CHAPTER XI

NORM RESIDUE SYMBOL FOR KUMMER EXTENSIONS

Throughout this chapter, p will denote a rational prime number; p will denote a
prime of k, and ¢’ will denote a prime of an extension K of k. Let m be a positive
integer and let k contain the m-th roots of unity. The general m-power reciprocity
law for elements in k has been found to be

(5),(2), -1,

where F contains all primes of k dividing m and all infinite primes, and elements «
and [ of k are relatively prime to each other and to m. Our main objective will be

to compute the symbol (%) for odd primes p in the case k = Q(¢) where ( is a
P
primitive p-th root of unity, obtaining the p-th power reciprocity law in the process.

LEMMA 11.1. Suppose that k contains the m-th roots of unity and @ is an infinite
prime of k. Non-trivial norm residue symbols occur only if m = 2 and g s real, in
which case we have

a, 3 lifa>0o0rpB>0,
( o )m_{—lifa<0andﬁ<0.

Proor. If m > 2 then all infinite primes of k are complex because k contains
the m-th roots of unity.

Norm residue symbol for composite powers.

LEMMA 11.2. Suppose that k contains the mn-th roots of unity, @ is an finite
prime of k and « and 3 are elements of ki,. Let m and n be relatively prime. If
ma + nb =1 then

a1y (=0) (=) (=)

124
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ProoOF. We can choose (3, in k* sufficiently close to 8 so that Gy ~,., 8. Then
(8 may be replaced by (p in all norm residue symbol expressions, so we may as well
suppose that ( is in k*. For an integer s dividing mn, let o5 be the norm residue

symbol automorphism.
[ k(VB)/k
’ o
We have 1/mn = a/n + b/m, so "/B = (*{‘/B)b (W)a Since o, and o, are

restrictions of o,,, to their respective subfields, then

oo (*93) =oun ((8)' (V8)") = (= (¥9)) (= ()

Therefore

Ton ("VB) _ (0w (VB)\ (00 (¥B)’
/B /0 i)

<a,6) _ <a,6)b (a,ﬁ)“
p mn p m p n .
LEMMA 11.3. k, contains the (Np — 1)-th roots of unity.

PROOF. Let ¢ be a primitive (Np — 1)-th root of unity. Then k,(¢)/k, is
unramified since p does not divide Np — 1. Let ¢’ be the prime of k,({). In the
map O, — O /', element ¢ maps to an element of o,/p since o,/p is the
splitting field of N¢~! — 1. This shows that O,/ /¢’ = o,,/p. Therefore f =1, so
ko (C) : k] = ef =1, and we have k() = k.

LEMMA 11.4. Let V be the group of (Np — 1)-th roots of unity in k,,. Then the
image of V in o,/ is all of (0,/p)".

PROOF. If v is in V and v # 1, then v is a oot of N2 4 ... + x + 2 = 0.
If v = 1(mod gp) then we would have Np — 1 = 0(mod p), which is impossible.

Therefore the kernel of V — (o,,/p)" is trivial, so the map is an isomorphism since
both V and (o,,/p)" have (Np — 1) elements.

LEMMA 11.5. Let w be an element of ki, such that ¢ = (7). For fized 7, every
element a of K¢, has a unique representation as

SO

a = m%u where v € V and u € W(1).
Therefore k, is a direct product (m)VW(1).
PROOF. Exponent a is determined by a = ord, (). Put o’ = a/7n®. Then o’ is

in u,. By lemma 11.4, there is a unique element v in V' so that o/ = v(mod p).
Then u = o/ /v is in W,,(1). Since o’ and v are uniquely determined then so is u.
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LEMMA 11.6. If n is relatively prime to No — 1 then V. = V™ and the map
x — x" is an isomorphism of (0,/p)*.

PROOF. Let a and b be integers such that na + (Np — 1)b = 1. Then y — y* is
inverse to x — ", and we have V DO V" D V™" =V so V =V".

The case of powers relatively prime to p. Suppose that n = p® where (p)
is the rational prime divisible by o and m is relatively prime to p. Lemma 11.2
shows how computation of the norm residue symbol for mn-th powers is reduced
to separate computations for m-th powers and p”-th powers. Lemma 11.7 gives an
explicit formula for the former case.

LEMMA 11.7. Let w be an element of ki, such that o = (). Suppose that m is
relatively prime to . If o = m%vu and B = vy’ as in lemma 11.5, then

@ﬁ)m B (%)m (0) "5 (@)

PRrOOF. Since g does not divide m then we can apply lemma 10.9.

().~ G () - B (),

We have v = 1(mod p) and v = 1(mod g), so both ( )

© Jm
(%) is the unique (Ngp—1)-th root of unity such that (%)
vis an (Np—1)-th root of unity, so (%) = (v) “5, and likewise (%) = (V)

m

and (%) are trivial.
= U%(mod ©). But

Np—1
m

The case of p”-th powers where p divides (p). Take n = p* where p divides
(p). Then n is relatively prime to Np — 1. Group V is cyclic of order Np — 1, so
V" =V, and every element of V is a n-th power. Since every n-th power norm
residue symbol involving an element v in V' is trivial, we have

(11.2) (oz,_ﬁ) _ <7ravu,7rbv'u’) _ (Wau,ﬂbu)
© Jn o n o n

To compute (11.2), it is only necessary to assume that k contains the n-th roots of
unity.
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LEMMA 11.8. Suppose that o is a prime of k and (p) is the rational prime
that o divides. Let n = p”, and suppose that k contains the n-th roots of unity.
Then Wy, (1)/W,(1)™ is the direct sum of d + 1 cyclic groups of order n, where
d=[ky: Qe

PROOF. Every element of W, (1)/W,(1)" has order dividing n, so the group is
the direct product of cyclic subgroups each having order dividing n. Let o map
to a generator of any one of these cyclic subgroups having order n’ = p¥. Then
y <z, and o" is in W (1)", so o™ = " for some element § in W, (1). Suppose
that y < 2. Then o’ = (82" ")?", so a = 7" "¢, where ¢’ is a pY-th root of
unity. Since k contains the p*-th roots of unity then ¢’ = ¢(?" " where ( is some
p®-th root of unity, and we have o = (ﬁ{)p%y. But a cannot be a p-th power, so
it impossible to have y < x. Therefore each cyclic subgroup in the direct product
has order exactly p*. By lemma 11.5, u,, is a direct product VW, (1). Since Np —1
and n = p” are relatively prime then V"™ = V. We therefore have

U, VWp(l) i Wso<1) i Wso<1)
ur VW () VI, (W)m N W(1)  W()™

Since [k, : Q)] = d and n = p*, we have |n|, = ‘Nkp/Q(p)n‘ = |nd|, =n~9. By
P

lemma 8.11, we have [u, : u] = n/n|_', so
We(1) : We(1)"] = [ug : ug] = n(n?) = n*t,

Therefore W, (1)/W,(1)™ must be the product of d + 1 cyclic groups of order n.
DEFINITION. An element a in Wi, (1) is n-primary if k,,( {/a)/k,, is unramified.

LEMMA 11.9. With the hypothesis of lemma 11.8, the image in W (1)/W(1)"
of the set of n-primary elements is a cyclic group of order n.

PrROOF. Since k, is a direct product (m)VW,(1) and V' = V" we have

k; :<7T>V Wp(l) :<7T> Wp(l)
(kp)m  (mm)VrWe(Dr () W ()™

By lemma 11.8, k¢ / (k)™ is the direct sum of d + 2 cyclic groups of order n, where
d = [k, : Qp)]. Let B1,...8ay2 be a set of generators for ki, /(k7)", and the 3;
may be chosen to be elements of k*. The (3; are independent modulo n, so by
lemma 8.5 the extension k, ((L/E, ceey w"/ﬁd+2) of k, has degree n?t2? with Galois



128 XI. NORM RESIDUE SYMBOL FOR KUMMER EXTENSIONS

group isomorphic to the direct sum of the d + 2 Galois groups G(k,(/3:) : ko),
where 1 < i < d + 2. Every extension of the form k,({/8) where 3 is in ki, isa

subfield of kg, (/B1,..., ¥/Bat2). Put K =k ({/B1,..., /Bat2). The kernel of
a — (&K)/k)n has index n®*? in k¥, and contains (k})". Since [k% : (k})"] = n¥*2,
then the kernel is exactly (k7,)".

Let H be the image in G = G(k,, (\"/51, cee w"/ﬁd+2) : k,,) of the units u,, of k.
An element 8 of ki, is in the fixed field of H if and only if (%) Y/B = /3 for

every « in ug, which is if and only if (%) = 1 for every « in u,, which is if and

only if k,(3/53)/k, is unramified.
The kernel of the homomorphism kj, — G/H is u,(kj,)", so we have

G ko  _ (m)VW,(1) _ mVW,Q) _ (m)

H  ug(ky) VW () (mm)VrWe(l)n — (am)VIW,(1)  (7m)

Therefore the fixed field of H is a cyclic extension of degree n and, by lemma 8.5,
is of the form k,(1/72)/k, for some element v, of kj. By lemma 8.2, n is the
smallest positive value of x such that v5 ~,, 1. Let (72) = p° where ¢ = nqg+ r and
0 <r <n. Put vy =~/7?". Then v, ~, 71, so the fixed field of H is k, ( 0 fyl),

and (71) = ¢". The map o — (%)ﬂ is a homomorphism k¥, — G(k,(¢/71) : k).

The kernel has index n and contains ug(k,)", so the kernel is exactly u, (k)"
Since —1 is in u,, we have

<71,’Y1) :(—71,71) (—L%) _1q
p n p n p n

Therefore v is in the kernel, so 1 is in ug(kj,)". This shows that r = 0, so 7, is
in u,. Put y1 = dy where 0 is in V and 7 is in W (1). Since V = V", we have
Y1 ~p Yo Therefore the fixed field of H is kg ( (1/70). Since Y9 ~, V1 ~n 72 then n
is the smallest positive value of x such that +§ ~,, 1.

If 3 is n-primary then (3 is in W, (1) and k,,({/8)/k, is unramified. Therefore /3
is in the fixed field of H, so 8 is in k,(1/7,), and therefore 3 >~ 7§ for some z by
lemma 8.3. Put § = a™y§. Since 7y and (3 are both in W,,(1) then o™ = 1(mod p),
so a = 1(mod p) by lemma 11.6. We have shown that the image in W, (1)/W(1)"
of an n-primary element is a coset (v9)*W,(1)" and that n is the smallest positive
value of = such that 4§ is in W,(1)". Therefore the image of the n-primary elements
is the cyclic group of order n generated by the image of 79. This concludes the proof
of lemma 11.9.
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LEMMA 11.10. With the hypothesis of lemma 11.8, choose a fixed element m so

that o = (w). Put
v foemor| (32) -1}

Let vy in W,(1) be a generator of group the n-primary elements modulo W (1)"
and let 7o be the coset yoW,(1)™. Then W (1)/W,(1)™ is a direct product

wo) W,
AT R

PROOF. Suppose that « is n-primary and in W;. Then (%O‘) = 1 for every

element 5 of k7, and in particular for a set of generators (51, .., B4+2 generators of

k,,/(k;,)". Therefore for 1 <i < d+ 2, the norm residue symbols (%\/ﬁ_ﬁ/k@)
omksO( %7"'7 n\/ ﬁd+2)/k80)
o

is in (ki) N Wy(1). Then a = v"u™ with v in V' and u in W(1). We have
" = 1(mod p), so v = 1, and therefore a is in W,(1)". We have shown that
W (1)/W,(1)™ N (7o) is a trivial group.
Now suppose that « is an arbitrary element of W, (1). It remains to show that
W and ~g generate W, (1) modulo W, (1)". Since k( /7o) has degree n over ki,

then there exists an element 8 in ki, such that (B ’VO> is a primitive n-th root of

n
is trivial by lemma 8.5, and therefore «

are trivial, so

unity. Let 8 = wvu. Then (220) = (ZX ’70 must be a primitive n-th
© )y ©
( = ) We have oo = (aryy *)v“.

Then avyy ® is in W, because <7ﬂ’agga) (”’0‘)

the proof of the lemma.

root of unity. There exists an a so that <

\_/
S
I

) = 1. This completes

The computation of the norm residue symbol for p*-th powers has been reduced
to the following. An element « of ki, may be expressed as z = m*vw where v is

in V and w is in W,(1). Let w =, uy§ with u in W;. Likewise, let £ in k;, be

. . / . .
expressed as 3 = wPv'w’ where v’ is in V and w’ ~, v~y with v/ in W,. Then

bt 1. b ab ab’ / ba’
(ﬁ) _ [ moung mtoug (Wﬂf) (Wﬁo) (UU> ('70771')
p n ( p >TL p n p n p n p n
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ab ab’ —ba’ /
() -0 (), (%)
p n p n p n p n

The problems that remain are essentially two.

Therefore

(1) Find a generator ~y, for the n-primary elements and calculate (%) .
n
(2) Find a basis v1,...,vq of W modulo W (1)" and calculate (%)
The p-primary elements for odd primes. We specialize to the case n = p
and p > 2. Let k = Q(() where ( is a primitive p-th root of unity. Then [k : Q] =
p—1. The prime (p) is completely ramified in k; if 7 = 1 — ¢ then (p) = P~ where
o = (7). We have [k, : Q(,)] = p—1 with ramification index e = p—1; since f =1
then the rational integers 0,1,...,p — 1 are a complete residue system for o, /.

LEMMA 11.11. [W,(1) : W,(k+1)] = p*

PROOF. Every element of W,,(1) may be uniquely represented modulo 751 by
1+ a7+ aom? + -+ + apw"® with coefficients a; belonging to a complete residue
system for o,,/p. There are p* choices for the coefficients a1, ..., ay.

LEMMA 11.12. W,(1)P = W,(p+1)

PROOF. Let b = ord,(p). By lemma 4.13, every element x of k,, such that
ord,(z) > b/(p — 1) + ordg,(p) is the p-th power of some element y in k, such that
ordg,(y) > b/(p —1). Since ord,(p) = p — 1, then every x such that ord,(z) > p is
the p-th power of some y such that ord,(y) > 1, that is W, (p+ 1) C W,(2)?. Let
V, = (¢) be the group of p-power roots of unity. Since ( = 1(mod p) then

Wolp+1) C We(2)" € (We(2)V3)" € Wo(1)P € W (1)

By lemma 11.8 and lemma 11.11, subgroups W, (p+1) and W,(1)? both have index
pP in W, (1), so the two must coincide.

LEMMA 11.13. If element a of k, is in W,(p) then @ is integral over og,.

PROOF. The element in question is a root of polynomial (pm)~*((7z 4+ 1)? — )
having coefficients in k,, and

D -1 P
oty —a o, G G e
pT pm pm pr br

The leading coefficient is a unit and the other coefficients except possibly the con-
stant term are elements of o,. If o = 1(mod p”) then the constant term is also in
0y,
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LEMMA 11.14. Let o of kg, be in W, (1). Then o is p-primary if and only if o
is in W, (p).

PROOF. Let P be the group of p-primary elements in W, (1). Then we have
(We(1) « W(1)P] = pP and [P : W,(1)P] = p by lemma 11.8 and lemma 11.9,
so [W,(1) : P] = pP~t. Also we have [W,(1) : W,(p)] = p*~! by lemma 11.11,
so it will be enough to show that W (p) is contained in P, i.e. ky(¥/a)/k, is
unramified if @ = 1(mod EP). Let 7 be an automorphism in the inertial subgroup
of G(ky (V) : k), and let 7 (¥/a) = ¢’ ¢/a where ¢’ is a p-th root of unity. (We
need to show that ¢’ must be 1.) Let o’ be the prime of k,,(¢/«) dividing . Then
7(7) = y(mod ) for every v that is integral over o,. The element (¢/a — 1)/ is
integral over o, by lemma 11.13, so we have

' — 1
¢ yi L %W (mod ).
Therefore .
WE = 0(mod ¢').

If ¢’ # 1 then (¢’ — 1)/7 is a unit, but that is impossible since ¢/« is also a unit.
This shows that (' = 1, the inertial group is trivial, and k,(¢/a)/k,, is unramified,
which concludes the proof.

LEMMA 11.15. With ™ =1 — ( we have
S

p

("' =1—in(mod p*) and = —1(mod p).

PROOF. Since ¢ = 1(mod ) then, for 1 < i < p, we have
11—
1-¢

so 1 — ¢* = im(mod p?), which establishes the first conclusion. For the second,
substitute x = 1in 2P~ '+ -+ 2+ 1= (x —)(z—¢?)...(x — P~ 1) to obtain

(11.3) p=01-01—-¢%)...(1=¢").
Therefore

=144+ =i(mod ),

ol (1-00-¢ ...(1-¢ _ 1 (mod p).

p (1=-00-¢)...(1=¢h)  (p-1)!

Since (p — 1)! = —1(mod p) then the second conclusion follows.
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LEMMA 11.16. If « in kg, is a p-primary element, there is a rational integer a
such that 0 < a <p and a =1+ aprw (mod ppﬂ), With m =1 — (, we have

<7r,a) o
© Jp

PrROOF. Let a be p-primary. There is an integer a so that a = 1 + apm modulo
©PT! since the integers 0,1,...,p — 1 are a complete residue system for o,,/p. We
can choose an element o/ in k that is sufficiently close to a so that o/ ~, o and
o = a(mod pp“), so we may assume that « is in k. In that case, put K = k({’/&)
and let o' be a prime of K dividing g. If « is p-primary then g is unramified in K
so in the completion we have p' = PO, and therefore ' = (7). Put

Joa=1+br where b € O

Then
a=(1+bm)? =1+ pbr + PP (mod p’pH) .

/p+1)

By lemma 11.15, 7P = —pﬁ(mod pp+1), so P = —pw(mod © , and

a =1+ pbr — bPpw (mod p’pH) :
Therefore we have
(11.4) a="b—bP(mod ¢’).
Let (%)p Ya = ¢ ¢/a. Since K/k is unramified then we have

(s <)

) = (bK/k(i(Tra £, k)) = (
and therefore for any 8 in O, we have

(W,E/k

) B =pY = pP(mod ¢').
Choose f = (¢/a — 1)/, which is in O by lemma 11.13. Then

(LKA 6o

KL ™

b
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SO

™ s

¢ a1 _ (W‘ 1)p = b7 (mod ).

We have ¢* =1 — a/m(mod p?) by lemma 11.15, so

(1 — a/7r)(1 + bﬂ') -1 _ bp(mod p,).

™

This shows that —a’ + b = b?(mod ¢’), or @’ = b — bP(mod g’). Comparison with
(11.4) shows a = a/(mod g’). Both a and o’ are rational integers, so have

a = a/(mod p),

which completes the proof of the lemma.

We have solved the first basic problem for prime p. The generator of the p-
primary elements modulo W,,(1)? = W,(p + 1) is 79 = 1 + pm, and

(M) =( where 7 =1 — (.
© Jp

Generators of W, /W (1)? and the p-th power reciprocity law. If we can
find a set of generators uy, ... u,—1 for W,(1)/W,(p), then every element o of W, (1)

will be expressible as a = ul! ...u;”__f'yé“(mod Pt so if (% = (% then we

will have
W, = {C\C € Wp(l) | cit1 + .. ~Cp—1tp—1 + ity = O(mod p)}

The constants ¢; will be determined in the last section.

LEMMA 11.17. Ifr is a primitive root modulo p then

p—1
7 H(rl —r*) = —1(mod p).
k=1
ki
PROOF. Since r,72,...,7P~! form a reduced residue system modulo p, then

p—1
H(:U —r*) = 2P~! — 1(mod p).
k=1
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Then
d 1 d
— — p—1 _ d
= 1;[:5 rk m(x )(mo D),
or
p—1p—1
Z H(m — %) = (p— 1)2P"%(mod p).
(=1k=1
[y

Set = r* and multiply both sides by r’ to obtain the desired result.

rt H(rz — k) = (p— 1)riP=Y = _1(mod p).
k=1
lei
LEMMA 11.18. Let o be a generator of G(ky, : Q(p)) and let (7 = (". Then r is
a primitive root modulo p. Fori=1,...,p—1, set

u; = (1 . ﬂ_i)—T‘i(a—r)(a—rz)...(a—ri71)(0—ri+1)...(a—rp71)

Then

U i+1).

~,ul and w;=1—7"(mod p

Proor. If f(z) and g(x) are polynomials in Z[z| and f(z) = g(z)(mod p) then
all9) ~, a9 for o in k*. Since f(z) = (z—r)(x—r?)...(z—rP~1) is a polynomial
of degree p—1 having roots 1,2, ..., p—1, modulo p, then f(z) =aP~ 1 - l(mod p).
Therefore af(?) ~, 1. We have uf ™" = (1 — x%)~" (o) ~, 1, so uf ~, u" , which
is the first part of the lemma. For the second part, we have m™=1-—(, so

™ =1-¢"=1-(=(1-(1-m") =rr(mod p?).
Put 77 = rm + 2. Then (77)" = (rm + B72)" = riri(mod p'*t), so
()7 = rix’(mod '),
Before proceeding further, we make the following observation. If ji,...,js41 are
any given integers, then we have

)0' ris+1

(L+r' (' =) (= rPo)r
(1-1—7“ (rt — i) .. (ri—rjs)ﬁi)a (1—|—Ti(ri—7‘j1) (r —TJS)W)

= (147" —r) . (r =)'
(1 _ ’I“i(Ti . ,,,.jl) (’I“l _ 7“]3)7“35'*'171'7’) (mod pi—kl)

— (147 (rf = r7r) (= P3)(r? = 7 1)7) (mod i)

’I“j3+1
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To compute u;, we start from (1 — 7ri)_7"i =1+ rir’(mod p'T1), then successively
apply ¢ —r, 0 — 72, up to 0 — P71, but omit ¢ — r*. By applying the above
observation at each step, we arrive at

up= 1+ —r). . (" = = (" =P r") (mod o).
By lemma 11.17, we obtain u; = 1 — 7*(mod p**™1), which completes the proof.
LEMMA 11.19. For1<i:<p—1and1l<j<p-—1, we have

(ui,uj)_ (7' ifitj=p
o Jp |0 diti#p

PROOF. We apply automorphisms on the left in this proof, so we have o¢ = ("

i .
and ou; ~, u; . First, we have

oU;, OUs; Uriaurj wiou\"
(11.5) )y = 227 ) = | 220
o /), o ) o ),

We also have

<Uui,auj> e Uui,k(g/auj)/k -
o ),V o .

Automorphism ¢ : k — k may be extended to an isomorphism o : k (%) —
k (W) (In the notation of lemma 10.43, we have K = k (W), K =k ({/cf—uj),
k' =k, and o' = p.) Since (O’ {)/u_j)p = ouy, then o g/u; is a root of 2P —ou;, and we
may write o y/u; = ¢/ou;. (The particular choice of ¢/ou; determines the extension
of 0.) Using the notation of lemma 10.43, we have

(zktaom) ) _ (s

05 <%) ol g (ui,k (v/%) /k> o1

Therefore

(o—ui,k (¢/ou;) /k) B (uk (¢/7%) /%

o
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(aui,auj) B (ui,uj)T
O Jp ® Jp

Comparison with (11.5) shows that

T T
(Uiauj) _ (uiauj)

If (%) # 1, then we must have r = r**7(mod p), so 1 =i + j(mod p — 1). For i
and j in the range 1 <7 <p—1and 1 < j < p— 1, the only value of ¢ + j which

satisfies the condition 1 =i+ j(mod p—1) is i + j = p. So far, we have established

that
(—““J) —0  ifi+j#p.
© b

or

i+J

We need to compute (%@’"@) . Since ux = 1 — 7¥(mod p**1) for 1 < k < p, and

Yo = 1 + pm, then we can find integers aj for i +1 < k < p such that 0 < arp < p
and _

1— 7' = wug w3 g (mod pPth).
Likewise, we can find integers by for p —¢ + 1 < ¢ < p such that 0 < b, < p and

— by bp_1 b
p—i __ o Op—it1 p—1,.9p p+1
L=l =y w0 w7 (mod EP7).

Since (%) = 0 unless i + j = p, and since 7y is p-primary, we have
P

— gt 1 — Pt
(11.6) <1 1 )
p

®
L @it ap—1,ap L bp—it1 bp—1, by
- <u1ui+1 ceeUp_1 Yo s Up—iUp_jpq -+ Up_1 70 o <Ui7up—i)
P
P

& &

1—7t 1—7P~

o 1) . Suppose that o + 3 = v, and put
P
w=ca/y. Then 1 — p = F/v. By lemma 10.6(f), we have

29 (5) -, 62) )
o/, 0 ) o o\ 0/, o J, \ o /J,

The problem now is to compute (
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Since (%) =1 for p > 2, we have
P
(ﬁ,a) _ (ﬁ,v) (%04)
0 Jp O Jp\ ® Jp
Choose o = m?~%(1 — 7*) and 3 =1 — 7P~%. Then v = 1 — 7P, and we have

(1—7rp_i,7rp_i(1—7ri)> B <1—7rp_i,1—7rp> (1—7rp,7rp_i(1—7ri)>

Apply lemma 10.6(f) to the left side, and apply the fact that 1 — 7P is p-primary
(annihilates units) to the right to obtain

(1 — P71 —7ri> B (1 —7Tp,7'('p_i)
© P © P

We have 1 — 77 = 1 + pmr(mod pP*!) by lemma 11.15, so

(1 —7ri,1—7rp_i> B (Wp_i,l-i-pﬂ)
o ) o -

Apply (11.6) on the left side, and apply lemma 11.16 on the right to obtain

(—u"’“p‘i) — =,
p p

The completes the proof of lemma 11.19.

THEOREM 11.20 - RECIPROCITY LAW FOR ODD PRIME POWERS. If a and (3 are
elements of W, (1), then let a; and b; (1 <1 < p) be integers such that 0 < a; < p
and 0 < b; < p and

b

a=uf" ... uy ) (mod @P) and (= ul? coul (mod @F).
Then
(g) (3), —oe
By \a/y
PROOF. Since a and uj* .. a”_l differ only by a factor that is p-primary, and
likewise for 3 and u . uf) then we have

b .

(5),(2), - (%

T ()
_ H ( mpp—l) _ Hc—zaibp i C E wLZ
p =1

=1
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Computation of symbols (%) .
P

LEMMA 11.21.
b, u;

):1 fori=1,....p—1
® /p

ProoOF. By lemma 11.18, we have

(10.7) <p—’0“") = (p_’“i ) - (p_’“i> .
0/ 0 ) © Jp

We can compute (%) in another way using lemma 10.43. Proceeding as in the
P
proof of lemma 11.19, we have ¢/ou; = o ¢/u; and

<p,k(<’<gT¢)/k)p _ ., (p,k(zfi)/k)p -

" (p,k%o—m/k)p = o (T

(152) e (5, ) () o
P p @ p P p

(u) . If(w) 1 then we must
® p

P S

)

Therefore

Comparison with (10.7) shows that (pi—giy
have r = r¢(mod p), or i = 1. P

It remains to prove the lemma in the case i = 1. We have 1 — m = (, and by
lemma 11.17 with i = 1 we have r(r — r?)...(r —rP~1) = —1(mod p), so

—r(o—=r?)...(c—rP~1 —r(r=r?)...(r—rP71
(10.8) u = ¢ ( )-( ):C ( )-( ) = (.

We have p = (1 —()(1 —¢?)...(1 —¢P71), so the lemma is proved if (—1_533-’() =1
P

for 1 < j < p. For each j there is a j' so that jj' = 1(mod p), and

(ﬂ)_ 1-¢,. ¢ _(ﬂ)j’_l
o ), e p_ o ),

This completes the proof of the lemma.
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LEMMA 11.22. Put § = == —. Then

(W’ui) = (é’u’) for1 <i<np.
© Jp ¥ Jp

PROOF. Since p is odd then —1 = (—1)P, so by lemma 11.21 we have

(W,Ui) - (ﬂ-p_lvui)_l o <_7Tp_1/p7ui)_1 o (57“1)_1

which proves the lemma.

For any o in W (1), let t1(a),...,tp—1() be the unique integers satisfying

(11.9) a= u?(o‘) . .u;”__fa(mod ") and 0 <tj(a) <p
Then
tp—i(§) .
(11.10) (ﬂ) S AU Citr=i(8),
0/, o)

The problem is to compute t1(§), ..., tp—1(§) for 1 < i < p—2, since the next lemma
shows that t,_1(§) = 1.

LEMMA 11.23.

(%)p =1, or t,_1(§) =0.

PRrOOF. By (11.3) and (11.8) we have

() () (559 B 00
o ), o Lo L\ e ) o/,

Jj=1

We have —1 = (—1)P, and (#) = 1 was shown in the proof of lemma 11.21.
P
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Kummer’s logarithmic differential quotient for p > 2. Every element « in
0, is a linear combination of 1,¢,...,(?~? with coefficients in Z (p). Suppose that
¢(x) and ¥ (x) are polynomials over Zp) such that a = ¢(¢) = ¢(§) Then ( is a
root of ¢(x) —(x), so ¢p(x) —(z) is divisible by the minimal polynomial of ¢ over
Z (), which is fo(x) = 2P~ ' 4 -+ 4+ z + 1 because [Q(2)(¢) : Q2)] = p— 1. Let n(z)
be a polynomial with coefficients in Z,) such that

¢(x) = (x) = folz)n(z).

Applying formal differentiation, we obtain

(11.11) ¢ (x) — ™ (z) = zn: (Z) FR @R () foro<n<p—1
k=0

as an identity of polynomials over Z ).

LEMMA 11.24. Let fo(x) = 2P 1 +---+ 2+ 1. Then
ék)(l) = 0(mod p) for0<k<p-—2

and
=V (1) = ~1(mod p).

ProOOF. Both sides of the identity
|
(p— D) fo(z Z (k) )(m—l)k

are polynomials with integer coefficients, and fék)(l) and (p — 1)!/k! are integers.
We have (x — 1) fo(z) = 2P — 1 = (x — 1)P(mod p), so fo(z) = (x — 1)P~1(mod p).
Therefore

(0~ iz~ 1y Z 700 PP @ 1) amod )

The coefficients of (x — 1)¥ for 0 < k < p — 1 must be identical on both sides, so
ék)(l) =0(mod p) for 0 <k <p-—2,

and
V1) = (p—1)! = —1(mod p).
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LEMMA 11.25. If « is an element of Qp,)(¢) and a = ¢(¢) = ¥(¢) where ¢(x)
and (x) are polynomials with coefficients in Zy, then

qb(”)(l) — z/J(”)(l) = 0(mod p) for0<n<p-—2

and

60 D(1) — D1y = ~ LD =D g )

PROOF. The result for 0 < n < p— 2 is obtained by setting x = 1 in (11.11) and
applying lemma 11.24. For n = p — 1 we have

oD (1) = (1) = fV (1)n(1) = —n(1)(mod p).
We have ¢(1) — (1) = fo(1)n(1). Since fo(1) = p then ¢(1) — (1) is divisible by
p and n(1) = (¢(1) — (1)) /p, which gives the desired result for n =p — 1.
LEMMA 11.26. Suppose that o is in W,(1) and oo = ¢(¢) = ¢(¢). Then we have
1=¢(1) =¢(1)(mod 0), and
o™ (1) =™ (1) (mod p) for0<n<p-—1

and

o001+ A= = o)+ P o)

PROOF. Since a = 1(mod p) and ¢ = 1(mod p) then we have 1 = ¢(1) =
¥(1)(mod p). Therefore 1 = ¢(1) = ¥(1)(mod p), so ¢(1) — 1 and (1) — 1 are
divisible by p. The results now follow immediately from lemma 11.25.

We consider the formal power series F(z) = log (¢(e¥)).

. SO, (@04 0)e0) - d 7
F(z) =1log (¢(1)) + o) + 5(1)? +...

If ¢(1) is in W,(1) then log (¢(1)) is defined, but we are actually interested only in
coefficients of z" for 1 <n <p-—1.
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LEMMA 11.27. -
dn ¢ n (ez)enz
Pz =" 4R,
PG = O R
where R, (z) is a rational expression in e*,d(e?), ¢'(e?),...,¢" "V (e*). The nu-

merator of Ry,(z) is a sum of terms each of which is divisible by at least one of
¢ (e%),...,6" "V (e?*), and the denominator is a power of ¢(e?).

PROOF. Put w = e*, ug = ¢(e?), and u; = ¢V (e?) for i > 0. Then w’ = w and
u; = ujp1w for ¢ > 0. We have F(z) = log(ug), so dF(z)/dz = uyw/ug. Therefore
R;(z) = 0, so the conclusion holds for n = 1. For n = 2, we have

d2 F(Z) o ”LLQ’U)Z 4 uLw _ u%wQ . ”LLQ’U)Z 4 ULUQW — UQU1U)2
dz? N U U u? N U u?
0 0 0 0 0

so every term of the numerator of Rs(z) is divisible by u;.
Assume that the lemma is true for n. Then

dr UpW"
—F(z) = R, (z
() = M R
and g g
UL+ -+ Op—1Unp—
U™
where S1(z),...5,-1(2) are polynomials in w, ug, ..., u,—1. We have
—1 _
4 p S ((Sus + Sjusaw) uf = knSyuyuf " urw)
dz ( ) ugk”
and every term of the numerator is divisible by at least one of uq,...,u,. Then
dn+1
gt =
n+1 n n+1 n+1
Up 1 W nUp W Up U W d Uyt W
_ n+1 + n _Un 12 —|——Rn(2)=L+Rn+1(2)
Uo Ug ug dz Ug
We see that R, 1(z) is a rational expression in w, ug,uq ..., u, with denominator

uZ®, and every term of the numerator contains at least one factor from the list

Ui, ..., Uy, and the conclusion therefore follows.
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LEMMA 11.28. If o = ¢(C) is in W (1), define £, () by

dTL
ﬁF(O) for1<n<p-2

(@) =94 g1 o(1) — 1
dz(p—l) ( )+ p

forn=p—1.

Then £, () depends only on o and not on ¢(x) for 1 <n <p—1.

PROOF. By lemma 11.27, jz—nnF(O) = ¢E;()1()1) + R, (0), where R, (0) is a rational
expression in 1,¢(1),...,¢" (1) with denominator a power of ¢(1). By lemma
11.26, ¢(1) = 1(mod p) and ¢4 («), ..., ¢p_2(c) depend modulo p only on o and not
on ¢(z). For n =p — 1, we have

lp—1(a) = 6@~V (1)

+ % + R,—1(0)(mod p).

By lemma 11.26, this expression depends modulo p only on « and not on ¢(x).

LEMMA 11.29. For ay and ag in W, (1), we have

(1) li(ar1ag) =
(2) Ci(onoy ) =

li(on) + £;(az)(mod p),
lj(on) = £j(az)(mod p).

If ar = as(mod gP~1) then

(3) lj(an) = Lj(az)(mod p) for1<j<p-2.
If ar = as(mod oP) then

(4) tp—1(an) = £p—1(az)(mod p).

If o generates G(Q(p) (C) : Qp)) and (7 = (" then

(5) li(@”) =14;(a)(mod p) for1<j<p-—1

PROOF. If a1 = ¢1(¢) and as = ¢2(() then ayas = ¢1({)p2((), and (1) follows
from the identity of formal power series

log (¢1(e*)p2(e?)) = log (¢1(e?)) + log (¢2(e?)).
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Then (2) follows from
0i((araz Naz) = €j(aras ') + £j(asz)(mod p).

As to (3), it is enough to show that if & = 1(mod P~!) then £;(a)) = 0(mod p) for
1<j<p—2 Put

p—2
— k
a = ag + T,
k=0

Then ap = 1(mod p), and ar = O(mod p) for 1 < k < p —2. We have a =
ao + Y- oak( —()F, s0 a = ¢(¢) with

p—2
x) =ap+ Z@k(l — )k
k=0

We have ¢(z) = 1(mod p), and ¢ (x) = 0(mod p) for n > 1. By lemma 11.27 we
have

l(a) =+ =Llp_2(a) = 0(mod p).

As to (4), since all derivatives of ¢(x) vanish modulo p then all derivatives of
log (¢(e*)) vanish modulo p at z = 0. If @ = 1(mod pP) then ap = 1(mod p?), so

we have )
p(1)—1 ag—1
lp_1(a) = PR 0(mod p).

As to (5), if @ = SP2hcP = $(¢) and €7 = (" then a® = Y P 2p("F =
$(C") = ¥(¢) where ¢(z) = ¢(z"). If log (¢p(e*)) = Do cnz", then log (¢(e?)) =
log (¢(e7%)) = oy cur™2™. Therefore

li(a®)=17li(a) for1<j<p-—2.

For j = p — 1, we have r»~! = 1(mod p) so we are claiming that £, 1(a%) =
lp—1(a)(mod p). Since all derivatives of log (¢(e*)) vanish modulo p at z = 0, this
reduces to
-1 ") —1
GRS NGO S TR

This completes the proof of lemma 11.29.
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LEMMA 11.30. If a is in W (1) and t1(«),...tp—1(a) are as in (11.9), then

tj(a) = tj(a)(mod p) for1<j<p-1L

PROOF. We have £;(uf) = ri¢;(u;)(mod p) for 1 < j < p—1 by lemma 11.29(5).
Also, we have u¢ = u! (mod @P) by lemma 11.18, so £;(u?) = £;(u} )(mod p) for
1 <j<p-—2bylemma 11.29(3) and for j = p — 1 by lemma 11.29(4). Therefore,
if £;(u;) # 0(mod p) then r* = r7(mod p), or i = j. Since u; = 1 — 7'(mod p'*!)
by lemma 11.18, we have

u; = (1— Wj)u?fll -..uy”' (mod p),

so £j(uj) = £;(1 — 7/)(mod p). Since 1 —m =1 — (1 — ()7, then we take ¢(z) =
1—(1—2)/. Then

ple®)=1—(1—e*) =1+ (=110 4 ...

SO

log ((e*)) = (—1)727 + ...
In this case we have ¢(1) =1, so (¢(1) — 1)/p = 0, and therefore

{s) = (1= ) = T5log(9(e))| = (~17sl(mod p)

7il(Oﬁ) oyl

Putting a = u cuy "y (mod pP), we have

Ui(@) = tj(a)l;(u;) = (—1)7j!t;(a)(mod p),
which proves the lemma.

We will be completely finished if we can compute £;(€) for 1 < j < p—2, since we
have already established that t,_1({) = 0 (lemma 11.23). The Bernoulli numbers

B, are defined by
e” —1 — B, 2¢
1 = ——
©8 ( z ) Z a al

a=1

The denominators of Bi, ..., Bp_s cannot be divisible by p.
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LEMMA 11.31. For1 < j <p— 2 we have
B.
t;(8) = —f(modp)

PrRoOOF. We have

G p ¢ 111 "
r=—mm= gm0 H; =—<p—1>!H%

k=1

where 7 = (1 + ¢ + -+ ¢* 1) /k is in W, (1). Since —(p — 1)! = 1(mod EP~1),
then by lemma 11.29(3) we have £;( — (p — 1)!) = £;(1) = 0, so

p—1

GE =D li(p) for1<j<p-2.
k=1

To compute £;(vx), we use ¢g(x) = (1+z + -+ 2 1) /k = k?:cj)'

kz __
o8 (9x(9) = log(e = 2—1)

eZ

ekr — 1 ef —1 =, B, a z
=log—— —log = ) k-1
Therefore for 1 < j < p — 2 we have

Ci(ve) = j—; log (¢r(e”))

SO

J « vj -1
Zk :I;r =71 = 0(mod p),
SO
1 B _ B
2183 )Z—(p—l)Tz—_(modp),

which proves the lemma.



