
CHAPTER XI

NORM RESIDUE SYMBOL FOR KUMMER EXTENSIONS

Throughout this chapter, p will denote a rational prime number; ℘ will denote a
prime of k, and ℘′ will denote a prime of an extension K of k. Let m be a positive
integer and let k contain the m-th roots of unity. The general m-power reciprocity
law for elements in k has been found to be
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where E contains all primes of k dividing m and all infinite primes, and elements α
and β of k are relatively prime to each other and to m. Our main objective will be

to compute the symbol
(

α,β
℘

)

p
for odd primes p in the case k = Q(ζ) where ζ is a

primitive p-th root of unity, obtaining the p-th power reciprocity law in the process.

Lemma 11.1. Suppose that k contains the m-th roots of unity and ℘ is an infinite
prime of k. Non-trivial norm residue symbols occur only if m = 2 and ℘ is real, in
which case we have
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℘

)

m

=

{

1 if α > 0 or β > 0,

−1 if α < 0 and β < 0.

Proof. If m > 2 then all infinite primes of k are complex because k contains
the m-th roots of unity.

Norm residue symbol for composite powers.

Lemma 11.2. Suppose that k contains the mn-th roots of unity, ℘ is an finite
prime of k and α and β are elements of k∗

℘. Let m and n be relatively prime. If
ma+ nb = 1 then
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124
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Proof. We can choose β0 in k∗ sufficiently close to β so that β0 'mn β. Then
β may be replaced by β0 in all norm residue symbol expressions, so we may as well
suppose that β is in k∗. For an integer s dividing mn, let σs be the norm residue
symbol automorphism.
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β
)

/k

℘

)

We have 1/mn = a/n + b/m, so mn
√
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√
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√
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. Since σm and σn are
restrictions of σmn to their respective subfields, then
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so
(

α, β

℘

)

mn

=
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.

Lemma 11.3. k℘ contains the (N℘− 1)-th roots of unity.

Proof. Let ζ be a primitive (N℘ − 1)-th root of unity. Then k℘(ζ)/k℘ is
unramified since ℘ does not divide N℘ − 1. Let ℘′ be the prime of k℘(ζ). In the
map O℘′ → O℘′/℘′, element ζ maps to an element of o℘/℘ since o℘/℘ is the
splitting field of xN℘−1 − 1. This shows that O℘′/℘′ = o℘/℘. Therefore f = 1, so
[k℘(ζ) : k℘] = ef = 1, and we have k℘(ζ) = k℘.

Lemma 11.4. Let V be the group of (N℘− 1)-th roots of unity in k℘. Then the
image of V in o℘/℘ is all of (o℘/℘)

∗
.

Proof. If v is in V and v 6= 1, then v is a root of xN℘−2 + · · · + x + x = 0.
If v = 1(mod ℘) then we would have N℘ − 1 = 0(mod ℘), which is impossible.
Therefore the kernel of V → (o℘/℘)

∗
is trivial, so the map is an isomorphism since

both V and (o℘/℘)
∗

have (N℘− 1) elements.

Lemma 11.5. Let π be an element of k∗
℘ such that ℘ = (π). For fixed π, every

element α of k∗
℘ has a unique representation as

α = πavu where v ∈ V and u ∈W℘(1).

Therefore k∗
℘ is a direct product 〈π〉VW℘(1).

Proof. Exponent a is determined by a = ord℘(α). Put α′ = α/πa. Then α′ is
in u℘. By lemma 11.4, there is a unique element v in V so that α′ = v(mod ℘).
Then u = α′/v is in W℘(1). Since α′ and v are uniquely determined then so is u.
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Lemma 11.6. If n is relatively prime to N℘ − 1 then V = V n and the map
x→ xn is an isomorphism of (o℘/℘)∗.

Proof. Let a and b be integers such that na+ (N℘− 1)b = 1. Then y → ya is
inverse to x→ xn, and we have V ⊃ V n ⊃ V na = V , so V = V n.

The case of powers relatively prime to ℘. Suppose that n = px where (p)
is the rational prime divisible by ℘ and m is relatively prime to p. Lemma 11.2
shows how computation of the norm residue symbol for mn-th powers is reduced
to separate computations for m-th powers and px-th powers. Lemma 11.7 gives an
explicit formula for the former case.

Lemma 11.7. Let π be an element of k∗
℘ such that ℘ = (π). Suppose that m is

relatively prime to ℘. If α = πavu and β = πbv′u′ as in lemma 11.5, then
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℘

)

m

=
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(v)−b N℘−1
m (v′)a N℘−1

m

Proof. Since ℘ does not divide m then we can apply lemma 10.9.
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We have u = 1(mod ℘) and u′ = 1(mod ℘), so both
(

u
℘

)

m
and

(

u′

℘

)

m
are trivial.

(

v
℘

)

m
is the unique (N℘−1)-th root of unity such that

(

v
℘

)

m
= v

N℘−1
m (mod ℘). But

v is an (N℘−1)-th root of unity, so
(

v
℘

)

m
= (v)

N℘−1
m , and likewise

(

v′

℘

)

m
= (v′)

N℘−1
m .

The case of px-th powers where ℘ divides (p). Take n = px where ℘ divides
(p). Then n is relatively prime to N℘ − 1. Group V is cyclic of order N℘ − 1, so
V n = V , and every element of V is a n-th power. Since every n-th power norm
residue symbol involving an element v in V is trivial, we have

(11.2)

(

α, β

℘

)

n

=

(

πavu, πbv′u′

℘

)

n

=

(

πau, πbu

℘

)

n

To compute (11.2), it is only necessary to assume that k contains the n-th roots of
unity.
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Lemma 11.8. Suppose that ℘ is a prime of k and (p) is the rational prime
that ℘ divides. Let n = px, and suppose that k contains the n-th roots of unity.
Then W℘(1)/W℘(1)n is the direct sum of d + 1 cyclic groups of order n, where
d = [k℘ : Q(p)].

Proof. Every element of W℘(1)/W℘(1)n has order dividing n, so the group is
the direct product of cyclic subgroups each having order dividing n. Let α map
to a generator of any one of these cyclic subgroups having order n′ = py. Then
y ≤ x, and αn′

is in W℘(1)n, so αn′

= βn for some element β in W℘(1). Suppose

that y < x. Then αpy

= (βpx−y

)py

, so α = βpx−y

ζ ′, where ζ′ is a py-th root of

unity. Since k contains the px-th roots of unity then ζ′ = ζpx−y

where ζ is some

px-th root of unity, and we have α = (βζ)px−y

. But α cannot be a p-th power, so
it impossible to have y < x. Therefore each cyclic subgroup in the direct product
has order exactly px. By lemma 11.5, u℘ is a direct product V W℘(1). Since N℘− 1
and n = px are relatively prime then V n = V . We therefore have

u℘

un
℘

=
VW℘(1)

VW℘(1)n
=

W℘(1)

VW℘(1)n ∩W℘(1)
=

W℘(1)

W℘(1)n
.

Since [k℘ : Q(p)] = d and n = px, we have |n|℘ =
∣

∣

∣
Nk℘/Q(p)

n
∣

∣

∣

p
= |nd|p = n−d. By

lemma 8.11, we have [u℘ : un
℘] = n|n|−1

℘ , so

[W℘(1) : W℘(1)n] = [u℘ : un
℘] = n(nd) = nd+1.

Therefore W℘(1)/W℘(1)n must be the product of d+ 1 cyclic groups of order n.

Definition. An element α in W℘(1) is n-primary if k℘( n
√
α)/k℘ is unramified.

Lemma 11.9. With the hypothesis of lemma 11.8, the image in W℘(1)/W℘(1)n

of the set of n-primary elements is a cyclic group of order n.

Proof. Since k∗
℘ is a direct product 〈π〉VW℘(1) and V = V n we have

k∗
℘

(k∗
℘)n

=
〈π〉 V W℘(1)

〈πn〉V nW℘(1)n
=

〈π〉
〈πn〉 × W℘(1)

W℘(1)n
.

By lemma 11.8, k∗
℘/(k

∗
℘)n is the direct sum of d+ 2 cyclic groups of order n, where

d = [k℘ : Q(p)]. Let β1, . . . βd+2 be a set of generators for k∗
℘/(k

∗
℘)n, and the βi

may be chosen to be elements of k∗. The βi are independent modulo n, so by
lemma 8.5 the extension k℘

(

n
√
β1, . . . ,

n
√

βd+2

)

of k℘ has degree nd+2, with Galois
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group isomorphic to the direct sum of the d + 2 Galois groups G(k℘( n
√
βi) : k℘),

where 1 ≤ i ≤ d + 2. Every extension of the form k℘( n
√
β) where β is in k∗

℘ is a

subfield of k℘

(

n
√
β1, . . . ,

n
√

βd+2

)

. Put K = k
(

n
√
β1, . . . ,

n
√

βd+2

)

. The kernel of

α→
(

α,K/k
℘

)

n
has index nd+2 in k∗

℘ and contains (k∗
℘)n. Since [k∗

℘ : (k∗
℘)n] = nd+2,

then the kernel is exactly (k∗
℘)n.

Let H be the image in G = G(k℘

(

n
√
β1, . . . ,

n
√

βd+2

)

: k℘) of the units u℘ of k℘.

An element β of k∗
℘ is in the fixed field of H if and only if

(

α,K/k
℘

)

n

n
√
β = n

√
β for

every α in u℘, which is if and only if
(

α,β
℘

)

n
= 1 for every α in u℘, which is if and

only if k℘( n
√
β)/k℘ is unramified.

The kernel of the homomorphism k∗
℘ → G/H is u℘(k∗

℘)n, so we have

G

H
=

k∗
℘

u℘(k℘)n
=

〈π〉VW℘(1)

VW℘(1)〈πn〉V nW℘(1)n
=

〈π〉VW℘(1)

〈πn〉VW℘(1)
=

〈π〉
〈πn〉 .

Therefore the fixed field of H is a cyclic extension of degree n and, by lemma 8.5,
is of the form k℘( n

√
γ2)/k℘ for some element γ2 of k∗

℘. By lemma 8.2, n is the
smallest positive value of x such that γx

2 'n 1. Let (γ2) = ℘c where c = nq+ r and
0 ≤ r < n. Put γ1 = γ2/π

qn. Then γ2 'n γ1, so the fixed field of H is k℘

(

n
√
γ1

)

,

and (γ1) = ℘r. The map α→
(

α,γ1

℘

)

n
is a homomorphism k∗

℘ → G(k℘( n
√
γ1) : k℘).

The kernel has index n and contains u℘(k∗
℘)n, so the kernel is exactly u℘(k∗

℘)n.
Since −1 is in u℘, we have

(

γ1, γ1

℘

)

n

=

(−γ1, γ1

℘

)

n

(−1, γ1

℘

)

n

= 1.

Therefore γ1 is in the kernel, so γ1 is in u℘(k∗
℘)n. This shows that r = 0, so γ1 is

in u℘. Put γ1 = δγ0 where δ is in V and γ0 is in W℘(1). Since V = V n, we have
γ1 'n γ0. Therefore the fixed field of H is k℘( n

√
γ

0
). Since γ0 'n γ1 'n γ2 then n

is the smallest positive value of x such that γx
0 'n 1.

If β is n-primary then β is in W℘(1) and k℘( n
√
β)/k℘ is unramified. Therefore β

is in the fixed field of H, so β is in k℘( n
√
γ

0
), and therefore β 'n γ

x
0 for some x by

lemma 8.3. Put β = αnγx
0 . Since γ0 and β are both in W℘(1) then αn = 1(mod ℘),

so α = 1(mod ℘) by lemma 11.6. We have shown that the image in W℘(1)/W℘(1)n

of an n-primary element is a coset (γ0)
xW℘(1)n and that n is the smallest positive

value of x such that γx
0 is in W℘(1)n. Therefore the image of the n-primary elements

is the cyclic group of order n generated by the image of γ0. This concludes the proof
of lemma 11.9.



XI. NORM RESIDUE SYMBOL FOR KUMMER EXTENSIONS 129

Lemma 11.10. With the hypothesis of lemma 11.8, choose a fixed element π so
that ℘ = (π). Put

Wπ =

{

α ∈W℘(1)

∣

∣

∣

∣

(

π, α

℘

)

n

= 1

}

.

Let γ0 in W℘(1) be a generator of group the n-primary elements modulo W℘(1)n

and let γ0 be the coset γ0W℘(1)n. Then W℘(1)/W℘(1)n is a direct product

W℘(1)

W℘(1)n
=

Wπ

W℘(1)n
× 〈γ0〉.

Proof. Suppose that α is n-primary and in Wπ. Then
(

β,α
℘

)

n
= 1 for every

element β of k∗
℘, and in particular for a set of generators β1, . . . , βd+2 generators of

k℘/(k
∗
℘)n. Therefore for 1 ≤ i ≤ d+2, the norm residue symbols

(

α,k℘( n
√

βi)/k℘

℘

)

n

are trivial, so

(

α,k℘( n
√

β1,..., n
√

βd+2)/k℘

℘

)

n

is trivial by lemma 8.5, and therefore α

is in (k∗
℘)n ∩ W℘(1). Then α = vnun with v in V and u in W℘(1). We have

vn = 1(mod ℘), so v = 1, and therefore α is in W℘(1)n. We have shown that
W℘(1)/W℘(1)n ∩ 〈γ0〉 is a trivial group.

Now suppose that α is an arbitrary element of W℘(1). It remains to show that
Wπ and γ0 generate W℘(1) modulo W℘(1)n. Since k℘( n

√
γ0) has degree n over k℘

then there exists an element β in k∗
℘ such that

(

β,γ0

℘

)

n
is a primitive n-th root of

unity. Let β = πbvu. Then
(

β,γ0

℘

)

n
=
(

π,γ0

℘

)b

n
, so

(

π,γ0

℘

)

n
must be a primitive n-th

root of unity. There exists an a so that
(

π,α
℘

)

n
=
(

π,γ0

℘

)a

n
. We have α = (αγ−a

0 )γa.

Then αγ−a
0 is in Wπ because

(

π,αγ−a

0

℘

)

n
=
(

π,α
℘

)

n

(

π,γ0

℘

)−a

n
= 1. This completes

the proof of the lemma.

The computation of the norm residue symbol for px-th powers has been reduced
to the following. An element α of k∗

℘ may be expressed as x = πavw where v is

in V and w is in W℘(1). Let w 'n uγa′

0 with u in Wπ . Likewise, let β in k∗
℘ be

expressed as β = πbv′w′ where v′ is in V and w′ 'n u
′γb′

0 with u′ in Wπ . Then

(

x, y

℘

)

n

=

(

πavuγa′

0 , π
bv′u′γb′

0

℘

)

n

=

(

π, π

℘

)ab

n

(

π, γ0

℘

)ab′

n

(

u, u′

℘

)

n

(

γ0, π

℘

)ba′

n
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Therefore
(

x, y

℘

)

n

=

(

π,−1

℘

)ab

n

(

π, γ0

℘

)ab′−ba′

n

(

u, u′

℘

)

n

The problems that remain are essentially two.

(1) Find a generator γ0 for the n-primary elements and calculate
(

π,γ0

℘

)

n
.

(2) Find a basis v1, . . . , vd of Wπ modulo W℘(1)n and calculate
(

vi,vj

℘

)

n
.

The p-primary elements for odd primes. We specialize to the case n = p
and p > 2. Let k = Q(ζ) where ζ is a primitive p-th root of unity. Then

[

k : Q
]

=

p−1. The prime (p) is completely ramified in k; if π = 1−ζ then (p) = ℘p−1 where
℘ = (π). We have

[

k℘ : Q(p)

]

= p−1 with ramification index e = p−1; since f = 1
then the rational integers 0, 1, . . . , p− 1 are a complete residue system for o℘/℘.

Lemma 11.11. [W℘(1) : W℘(k + 1)] = pk

Proof. Every element of W℘(1) may be uniquely represented modulo πk+1 by
1 + a1π + a2π

2 + · · · + akπ
k with coefficients ai belonging to a complete residue

system for o℘/℘. There are pk choices for the coefficients a1, . . . , ak.

Lemma 11.12. W℘(1)p = W℘(p+ 1)

Proof. Let b = ord℘(p). By lemma 4.13, every element x of k℘ such that
ord℘(x) > b/(p− 1) + ord℘(p) is the p-th power of some element y in k℘ such that
ord℘(y) > b/(p− 1). Since ord℘(p) = p− 1, then every x such that ord℘(x) > p is
the p-th power of some y such that ord℘(y) > 1, that is W℘(p+ 1) ⊂ W℘(2)p. Let
Vp = 〈ζ〉 be the group of p-power roots of unity. Since ζ = 1(mod ℘) then

W℘(p+ 1) ⊂W℘(2)p ⊂
(

W℘(2)Vp

)p ⊂W℘(1)p ⊂W℘(1)

By lemma 11.8 and lemma 11.11, subgroups W℘(p+1) and W℘(1)p both have index
pp in W℘(1), so the two must coincide.

Lemma 11.13. If element α of k℘ is in W℘(p) then
p
√

α−1
π is integral over o℘.

Proof. The element in question is a root of polynomial (pπ)−1
(

(πx+ 1)p − α
)

having coefficients in k℘, and

(πx+ 1)p − α

pπ
=
πp

pπ
xp +

(

p
1

)

πp−1

pπ
xp−1 + · · ·+

(

p
p−1

)

π

pπ
x+

1 − α

pπ
.

The leading coefficient is a unit and the other coefficients except possibly the con-
stant term are elements of o℘. If α = 1(mod ℘p) then the constant term is also in
o℘.
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Lemma 11.14. Let α of k℘ be in W℘(1). Then α is p-primary if and only if α
is in W℘(p).

Proof. Let P be the group of p-primary elements in W℘(1). Then we have
[W℘(1) : W℘(1)p] = pp and [P : W℘(1)p] = p by lemma 11.8 and lemma 11.9,
so [W℘(1) : P ] = pp−1. Also we have [W℘(1) : W℘(p)] = pp−1 by lemma 11.11,
so it will be enough to show that W℘(p) is contained in P , i.e. k℘( p

√
α)/k℘ is

unramified if α = 1(mod ℘p). Let τ be an automorphism in the inertial subgroup
of G(k℘( p

√
α) : k℘), and let τ ( p

√
α ) = ζ ′ p

√
α where ζ′ is a p-th root of unity. (We

need to show that ζ′ must be 1.) Let ℘′ be the prime of k℘( p
√
α) dividing ℘. Then

τ(γ) = γ(mod ℘′) for every γ that is integral over o℘. The element ( p
√
α− 1)/π is

integral over o℘ by lemma 11.13, so we have

ζ ′ p
√
α− 1

π
=

p
√
α− 1

π
(mod ℘′).

Therefore
(ζ ′ − 1) p

√
α

π
= 0(mod ℘′).

If ζ ′ 6= 1 then (ζ′ − 1)/π is a unit, but that is impossible since p
√
α is also a unit.

This shows that ζ′ = 1, the inertial group is trivial, and k℘( p
√
α)/k℘ is unramified,

which concludes the proof.

Lemma 11.15. With π = 1 − ζ we have

ζi = 1 − iπ(mod ℘2) and
πp−1

p
= −1(mod ℘).

Proof. Since ζ = 1(mod ℘) then, for 1 ≤ i < p, we have

1 − ζi

1 − ζ
= 1 + ζ + · · · + ζi−1 = i(mod ℘),

so 1 − ζi = iπ(mod ℘2), which establishes the first conclusion. For the second,
substitute x = 1 in xp−1 + · · ·+ x+ 1 = (x− ζ)(x− ζ2) . . . (x− ζp−1) to obtain

(11.3) p = (1 − ζ)(1 − ζ2) . . . (1 − ζp−1).

Therefore

πp−1

p
=

(1 − ζ)(1 − ζ) . . . (1 − ζ)

(1 − ζ)(1 − ζ2) . . . (1 − ζp−1)
=

1

(p− 1)!
(mod ℘).

Since (p− 1)! = −1(mod p) then the second conclusion follows.
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Lemma 11.16. If α in k℘ is a p-primary element, there is a rational integer a
such that 0 ≤ a < p and α = 1 + apπ

(

mod ℘p+1
)

. With π = 1 − ζ, we have

(

π, α

℘

)

p

= ζa.

Proof. Let α be p-primary. There is an integer a so that α = 1 + apπ modulo
℘p+1 since the integers 0, 1, . . . , p− 1 are a complete residue system for o℘/℘. We
can choose an element α′ in k that is sufficiently close to α so that α′ 'p α and
α′ = α

(

mod ℘p+1
)

, so we may assume that α is in k. In that case, put K = k
(

p
√
α
)

and let ℘′ be a prime of K dividing ℘. If α is p-primary then ℘ is unramified in K

so in the completion we have ℘′ = ℘O℘′ and therefore ℘′ = (π). Put

p
√
α = 1 + bπ where b ∈ O℘′ .

Then

α = (1 + bπ)p = 1 + pbπ + bpπp
(

mod ℘′p+1
)

.

By lemma 11.15, πp = −pπ
(

mod ℘p+1
)

, so πp = −pπ
(

mod ℘′p+1)
, and

α = 1 + pbπ − bppπ
(

mod ℘′p+1
)

.

Therefore we have

(11.4) a = b− bp(mod ℘′).

Let
(

π,α
℘

)

p

p
√
α = ζa′

p
√
α. Since K/k is unramified then we have

(

π,K/k

℘

)

= φK/k

(

i(π, ℘,k)
)

=

(

K/k

℘

)

.

and therefore for any β in O℘′ we have

(

π,K/k

℘

)

β = βN℘ = βp(mod ℘′).

Choose β = ( p
√
α− 1)/π, which is in O℘′ by lemma 11.13. Then

(

π,K/k

℘

)

β =
ζa′

p
√
α− 1

π
,
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so
ζa′

p
√
α− 1

π
=

(

p
√
α− 1

π

)p

= bp(mod ℘′).

We have ζa′

= 1 − a′π(mod ℘2) by lemma 11.15, so

(1 − a′π)(1 + bπ) − 1

π
= bp(mod ℘′).

This shows that −a′ + b = bp(mod ℘′), or a′ = b − bp(mod ℘′). Comparison with
(11.4) shows a = a′(mod ℘′). Both a and a′ are rational integers, so have

a = a′(mod p),

which completes the proof of the lemma.

We have solved the first basic problem for prime p. The generator of the p-
primary elements modulo W℘(1)p = W℘(p+ 1) is γ0 = 1 + pπ, and

(

π, γ0

℘

)

p

= ζ where π = 1 − ζ.

Generators of Wπ/W (1)p and the p-th power reciprocity law. If we can
find a set of generators u1, . . . up−1 forW℘(1)/W℘(p), then every element α of W℘(1)

will be expressible as α = ut1
1 . . . u

tp−1

p−1 γ
t0
0 (mod ℘p+1), so if

(

π,ui

℘

)

= ζci then we

will have

Wπ =
{

α ∈ W℘(1) | c1t1 + . . . cp−1tp−1 + t0 = 0(mod p)
}

.

The constants ci will be determined in the last section.

Lemma 11.17. If r is a primitive root modulo p then

ri

p−1
∏

k=1
k 6=i

(ri − rk) = −1(mod p).

Proof. Since r, r2, . . . , rp−1 form a reduced residue system modulo p, then

p−1
∏

k=1

(x− rk) = xp−1 − 1(mod p).
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Then

d

dx

p−1
∏

k=1

(x− rk) =
d

dx

(

xp−1 − 1
)

(mod p),

or
p−1
∑

`=1

p−1
∏

k=1
k 6=`

(x− rk) = (p− 1)xp−2(mod p).

Set x = ri and multiply both sides by ri to obtain the desired result.

ri

p−1
∏

k=1
k 6=i

(ri − rk) = (p− 1)ri(p−1) = −1(mod p).

Lemma 11.18. Let σ be a generator of G(k℘ : Q(p)) and let ζσ = ζr. Then r is
a primitive root modulo p. For i = 1, . . . , p− 1, set

ui = (1 − πi)−ri(σ−r)(σ−r2)...(σ−ri−1)(σ−ri+1)...(σ−rp−1)

Then
uσ

i 'p u
ri

i and ui = 1 − πi(mod ℘i+1).

Proof. If f(x) and g(x) are polynomials in Z[x] and f(x) = g(x)(mod p) then
αf(σ) 'p α

g(σ) for α in k∗. Since f(x) = (x−r)(x−r2) . . . (x−rp−1) is a polynomial
of degree p− 1 having roots 1, 2, . . . , p− 1, modulo p, then f(x) = xp−1 − 1(mod p).

Therefore αf(σ) 'p 1. We have uσ−ri

i = (1 − πi)−rif(σ) 'p 1, so uσ
i 'p u

ri

, which
is the first part of the lemma. For the second part, we have π = 1 − ζ, so

πσ = 1 − ζσ = 1 − ζr =
(

1 − (1 − π)r
)

= rπ(mod ℘2).

Put πσ = rπ + βπ2. Then (πσ)i = (rπ + βπ2)i = riπi(mod ℘i+1), so

(πi)σ = riπi(mod ℘i+1).

Before proceeding further, we make the following observation. If j1, . . . , js+1 are
any given integers, then we have

(

1 + ri(ri − rj1) . . . (ri − rjs)πi
)σ−rjs+1

=
(

1 + ri(ri − rj1) . . . (ri − rjs)πi
)σ (

1 + ri(ri − rj1) . . . (ri − rjs)πi
)−rjs+1

=
(

1 + ri(ri − rj1) . . . (ri − rjs)riπi
)

(

1 − ri(ri − rj1) . . . (ri − rjs)rjs+1πi
)−1

(mod ℘i+1)

=
(

1 + ri(ri − rj1) . . . (ri − rjs)(ri − rjs+1)πi
)

(mod ℘i+1)
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To compute ui, we start from (1 − πi)−ri

= 1 + riπi(mod ℘i+1), then successively
apply σ − r, σ − r2, up to σ − rp−1, but omit σ − ri. By applying the above
observation at each step, we arrive at

ui =
(

1 + ri(ri − r) . . . (ri − ri−1)(ri − ri+1) . . . (ri − rp−1)πi
)

(mod ℘i+1).

By lemma 11.17, we obtain ui = 1 − πi(mod ℘i+1), which completes the proof.

Lemma 11.19. For 1 ≤ i ≤ p− 1 and 1 ≤ j ≤ p− 1, we have

(

ui, uj

℘

)

p

=

{

ζ−i if i+ j = p

0 if i+ j 6= p

Proof. We apply automorphisms on the left in this proof, so we have σζ = ζr

and σui 'p u
ri

i . First, we have

(11.5)

(

σui, σuj

℘

)

p

=

(

uri

i , u
rj

j

℘

)

p

=

(

ui, uj

℘

)ri+j

p

.

We also have
(

σui, σuj

℘

)

p

p
√
σuj =

(

σui,k
(

p
√
σuj

)

/k

℘

)

p

p
√
σuj.

Automorphism σ : k → k may be extended to an isomorphism σ : k
(

p
√
uj

)

→
k
(

p
√
σuj

)

. (In the notation of lemma 10.43, we have K = k
(

p
√
uj

)

, K′ = k
(

p
√
σuj

)

,

k′ = k, and ℘′ = ℘.) Since
(

σ p
√
uj

)p
= σuj, then σ p

√
uj is a root of xp−σuj , and we

may write σ p
√
uj = p

√
σuj. (The particular choice of p

√
σuj determines the extension

of σ.) Using the notation of lemma 10.43, we have
(

σui,k
(

p
√
σuj

)

/k

℘

)

=

(

u′i,K
′/k′

℘′

)

= σ

(

ui,K/k

℘

)

σ−1 = σ

(

ui,k
(

p
√
uj

)

/k

℘

)

σ−1

Therefore
(

σui,k
(

p
√
σuj

)

/k

℘

)

p
√
σuj = σ

(

ui,k
(

p
√
uj

)

/k

℘

)

σ−1
(

σ p
√
uj

)

= σ

(

(

ui, uj

℘

)

p
√
uj

)

=

(

ui, uj

℘

)r

p

p
√
σuj
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or
(

σui, σuj

℘

)

p

=

(

ui, uj

℘

)r

p

Comparison with (11.5) shows that

(

ui, uj

℘

)r

p

=

(

ui, uj

℘

)ri+j

p

If
(

ui,uj

℘

)

6= 1, then we must have r = ri+j(mod p), so 1 = i+ j(mod p− 1). For i

and j in the range 1 ≤ i ≤ p − 1 and 1 ≤ j ≤ p − 1, the only value of i + j which
satisfies the condition 1 = i+ j(mod p− 1) is i+ j = p. So far, we have established
that

(

ui, uj

℘

)

p

= 0 if i+ j 6= p.

We need to compute
(

ui,up−i

℘

)

p
. Since uk = 1 − πk(mod ℘k+1) for 1 ≤ k < p, and

γ0 = 1 + pπ, then we can find integers ak for i + 1 ≤ k ≤ p such that 0 ≤ ak < p
and

1 − πi = uiu
ai+1

i+1 . . . u
ap−1

p−1 γ
ap

0 (mod ℘p+1).

Likewise, we can find integers b` for p− i+ 1 ≤ ` ≤ p such that 0 ≤ b` < p and

1 − πp−i = up−iu
bp−i+1

p−i+1 . . . u
bp−1

p−1 γ
bp

0 (mod ℘p+1).

Since
(

ui,uj

℘

)

p
= 0 unless i+ j = p, and since γ0 is p-primary, we have

(11.6)

(

1 − πi, 1 − πp−i

℘

)

p

=

(

uiu
ai+1

i+1 . . . u
ap−1

p−1 γ
ap

0 , up−iu
bp−i+1

p−i+1 . . . u
bp−1

p−1 γ
bp

0

℘

)

p

=

(

ui, up−i

℘

)

p

.

The problem now is to compute
(

1−πi,1−πp−i

℘

)

p
. Suppose that α+ β = γ, and put

µ = α/γ. Then 1 − µ = β/γ. By lemma 10.6(f), we have

1 =

(

1 − µ, µ

℘

)

p

=

(

β
γ ,

α
γ

℘

)

p

=

(

β, α

℘

)

p

(

β, γ

℘

)−1

p

(

γ, α

℘

)−1

p

(

γ, γ

℘

)

p
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Since
(

γ,γ
℘

)

p
= 1 for p > 2, we have

(

β, α

℘

)

p

=

(

β, γ

℘

)

p

(

γ, α

℘

)

p

.

Choose α = πp−i(1 − πi) and β = 1 − πp−i. Then γ = 1 − πp, and we have
(

1 − πp−i, πp−i(1 − πi)

℘

)

p

=

(

1 − πp−i, 1 − πp

℘

)

p

(

1 − πp, πp−i(1 − πi)

℘

)

p

.

Apply lemma 10.6(f) to the left side, and apply the fact that 1 − πp is p-primary
(annihilates units) to the right to obtain

(

1 − πp−i, 1 − πi

℘

)

p

=

(

1 − πp, πp−i

℘

)

p

.

We have 1 − πp = 1 + pπ(mod ℘p+1) by lemma 11.15, so
(

1 − πi, 1 − πp−i

℘

)

p

=

(

πp−i, 1 + pπ

℘

)

p

.

Apply (11.6) on the left side, and apply lemma 11.16 on the right to obtain
(

ui, up−i

℘

)

p

= ζp−i = ζ−i.

The completes the proof of lemma 11.19.

Theorem 11.20 - reciprocity law for odd prime powers. If α and β are
elements of W℘(1), then let ai and bi (1 ≤ i < p) be integers such that 0 ≤ ai < p
and 0 ≤ bi < p and

α = ua1
1 . . . u

ap−1

p−1 (mod ℘p) and β = ub1
1 . . . u

bp−1

p−1 (mod ℘p).

Then
(

α

β

)

p

(

β

α

)−1

p

= ζ−
∑

p−1

i=1
iaibp−i .

Proof. Since α and ua1
1 . . . u

ap−1

p−1 differ only by a factor that is p-primary, and

likewise for β and ub1
1 . . . u

bp−1

p−1 , then we have

(

α

β

)

p

(

β

α

)−1

p

=

(

α, β

℘

)

p

=

p−1
∏

i=1

p−1
∏

j=1

(

ui, uj

℘

)aibj

p

=

p−1
∏

i=1

(

ui, up−i

℘

)aibp−i

p

=

p−1
∏

i=1

ζ−iaibp−i = ζ−
∑

p−1

i=1
iaibp−i
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Computation of symbols
(

π,ui

℘

)

p
.

Lemma 11.21.
(

p, ui

℘

)

p

= 1 for i = 1, . . . , p− 1

Proof. By lemma 11.18, we have

(10.7)

(

p, σui

℘

)

p

=

(

p, uri

i

℘

)

p

=

(

p, ui

℘

)ri

p

.

We can compute
(

p,σui

℘

)

p
in another way using lemma 10.43. Proceeding as in the

proof of lemma 11.19, we have p
√
σui = σ p

√
ui and

(

p,k( p
√
σui)/k

℘

)

p

= σ

(

p,k( p
√
ui)/k

℘

)

p

σ−1,

so
(

p,k( p
√
σui)/k

℘

)

p

p
√
σui = σ

(

p,k( p
√
ui)/k

℘

)

p

p
√
ui.

Therefore
(

p, σui

℘

)

p

p
√
σui = σ

((

p, ui

℘

)

p

p
√
ui

)

=

(

p, ui

℘

)r

p

p
√
σui.

Comparison with (10.7) shows that
(

p,ui

℘

)r

p
=
(

p,ui

℘

)ri

p
. If

(

p,ui

℘

)

p
6= 1 then we must

have r = ri(mod p), or i = 1.
It remains to prove the lemma in the case i = 1. We have 1 − π = ζ, and by

lemma 11.17 with i = 1 we have r(r − r2) . . . (r − rp−1) = −1(mod p), so

(10.8) u1 = ζ−r(σ−r2)...(σ−rp−1) = ζ−r(r−r2)...(r−rp−1

) = ζ.

We have p = (1− ζ)(1− ζ2) . . . (1− ζp−1), so the lemma is proved if
(

1−ζj ,ζ
℘

)

p
= 1

for 1 ≤ j < p. For each j there is a j′ so that jj′ = 1(mod p), and

(

1 − ζj , ζ

℘

)

p

=

(

1 − ζj , ζjj′

℘

)

p

=

(

1 − ζj , ζj

℘

)j′

p

= 1.

This completes the proof of the lemma.
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Lemma 11.22. Put ξ = −πp−1

p . Then

(

π, ui

℘

)

p

=

(

ξ, ui

℘

)

p

for 1 ≤ i < p.

Proof. Since p is odd then −1 = (−1)p, so by lemma 11.21 we have

(

π, ui

℘

)

p

=

(

πp−1, ui

℘

)−1

p

=

(−πp−1/p, ui

℘

)−1

p

=

(

ξ, ui

℘

)−1

p

,

which proves the lemma.

For any α in Wπ(1), let t1(α), . . . , tp−1(α) be the unique integers satisfying

(11.9) α = u
t1(α)
1 . . . u

tp−1α
p−1 (mod ℘p) and 0 ≤ ti(α) < p

Then

(11.10)

(

ξ, ui

℘

)

p

=

(

u
tp−i(ξ)
p−i , ui

℘

)

p

= ζitp−i(ξ).

The problem is to compute t1(ξ), . . . , tp−1(ξ) for 1 ≤ i ≤ p−2, since the next lemma
shows that tp−1(ξ) = 1.

Lemma 11.23.
(

ξ, u1

℘

)

p

= 1, or tp−1(ξ) = 0.

Proof. By (11.3) and (11.8) we have

(

ξ, ui

℘

)

p

=

(−πp−1p−1, ui

℘

)

p

=

(−1, ζ

℘

)

p

(

1 − ζ, ζ

℘

)p−1

p

p−1
∏

j=1

(

1 − ζj , ζ

℘

)

p

We have −1 = (−1)p, and
(

1−ζj ,ζ
℘

)

p
= 1 was shown in the proof of lemma 11.21.
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Kummer’s logarithmic differential quotient for p > 2. Every element α in
o℘ is a linear combination of 1, ζ, . . . , ζp−2 with coefficients in Z(p). Suppose that
φ(x) and ψ(x) are polynomials over Z(p) such that α = φ(ζ) = ψ(ζ). Then ζ is a
root of φ(x)−ψ(x), so φ(x)−ψ(x) is divisible by the minimal polynomial of ζ over
Z(p), which is f0(x) = xp−1 + · · ·+ x+ 1 because [Q(2)(ζ) : Q(2)] = p− 1. Let η(x)
be a polynomial with coefficients in Z(p) such that

φ(x) − ψ(x) = f0(x)η(x).

Applying formal differentiation, we obtain

(11.11) φ(n)(x) − ψ(n)(x) =
n
∑

k=0

(

n

k

)

f
(k)
0 (x)η(n−k)(x) for 0 ≤ n ≤ p− 1

as an identity of polynomials over Z(p).

Lemma 11.24. Let f0(x) = xp−1 + · · · + x+ 1. Then

f
(k)
0 (1) = 0(mod p) for 0 ≤ k ≤ p− 2

and
f

(p−1)
0 (1) = −1(mod p).

Proof. Both sides of the identity

(p− 1)!f0(x) =

p−1
∑

k=0

f
(k)
0 (1)

(p− 1)!

k!
(x− 1)k

are polynomials with integer coefficients, and f
(k)
0 (1) and (p − 1)!/k! are integers.

We have (x− 1)f0(x) = xp − 1 = (x − 1)p(mod p), so f0(x) = (x− 1)p−1(mod p).
Therefore

(p− 1)!(x− 1)p−1 =

p−1
∑

k=0

f
(k)
0 (1)

(p− 1)!

k!
(x− 1)k(mod p)

The coefficients of (x− 1)k for 0 ≤ k ≤ p− 1 must be identical on both sides, so

f
(k)
0 (1) = 0(mod p) for 0 ≤ k ≤ p− 2,

and
f

(p−1)
0 (1) = (p− 1)! = −1(mod p).
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Lemma 11.25. If α is an element of Q(p)(ζ) and α = φ(ζ) = ψ(ζ) where φ(x)
and ψ(x) are polynomials with coefficients in Z(p), then

φ(n)(1) − ψ(n)(1) = 0(mod p) for 0 ≤ n ≤ p− 2

and

φ(p−1)(1) − ψ(p−1)(1) = −φ(1) − ψ(1)

p
(mod p)

Proof. The result for 0 ≤ n ≤ p− 2 is obtained by setting x = 1 in (11.11) and
applying lemma 11.24. For n = p− 1 we have

φ(p−1)(1) − ψ(p−1)(1) = f
(p−1)
0 (1)η(1) = −η(1)(mod p).

We have φ(1) − ψ(1) = f0(1)η(1). Since f0(1) = p then φ(1) − ψ(1) is divisible by
p and η(1) =

(

φ(1) − ψ(1)
)

/p, which gives the desired result for n = p− 1.

Lemma 11.26. Suppose that α is in W℘(1) and α = φ(ζ) = ψ(ζ). Then we have
1 = φ(1) = ψ(1)(mod 0), and

φ(n)(1) = ψ(n)(1)(mod p) for 0 ≤ n < p− 1

and

φ(p−1)(1) +
φ(1) − 1

p
= ψ(p−1)(1) +

ψ(1) − 1

p
(mod p)

Proof. Since α = 1(mod ℘) and ζ = 1(mod ℘) then we have 1 = φ(1) =
ψ(1)(mod ℘). Therefore 1 = φ(1) = ψ(1)(mod p), so φ(1) − 1 and ψ(1) − 1 are
divisible by p. The results now follow immediately from lemma 11.25.

We consider the formal power series F (z) = log
(

φ(ez)
)

.

F (z) = log
(

φ(1)
)

+
φ′(1)

φ(1)
z +

(

φ′′(1) + φ′(1)
)

φ(1) − φ′(1)2

φ(1)2
z2 + . . .

If φ(1) is in W℘(1) then log
(

φ(1)
)

is defined, but we are actually interested only in
coefficients of zn for 1 ≤ n ≤ p− 1.
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Lemma 11.27.

dn

dzn
F (z) =

φ(n)(ez)enz

φ(ez)
+Rn(z)

where Rn(z) is a rational expression in ez, φ(ez), φ′(ez), . . . , φ(n−1)(ez). The nu-
merator of Rn(z) is a sum of terms each of which is divisible by at least one of
φ′(ez), . . . , φ(n−1)(ez), and the denominator is a power of φ(ez).

Proof. Put w = ez, u0 = φ(ez), and ui = φ(i)(ez) for i ≥ 0. Then w′ = w and
u′i = ui+1w for i ≥ 0. We have F (z) = log(u0), so dF (z)/dz = u1w/u0. Therefore
R1(z) = 0, so the conclusion holds for n = 1. For n = 2, we have

d2

dz2
F (z) =

u2w
2

u0
+
u1w

u0
− u2

1w
2

u2
0

=
u2w

2

u0
+
u1u0w − u2u1w

2

u2
0

so every term of the numerator of R2(z) is divisible by u1.
Assume that the lemma is true for n. Then

dn

dzn
F (z) =

unw
n

u0
+Rn(z)

and

Rn(z) =
S1u1 + · · ·+ Sn−1un−1

ukn

0

where S1(z), . . . Sn−1(z) are polynomials in w, u0, . . . , un−1. We have

d

dz
Rn(z) =

∑n−1
j=1

(

(

S′
juj + Sjuj+1w

)

ukn

0 − knSjuju
kn−1
0 u1w

)

u2kn

0

and every term of the numerator is divisible by at least one of u1, . . . , un. Then

dn+1

dzn+1
F (z) =

=
un+1w

n+1

u0
+
nunw

n

u0
− unu1w

n+1

u2
0

+
d

dz
Rn(z) =

un+1w
n+1

u0
+Rn+1(z)

We see that Rn+1(z) is a rational expression in w, u0, u1 . . . , un with denominator

u2kn

0 , and every term of the numerator contains at least one factor from the list
u1, . . . , un, and the conclusion therefore follows.
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Lemma 11.28. If α = φ(ζ) is in W℘(1), define `n(α) by

`n(α) =















dn

dzn
F (0) for 1 ≤ n ≤ p− 2

d(p−1)

dz(p−1)
F (0) +

φ(1) − 1

p
for n = p− 1.

Then `n(α) depends only on α and not on φ(x) for 1 ≤ n ≤ p− 1.

Proof. By lemma 11.27, dn

dznF (0) = φ(n)(1)
φ(1)

+ Rn(0), where Rn(0) is a rational

expression in 1, φ(1), . . . , φn−1(1) with denominator a power of φ(1). By lemma
11.26, φ(1) = 1(mod p) and `1(α), . . . , `p−2(α) depend modulo p only on α and not
on φ(x). For n = p− 1, we have

`p−1(α) = φ(p−1)(1) +
φ(1) − 1

p
+ Rp−1(0)(mod p).

By lemma 11.26, this expression depends modulo p only on α and not on φ(x).

lemma 11.29. For α1 and α2 in W℘(1), we have

`j(α1α2) = `j(α1) + `j(α2)(mod p),(1)

`j(α1α
−1
2 ) = `j(α1) − `j(α2)(mod p).(2)

If α1 = α2(mod ℘p−1) then

(3) `j(α1) = `j(α2)(mod p) for 1 ≤ j ≤ p− 2.

If α1 = α2(mod ℘p) then

(4) `p−1(α1) = `p−1(α2)(mod p).

If σ generates G(Q(p)(ζ) : Q(p)) and ζσ = ζr then

(5) `j(α
σ) = rj`j(α)(mod p) for 1 ≤ j ≤ p− 1

Proof. If α1 = φ1(ζ) and α2 = φ2(ζ) then α1α2 = φ1(ζ)φ2(ζ), and (1) follows
from the identity of formal power series

log
(

φ1(e
z)φ2(e

z)
)

= log
(

φ1(e
z)
)

+ log
(

φ2(e
z)
)

.
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Then (2) follows from

`j
(

(α1α
−1
2 )α2

)

= `j(α1α
−1
2 ) + `j(α2)(mod p).

As to (3), it is enough to show that if α = 1(mod ℘p−1) then `j(α) = 0(mod p) for
1 ≤ j ≤ p− 2. Put

α = a0 +

p−2
∑

k=0

akπ
k.

Then a0 = 1(mod p), and ak = 0(mod p) for 1 ≤ k ≤ p − 2. We have α =

a0 +
∑p−2

k=0 ak(1 − ζ)k, so α = φ(ζ) with

φ(x) = a0 +

p−2
∑

k=0

ak(1 − x)k

We have φ(x) = 1(mod p), and φ(n)(x) = 0(mod p) for n ≥ 1. By lemma 11.27 we
have

`1(α) = · · · = `p−2(α) = 0(mod p).

As to (4), since all derivatives of φ(x) vanish modulo p then all derivatives of
log
(

φ(ez)
)

vanish modulo p at z = 0. If α = 1(mod ℘p) then a0 = 1(mod p2), so
we have

`p−1(α) =
φ(1) − 1

p
=
a0 − 1

p
= 0(mod p).

As to (5), if α =
∑p−2

k=0 bkζ
k = φ(ζ) and ζσ = ζr then ασ =

∑p−2
k=0 bkζ

rk =

φ(ζr) = ψ(ζ) where ψ(x) = φ(xr). If log
(

φ(ez)
)

=
∑∞

n=0 cnz
n, then log

(

ψ(ez)
)

=

log
(

φ(erz)
)

=
∑∞

n=0 cnr
nzn. Therefore

`j(α
σ) = rj`j(α) for 1 ≤ j ≤ p− 2.

For j = p − 1, we have rp−1 = 1(mod p) so we are claiming that `p−1(α
σ) =

`p−1(α)(mod p). Since all derivatives of log
(

φ(ez)
)

vanish modulo p at z = 0, this
reduces to

φ(x) − 1

p

∣

∣

∣

∣

x=1

=
φ(xr) − 1

p

∣

∣

∣

∣

x=1

(mod p).

This completes the proof of lemma 11.29.
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Lemma 11.30. If α is in W℘(1) and t1(α), . . . tp−1(α) are as in (11.9), then

tj(α) =
(−1)j−1

j!
`j(α)(mod p) for 1 ≤ j ≤ p− 1.

Proof. We have `j(u
σ
i ) = rj`j(ui)(mod p) for 1 ≤ j ≤ p−1 by lemma 11.29(5).

Also, we have uσ
i = uri

i (mod ℘p) by lemma 11.18, so `j(u
σ
i ) = `j(u

ri

i )(mod p) for
1 ≤ j ≤ p− 2 by lemma 11.29(3) and for j = p− 1 by lemma 11.29(4). Therefore,
if `j(ui) 6= 0(mod p) then ri = rj(mod p), or i = j. Since ui = 1 − πi(mod ℘i+1)
by lemma 11.18, we have

uj = (1 − πj)u
aj+1

j+1 . . . u
ap−1

p−1 (mod p),

so `j(uj) = `j(1 − πj)(mod p). Since 1 − πj = 1 − (1 − ζ)j , then we take φ(x) =
1 − (1 − x)j . Then

φ(ez) = 1 − (1 − ez)j = 1 + (−1)j−1zj + . . .

so
log
(

φ(ez)
)

= (−1)jzj + . . .

In this case we have φ(1) = 1, so
(

φ(1) − 1
)

/p = 0, and therefore

`j(uj) = `j(1 − πj) =
dj

dzj
log
(

φ(ez)
)

∣

∣

∣

∣

z=0

= (−1)jj!(mod p).

Putting α = u
t1(α)
1 . . . u

tp−1(α)
p−1 (mod ℘p), we have

`j(α) = tj(α)`j(uj) = (−1)jj!tj(α)(mod p),

which proves the lemma.

We will be completely finished if we can compute `j(ξ) for 1 ≤ j ≤ p−2, since we
have already established that tp−1(ξ) = 0 (lemma 11.23). The Bernoulli numbers
Ba are defined by

log

(

ez − 1

z

)

=

∞
∑

a=1

Ba

a

za

a!

The denominators of B1, . . . , Bp−2 cannot be divisible by p.
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Lemma 11.31. For 1 ≤ j ≤ p− 2 we have

`j(ξ) = −Bj

j
(mod p)

Proof. We have

ξ−1 = − p

πp−1
= −

p−1
∏

k=1

1 − ζk

1 − ζ
= −(p− 1)!

p−1
∏

k=1

1

k

1 − ζk

1 − ζ
= −(p− 1)!

p−1
∏

k=1

γk

where γk = (1 + ζ + · · · + ζk−1)/k is in W℘(1). Since −(p − 1)! = 1(mod ℘p−1),
then by lemma 11.29(3) we have `j

(

− (p− 1)!
)

= `j(1) = 0, so

`j(ξ
−1) =

p−1
∑

k=1

`j(γk) for 1 ≤ j ≤ p− 2.

To compute `j(γk), we use φk(x) = (1 + x+ · · ·+ xk−1)/k = xk−1
k(x−1)

.

log
(

φk(ez)
)

= log

(

ekz − 1

kz

z

ez − 1

)

= log
ekz − 1

kz
− log

ez − 1

z
=

∞
∑

a=1

Ba

a
(ka − 1)

za

a!

Therefore for 1 ≤ j ≤ p− 2 we have

`j(γk) =
dj

dzj
log
(

φk(ez)
)

∣

∣

∣

∣

z=0

=
Bj

j
(kj − 1) for 1 ≤ j ≤ p− 2,

so

`j(ξ
−1) =

p−1
∑

k=1

Bj

j
(kj − 1).

If r is a primitive root modulo p and 1 ≤ j ≤ p− 2, then

p−1
∑

ν=1

kj =

p−1
∑

ν=1

rνj =
rpj − 1

rj − 1
= 0(mod p),

so

`j(ξ
−1) = −(p− 1)

Bj

j
=
Bj

j
(mod p),

which proves the lemma.


