z℘′ such that NTq/Z

℘′
Z∗

℘′ = H ′.

By lemma 12.9, there exists an abelian extension K℘/kp such that NK℘/kp
K∗

℘ = H.

Proposition 12.13 - existence theorem for local fields. The abelian

extension K℘ of kp is uniquely determined by the kernel of (α,K℘/kp). If H is a

closed subgroup of finite index in k∗

p, then there is a unique abelian extension K℘

of kp such that NK℘/kp
K∗

℘ = H

Proof. Lemma 12.13 shows that K℘ exists, and lemma 12.6 shows that K℘ is
uniquely determined by H.


