
CHAPTER X

NORM RESIDUE SYMBOL

Let k be an algebraic number field and let p be a prime of k. We can embed k∗p
in Ik by α → i(α, p,k), where

i(α, p,k) =

{

α at prime p of k

1 at other primes of k.

Note that if ℘ is a prime of K that divides p and α is in K∗
℘, then

(10.1) NK/k

(

i(α, ℘,K)
)

= i
(

NK℘/kp
α, p,k

)

If K/k is an abelian extension then α → φK/k

(

i(α, p,k)
)

is a homomorphism of k∗
p

to G(K : k). Define the norm residue symbol by

(

α,K/k

p

)

= φK/k

(

i(α, p,k)
)

.

If p is finite and not ramified in K, then the norm residue and Artin symbols are
related by

(10.2)

(

α,K/k

p

)

=

(

K : k

p

)a

if (α) = pa.

If i is an idele in Ik then φK/k

(

i(α, p,k)
)

can be non-trivial only at the finite
number of primes that are infinite or ramified or for which |i|p 6= 1, so we may write

φK/k(i) =
∏

p

φK/ki(ip, p,k) =
∏

p

(

ip,K/k

p

)

Since α in k∗ is in the kernel of φK/k, we have the general reciprocity law.

(10.3)
∏

p

(

α,K/k

p

)

= 1 for α ∈ k∗
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102 X. NORM RESIDUE SYMBOL

Lemma 10.1. If ℘ is a prime of K dividing p then
(

α,K/k
p

)

is in the splitting

group of ℘. Therefore, the norm residue symbol maps k∗
p to G(K℘ : kp).

Proof. Let S be the splitting group of ℘. let Z be the fixed field of S, and let q
be the prime of Z which ℘ divides. We have K℘ ⊃ Zq ⊃ kp. Since S = G(K℘ : kp)
then Zq = kp. Let i = i(α, q,Z) in IZ. By (10.1) we have NZ/k i(α, q,Z) = i(α, p,k),
so

(

α,K/k

p

)

= φK/k

(

i(α, p,k)
)

= φK/k

(

NZ/k i(α, q,Z)
)

.

According to proposition 2.19, we have

φK/k

(

NZ/k i(α, q,Z)
)

= φK/Z

(

i(α, q,Z)
)

.

This shows that
(

α,K/k
p

)

in the image of φK/Z and thus leaves Z fixed. Therefore
(

α,K/k
p

)

is in the splitting group of ℘.

Lemma 10.2. If T′ is a complete field such that kp ⊂ T′ ⊂ K℘ then there exists
a field T such that k ⊂ T ⊂ K, and if p′ is the prime of T which ℘ divides then
Tp′ = T′.

Proof. Let S be the splitting group of ℘ and H the subgroup of S leaving
T′ fixed. Let T = T′ ∩ K be the subfield of K fixed by H, and let p′ be the
prime of T which ℘ divides. Then Tp′ ⊂ T′, since T′ is complete. On the other
hand [K℘ : Tp′ ] divides [K : T], and [K : T] = [H : 1] = [K℘ : T′]. Therefore
[K℘ : Tp′ ] = [K℘ : T′], so Tp′ = T′.

Lemma 10.3. Let T be any finite extension of k, and let K be an abelian exten-
sion of k. If p is a prime of k, let ℘′ be a prime of KT dividing p, and let ℘′ divide
primes ℘ of k and p′ of T, respectively. Then

(

β,KT/T

p′

)

=

(

NTp′/kp
β,K/k

p

)

for β ∈ Tp′ .

Proof. By proposition 2.19 and (10.1), we have

(

β,KT/T

p′

)

= φKT/T

(

i(β, p′,T)
)

= φK/k

(

NT/ki(β, p′,T)
)

= φK/k

(

i(NTp′/kp
β, p,k)

)

=

(

NTp′/kp
β,K/k

p

)

.
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Corollary 10.4. If T ⊂ K in lemma 10.3 then KT = K, so

(

β,K/T

p′

)

=

(

NTp′/kp
β,K/k

p

)

for β ∈ Tp′ .

Lemma 10.5. The kernel of α →
(

α,K/k
p

)

contains NK℘/kp
K∗

℘.

Proof. If α = NK℘/kp
β then by corollary 10.4 we have

(

α,K/k

p

)

=

(

NK℘/kp
β,K/k

p

)

=

(

β,K/K

℘

)

= 1.

Kummer extensions. Let k contain the n-th roots of unity, where n is not
necessarily prime, and let p be a prime of k. If β is in k∗

p then consider kp(
n
√

β)/kp.

By lemma 4.13, if we choose β0 in k∗ so that |ββ−1
0 − 1|p is sufficiently small

then ββ−1
0 = γn where γ is in k∗

p, so kp(
n
√

β) = kp(
n
√

β0). Put K = k( n
√

β0).

The valuation on kp(
n
√

β0) restricted to k( n
√

β0) determines a prime ℘ of K which

divides p. Then K℘ = kp(
n
√

β0). If α is in k∗
p then

(

α,K/k
p

)

is in G(K℘ : kp) by

lemma 10.1. The Galois group G(K℘ : kp) is isomorphic to a subgroup of the cyclic
group containing the n-roots of unity. There exists an n-root of unity ζ depending
on α and β so that

(

α,K/k

p

)

n
√

β = ζ n
√

β

Setting
(

α,β
p

)

= ζ, we have a map from k∗
p × k∗

p to n-th roots of unity defined by

(

α,K/k

p

)

n
√

β =

(

α, β

p

)

n
√

β

We may write
(

α,β
p

)

n
whenever it is necessary to make n explicit.

Lemma 10.6. Symbol
(

α,β
p

)

has the following properties.

(a)

(

αβ, γ

p

)

=

(

α, γ

p

)(

β, γ

p

)

(b)

(−α, α

p

)

= 1

(c)

(

α, βγn

p

)

=

(

αγn, β

p

)

=

(

α, β

p

)

(d)

(

α, βγ

p

)

=

(

α, β

p

)(

α, γ

p

)

(e)

(

α, β

p

)

=

(

β, α

p

)−1

(f)

(

1 − α, α

p

)

= 1 if α 6= 0, 1
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Proof. (a) is obvious. To prove (b), take K℘ = kp( n
√

α). Let [K℘ : kp] = m
and d = n/m. Let ζ be a primitive m-th root of unity. Write N for NK℘/kp

. We
would like to show that −α = Nβ for some element β in K∗

℘. We have

N
(

n
√

α
)d

=
(

ζ n
√

α
)d (

ζ2 n
√

α
)d

. . .
(

ζm n
√

α
)d

= ζ(1+2+···+m)dα = ζ
1

2
m(m+1)dα

There are three cases to consider. First, suppose that m is odd. Then 1
2m(m + 1)d

is divisible by m, so N ( n
√

α)
d

= α. We have N(−1) = (−1)m = −1, so

N
(

−( n
√

α)d
)

= N(−1)N( n
√

α)d = −α.

Next suppose that m is even and d is odd. Then ζ
1

2
m(m+1)d = (−1)(m+1)d = −1, so

N
(

( n
√

α)d
)

= −α.

Finally, suppose that m and d are both even. Then ζ
1

2
m(m+1)d = 1. If ζ1 be a

primitive n-th root of unity then N(ζ1)
d/2 = ζ

md/2
1 = −1, so

N
(

ζ
d/2
1

(

n
√

α
)d
)

= (−1)α = −α.

We have found β so that −α = NK℘/kp
β in all three cases.

To prove (c), choose β0 in k∗ so that β 'n β0. Then k
(

n
√

β0

)

= k
(

n
√

β
)

=

k
(

n
√

βγn
)

. Then
(

α,β
p

)

and
(

α,βγn

p

)

are both determined by norm residue symbol

σ =

(

α,k
(

n
√

β
0

)

/k

p

)

.

(

α, β

p

)

n
√

β = σ
(

n
√

β
)

and

(

α, βγn

p

)

n
√

βγ = σ
(

n
√

βγ
)

= γσ
(

n
√

β
)

Therefore
(

α, β

p

)

=
σ
(

n
√

β
)

n
√

β
=

(

α, βγn

p

)

To prove (d), choose β0 and γ0 in k∗
p so that β 'n β0 and γ 'n γ0. Then

βγ 'n β0γ0. By (c), we have
(

α,βγ
p

)

=
(

α,β0γ0

p

)

, so we may suppose β and γ are in

k∗
p. Since

(

α,k( n
√

βγ)/k

p

)

is the restriction to k( n
√

βγ) of

(

α,k( n
√

β, n
√

γ)/k

p

)

, then

(

α, βγ

p

)

n
√

βγ =

(

α, k( n
√

βγ)/k

p

)

n
√

βγ =

(

α, k( n
√

β, n
√

γ)/k

p

)

n
√

βγ

=

((

α, k( n
√

β)/k

p

)

n
√

β

)((

α, k( n
√

γ)/k

p

)

n
√

γ

)

.
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By Lemma 8.5, we have

(

α, βγ

p

)

n
√

βγ =

((

α, β

p

)

n
√

β

)((

α, γ

p

)

n
√

γ

)

=

(

α, β

p

)(

α, γ

p

)

n
√

βγ.

To prove (e), apply (b) to obtain

1 =

(−αβ, αβ

p

)

=

(−α, α

p

)(

β, α

p

)(

α, β

p

)(−β, β

p

)

=

(

β, α

p

)(

α, β

p

)

.

To prove (f), suppose that [kp ( n
√

α) : kp] = m, and put d = n/m. Let ζ be a
primitive n-th root of unity. The conjugates of n

√
α are ζkd n

√
α for 0 ≤ k < m.

Substitute x = 1 in

xn − α =
(

x − n
√

α
) (

x − ζ n
√

α
)

. . .
(

x − ζn−1 n
√

α
)

to obtain

1 − α =

n−1
∏

i=0

(

1 − ζi n
√

α
)

=

d−1
∏

j=0

m−1
∏

k=0

(

1 − ζkd+j n
√

α
)

=

d−1
∏

j=0

m−1
∏

k=0

(

1 − ζjζkd n
√

α
)

=

d−1
∏

j=0

Nkp( n
√

α)/kp

(

1 − ζj n
√

α
)

.

Legendre symbol. If prime p of k does not divide n and ζ1 and ζ2 are two
distinct n-th roots of unity in k, then ζ1 6= ζ2(mod n) by lemma 8.8. The mul-
tiplicative group of o/p therefore contains a subgroup of order n, so n divides
Np − 1. If α ∈ k∗ and α 6= 0(mod p), then αNp−1 = 1(mod p), so α(Np−1)/n is
an n-root of unity modulo p. There is a unique n-root of unity ζ in k so that
α(Np−1)/n = ζ(mod p).

The Legendre symbol
(

α
p

)

is defined to be the n-root of unity satisfying

α
Np−1

n =

(

α

p

)

(mod p).

In any finite abelian group having order Np − 1 divisible by n, an element x is an
n-th power if and only if x(Np−1)/n = 1. Therefore α is an n-th power modulo p

if and only if
(

α
p

)

= 1. By lemma 8.11, [up : un
p ] = n when p does not divide n.

Therefore the homomorphism up/u
n
p → op/o

n
p is an isomorphism. This shows that

α is an n-th power in up if and only if
(

α
p

)

= 1.



106 X. NORM RESIDUE SYMBOL

Lemma 10.7. Let k contain the n-th roots of unity and let α 6= 0 be an element
of k. Let p be a prime of k which does not divide n or α. The Artin and Legendre
symbols are related by

(

k( n
√

α) : k

p

)

n
√

α =

(

α

p

)

n
√

α

Proof. The Artin symbol satisfies
(

k( n
√

α) : k

p

)

n
√

α = ( n
√

α)Np(mod ℘),

where prime ℘ of k( n
√

α) divides p. There is an n-th root of unity ζ such that
(

k( n
√

α) : k

p

)

n
√

α = ζ( n
√

α).

Then ζ( n
√

α) = ( n
√

α)Np(mod ℘). Since ( n
√

α) is a unit in O℘, we have

ζ = ( n
√

α)Np−1 = ( n
√

α)n Np−1

n = α
Np−1

n (mod ℘).

This show that ζ =
(

α
p

)

, which completes the proof.

If β is a unit in k∗
p, take β0 in k sufficiently close to β so that ββ−1

0 is an n-th
power in k∗

p, and we also want β = β0(mod p). Then

(

k
(

n
√

β0

)

: k

p

)

n
√

β0 =

(

β0

p

)

n
√

β0,

and, by (10.2), for α in k∗
p we have

(

α,k
(

n
√

β0

)

/k

p

)

=

(

k
(

n
√

β0

)

: k

p

)a

where (α) = pa,

so
(

α,k
(

n
√

β0

)

/k

p

)

n
√

β0 =

(

β0

p

)a
n
√

β0.

Since β0 = β(mod p) and kp(
n
√

β0) = kp(
n
√

β), we have

(10.4)

(

α, β

p

)

=

(

β

p

)a

.
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Lemma 10.8. If k contains the n-th roots of unity, α and β are in k∗
p, and p is

a prime of k that does not divide n, then

(

α, β

p

)

=

(

β

p

)a

if (α) = pa and β ∈ up.

(

α, β

p

)

=

(

α

p

)−b

if (β) = pb and α ∈ up.

Proof. The first formula is (10.4), and the second follows from the first by
lemma 10.6(e).

Lemma 10.9. If k contains the n-th roots of unity, α and β are in k∗
p, and p is

a prime of k that does not divide n, then

(

α, β

p

)

=

(

(−1)abβa/αb

p

)

if (α) = pa and (β) = pb.

Proof. Choose π so that p = (π). Let α = πaα′ and β = πbβ′. Then α′ and β′

are in up, and by lemma 10.6a and 10.6d we have

(

α, β

p

)

=

(

πaα′, πbβ′

p

)

=

(

πa, πb

p

)(

πa, β′

p

)(

α′, πb

p

)(

α′, β′

p

)

.

Applying lemma 10.8, we have
(

α′,β′

p

)

= 1, so

(

α, β

p

)

=

(

π, π

p

)ab(
β′

p

)a(
α′

p

)−b

.

By (b) and (d) of lemma 10.6, we have
(

π,π
p

)

=
(

π,−1
p

)(

π,−π
p

)

=
(

π,−1
p

)

, and
(

π,−1
p

)

=
(

−1
p

)

by lemma 10.8, so

(

α, β

p

)

=

(−1

p

)ab(
β′

p

)a(
α′

p

)−b

=

(

(−1)ab(β′)a/(α′)b

p

)

.

Since βa/αb = (β′)a/(α′)b, the conclusion follows.
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Jacobi symbol; reciprocity law for n-th powers. If k contains the n-th
roots of unity, suppose that the factorization of principal ideals generated by α and
β in k∗ be (α) =

∏

pap and (β) =
∏

pbp , where p runs over finite primes of k.
Suppose also that α and β have no common prime divisor, and that β is relatively
prime to n. Then apbp = 0 for every finite prime p, and bp = 0 if p divides n. Define
the Jacobi symbol to be the product of Legendre symbols.

(

α

β

)

=
∏

bp 6=0

(

α

p

)bp

.

Note that legendre symbol
(

α
p

)

is defined when bp 6= 0.

Proposition 10.10 (Reciprocity law for n-th powers). If k contains the
n-th roots of unity, and elements α and β of k∗ are relatively prime and are divisible
by no finite prime of k dividing n, then

(

α

β

)(

β

α

)−1

=
∏

p∈E

(

α, β

p

)

where E consists of primes of k that are either infinite or divide n.

Proof. Applying the general reciprocity (10.3) to k( n
√

β)/k, we have

∏

p

(

α, β

p

)

= 1 for α and β in k∗.

The primes of k for which
(

α,β
p

)

may be nontrivial belong to four disjoint sets:

primes dividing α, primes dividing β, primes dividing n, and infinite primes.

1 =
∏

ap 6=0

(

α, β

p

)

∏

bp 6=0

(

α, β

p

)

∏

p|(n)

(

α, β

p

)

∏

infinite p

(

α, β

p

)

Applying lemma 10.8, we have

1 =
∏

ap 6=0

(

β

p

)ap
∏

bp 6=0

(

α

p

)−bp
∏

p∈E

(

α, β

p

)

,

and apply the definition of the Jacobi symbol to obtain

1 =

(

β

α

)(

α

β

)−1
∏

p∈E

(

α, β

p

)

.
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Quadratic reciprocity laws. If p is a complex infinite prime then all extensions

of kp are trivial, so
(

α,β
p

)

2
is always trivial. Real infinite primes may occur only

when n = 2, since k must contain the n-th roots of unity. If n = 2 then kp(
√

β) is
nontrivial if and only if b < 0, and in that case α is not a norm if and only if α < 0,

so
(

α,β
p

)

2
6= 1 for real infinite primes if and only if α and β are both negative, and

we have the following corollary.

Corollary 10.11 (General quadratic reciprocity law). Let n = 2, and
suppose that k has r real infinite primes. Let σi, . . . , σr be the distinct isomorphisms
of k to the real numbers. Put αi = σi(α) and βi = σi(β). If α and β in k∗ are
relatively prime and are not divisible by any prime dividing (2), then

(

α

β

)(

β

α

)

=
∏

p|(2)

(

α, β

p

)

2

r
∏

i=1

(−1)s(αi,βi), s(αi, βi) =

{

1 if αi < 0, βi < 0

0 otherwise

Lemma 10.12. Suppose that p is a prime of k dividing (2) and β is an element
of k∗

p satisfying β = 1
(

mod (4)
)

. Then p is unramified in kp(
√

β).

Proof. There is nothing to prove if [kp(
√

β) : kp] = 1, so consider the case that
[kp(

√
β) : kp] = 2. Let x1, x2 form a basis for the ring of integers in kp(

√
β). Write S

for S
kp

(√
β
)

/kp
, and put D = det

(

S(xixj)
)

. To show that p is unramified, we need

to show that p does not divide the local discriminant D
kp

(√
β
)

/kp
= (D) (chapter

1, p. 6). Let y1 = 1 and y2 = (1 +
√

β)/2. We have

det

(

S(y1y1) S(y1y2)
S(y2y1) S(y2y2)

)

= det

(

2 1
1 1+β

2

)

= β

Also, y2 is an integer in kp(
√

β) since it is a root of x2 −x+(1−β)/4, a polynomial
with coefficients in op because β = 1

(

mod (4)
)

. There are elements aij in op such

that yi =
∑2

j=1 aijxj . Then

(

S(yiyj)
)

=
(

aij

)(

S(xixj)
)(

aij

)t

Putting A = det(aij), then A is an element of op, and β = DA2. Since p divides (2),
we have β = 1(mod p), so DA2 = 1(mod p). Thus p cannot divide the discriminant.

The following special cases of the quadratic reciprocity law are due to Hilbert
and Hecke.
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Corollary 10.13 (Quadratic reciprocity law — Hecke). Suppose that
α and β in k∗ are relatively prime and prime to (2). If either α or β is congruent
to a square modulo (4), then

(

α

β

)(

β

α

)

=

r
∏

i=1

(−1)s(αi,βi)

Proof. Let p be a prime of k dividing (2). If β = γ2
(

mod (4)
)

with γ in up,

then β1 = β/γ2 = 1
(

mod (4)
)

, and kp(
√

β1) = kp(
√

β), so kp(
√

β) is unramified by

lemma 10.12. Since α is a unit in kp, it is a norm from kp(
√

β), so
(

α,β
p

)

2
= 1. The

case for α follows by symmetry (Lemma 10.6e).

Corollary 10.14 (Quadratic reciprocity law—Hilbert). Suppose that
k has no real primes, and suppose the class number h is odd. Let p and q are two
distinct prime ideals which do not divide (2). Then ph = (x) and qh = (y) are
principal, and

(

x

q

)(

y

p

)

=
∏

`|(2)

(x, y

`

)

Proof. We have
(

x
y

)

=
(

x
q

)h

=
(

x
q

)

, and
(

y
x

)

=
(

y
p

)h

=
(

y
p

)

. The result

now follows from corollary 10.11 with r = 0.

Corollary 10.15 (Quadratic reciprocity law for rational numbers).
Suppose that positive integers a and b are relatively prime and both odd. Then

(

a

b

)(

b

a

)

= (−1)
a−1

2

b−1

2

Proof. Since a and b are positive, we only need to consider p = 2. By lemma
10.12, if b = 1(mod 4) then Q(2)(

√
b)/Q(2) is unramified. Then a is a norm, so

(

a,b
(2)

)

= 1. The same holds if a = 1(mod 4)by lemma 10.6e. Suppose that a =

b = 3(mod 4). Every integer that is a norm from Q(2)(
√

b) has the form x2 − by2

where x and y are in integers of that field. But x2 − 3y2 = x2 + y2(mod 4), so
norms can take only the values 0, 1, or 2 (mod 4). Therefore a cannot be a norm,

so
(

a,b
(2)

)

= −1.

Quadratic reciprocity law for Gaussian integers. We need a few preliminary re-
sults. Let i represent

√
−1, and let k = Q(i), and let o be the ring of integers of

k.
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Lemma 10.18. The integers of k are the Gaussian integers, that is, o = Z+Zi.

Proof. Since every element of k satisfies a 2-nd degree equation over Q, if
element α = (a/b) + (c/d)i of k is integral over Q then both Sk/Qα = −2a/b and

Nk/Qα = (a2/b2)+(c2/d2) = (a2d2 + b2c2)/(b2d2) are integers. Then b must divide

a2d2. We may take a and b to be relatively prime, so b divides d. Likewise, d
must divide b2c2; we may take c and d to be relatively prime, so d divides b. Since
d = ±b, we have a2d2 + b2c2 = a2b2 + b2c2 is divisible by b4, so a2 + c2 is divisible
by b2. Since −2a/b is an integer then b divides 2. If b = ±2 then a2 + c2 would be
divisible by 4, but that is impossible because a and c must both be odd if b = ±d
is even. Therefore we must have b = ±1, and α = ±a ± ci, so o ⊂ Z + Zi.

Lemma 10.19. (2) is ramified in k. p = (1 + i) is the prime of k dividing (2)
and

[

kp : Q(2)

]

= 2.

Proof. In the field Q(i), we have (1 + i)2 = (2i) = (2). Since efg = 2, it must
be that p = (1 + i) is prime, (2) is ramified with ramification index e = 2, and
f = 1, g = 1. Finally, [kp : Q(2)] = ef = 2.

Lemma 10.20. p = (1 + i) is ramified in k
(√

i
)

, and
[

kp

(√
i
)

: kp

]

= 2.

Proof. First, suppose that there exist a and b in Q(2) so that (a + b i)2 = i.

Then a2−b2+2abi = i, so a2 = b2 and 2ab = 1. That would mean ord2(a) = ord2(b)
and 1 + 2 ord2(a) = 0 which is impossible. Therefore x2 − i is irreducible over kp,

so
[

kp

(√
i
)

: kp

]

= 2. Next, we have

N
kp(

√
i)/kp

(

1 +
√

i
)

=
(

1 +
√

i
)(

1 −
√

i
)

= 1 − i.

We have 1− i = −i(1+ i), so ordp(1− i) = 1. Let ℘ be the prime of kp

(√
i
)

dividing

p, and let ord℘(1 +
√

i) = a. Then

N℘−a =
∣

∣

∣
1 +

√
i
∣

∣

∣

℘
=
∣

∣

∣
N

kp(
√

i)/kp

(

1 +
√

i
)∣

∣

∣

p
= |1 − i|p = Np−1.

But N℘ = Npf , so af = 1. We must have a = f = 1, so e = 2. We have shown
that p is ramified and also that ℘ =

(

1 +
√

i
)

in kp

(√
i
)

.

Lemma 10.21. Let p be the prime of k dividing (2). If α and β are units then
(

α,β
p

)

only depends on α and β modulo (4).

Proof. If β is a unit of op and β = β′(mod (4)
)

then β−1β′ = 1
(

mod (4)
)

.

Therefore kp

(

√

β−1β′
)

/kp is unramified by lemma 10.12, so
(

α,β−1β′

p

)

= 1 if α

is a unit of op. This shows that
(

α,β
p

)

=
(

α,β′

p

)

, and the case for α follows by

symmetry using lemma 10.6e.
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Lemma 10.22. In kp, every unit in op is congruent modulo (4) to exactly one
of the following set of eight elements

{

±ia(3 + 2i)a′ | a = 0, 1; a′ = 0, 1
}

.

Proof. Since p = (1 + i) it follows that an integer a + bi is in p if and only if
a = b(mod 2). We have (4) = p4, so the sixteen elements a+ bi such that 0 ≤ a < 4
and 0 ≤ b < 4 form a complete set of residues modulo (4). Every element of o not
divisible by p is congruent modulo (4) to exactly one of the set of eight elements

(10.5) {a + bi | 0 ≤ a < 4, 0 ≤ b < 4, and a 6= b(mod 2)} .

The eight elements ±ia(3i + b)a′

for a = 0, 1 and b = 0, 1 are

±1, ±i, ±(3 + 2i), and ± (2 − 3i).

These coincide modulo (4) with the eight elements in (10.5).

Proposition 10.23 (quadratic reciprocity law—Gaussian integers).

Let α = ±ia(3 + 2i)a′

modulo (4), and β = ±ib(3 + 2i)b′ modulo (4). Then
(

α

β

)(

β

α

)

= (−1)ba′+ab′

Proof. There are no real infinite primes of k, and p = (i + i) is the only prime
dividing (2), so

(

α

β

)(

β

α

)

=

(

±ia(3 + 2i)a′

,±ib(3 + 2i)b′

p

)

.

We have
(

γ,−1
p

)

=
(

−1,γ
p

)

= 1 and also
(

γ,γ
p

)

=
(

γ,−γ
p

)(

γ,−1
p

)

= 1 for every unit

γ of kp, since −1 is a square in k. Therefore
(

α

β

)(

β

α

)

=

(

(3 + 2i), i

p

)ba′
(

i, (3 + 2i)

p

)ab′

=

(

(3 + 2i), i

p

)ba′−ab′

.

We need to show that
(

(3+2i),i
p

)

= −1. If
(

(3+2i),i
p

)

= 1, then we would have
(

α,β
p

)

= 1 for all units α and β in op. However kp(
√

i)/kp is ramified, so there

exists a unit of op which is not a norm by lemma 7.6. This shows that
(

(3+2i),i
p

)

cannot be 1.

Remark. The quadratic reciprocity law for the rational number field may re-
stated in a form that is analogous to proposition 10.13. If α = (−1)a(mod 4) and
β = (−1)b(mod 4), then (

α

β

)(

β

α

)

= (−1)ab
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Local class field theory. It will be shown that the norm residue symbol maps
k∗

p onto G(K℘ : kp) with kernel NK℘/kp
K∗

℘. First, we show that the following
assertion holds for abelian extensions by reducing the abelian case to the case of
cyclic extensions of prime degree (lemma 11.24), then to the case Kummer exten-
sions (lemma 10.25), then by proving the assertion for Kummer extensions (lemmas
10.26—10.30). We then prove that the kernel is NK℘/kp

K∗
℘.

Assertion. If ℘ is a prime of K dividing p then homomorphism

α →
(

α,K/k

p

)

maps k∗
p onto G(K℘ : kp).

Because K/k is abelian, if ℘1, . . . , ℘g are the primes of K dividing p then the
Galois groups G(K℘i

: kp) all coincide and the norm groups NK℘i
/kp

K∗
℘ all coincide.

Lemma 10.24. If Assertion holds for cyclic extensions of prime degree, then
Assertion holds for abelian extensions in general.

Proof. Suppose Assertion is false for some abelian extension K/k and prime
℘ dividing p. Let S be the splitting group of ℘, and let Z be the fixed field of
S. Then S℘(K : Z) = S℘(K : k). Let q be the prime of Z divisible by ℘. Then
kp ⊂ Zq ⊂ K℘. Every element of Zq is fixed by S = G(K℘ : kp), so Zq = kp, and

α ∈ Z∗
q = k∗

p =⇒
(

α,K/Z

q

)

=

(

NZq/kp
α,K/k

p

)

=

(

α,K/k

p

)

.

Let σ be an automorphism in S℘(K/k) that is not in the image of k∗
p. Then σ is

also an automorphism in S℘(K/Z) that is not in the image of Z∗
q . Therefore the

Assertion is false for K/Z and prime ℘ dividing q. We need to show that Assertion
is false of a cyclic extension of prime degree. We have

S = S℘(K : k) = S℘(K : Z) = G(K : Z) and S = G(K℘ : kp) = G(K℘ : Zq).

Let H the image of Z∗
q . Then H is a proper subgroup of G(K℘/Zq). Let L be the

fixed field of H. There exists a subgroup H′ such that H ⊂ H ′ ⊂ S and S/H ′ is
cyclic of prime degree. Let L′ be the fixed field of H′, and let q′ be the prime of L′

which ℘ divides. We will show that the Assertion if false for L′/Z.

K ⊃ L ⊃ L′ ⊃ Zq

| | | |
{1} ⊂ H ⊂ H ′ ⊂ S
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The number of primes of K dividing q is equal to the index of S℘(K : Z) in G(K : Z).
It follows that ℘ is the only prime of K which divides q, so q′ is the only prime of
L′ which divides q. We conclude that Sq′(L′ : Z) = G(L′ : Z), so Sq′(L′ : Z) is
a non-trivial cyclic group of prime degree. On the other hand, if α is in Zq then
(

α,L′/Z
q

)

is the restriction of
(

α,K/Z
q

)

(which is in H) to L′ (which is contained in

the fixed field of H), and is therefore always trivial. This shows that Assertion is
false for cyclic extension L′ of Z and prime q′ dividing q.

Lemma 10.25. If Assertion holds for cyclic extensions of prime degree n where
the base field contains the n-th roots of unity, then the assertion holds for all cyclic
extensions of prime degree.

Proof. Let K/k be a cyclic extension of prime degree n, and let ℘ be a prime
of K dividing prime p of k. If [K℘/kp] = 1 then Assertion holds trivially for K/k,
so let us suppose that [K℘/kp] = n. We only have to show the existence of some
element of k∗

p with non-trivial norm residue symbol. Let Z = k(ζ), where ζ is a
primitive n-th root of unity. Let ℘′ be a prime of KZ dividing ℘, and let p′ be
a prime of Z which ℘′ divides. KZ is a abelian extension of k (lemma 2.12) and
[Z : k] divides n − 1, so Z ∩ K = k and therefore [KZ : Z] = [K : k] = n.

Since [Zp′ : kp] divides n−1 then [(KZ)℘′ : Zp′ ] = [K℘ : kp] = n. The hypothesis
is that Assertion holds for KZ/Z, so there is an element α in Z∗

p′ so that the norm

residue symbol
(

α,KZ/Z
p′

)

is not trivial, and by lemma 10.3, its restriction to K is
(

NZ
p′/kpα,K/k

p

)

. If
(

α,KZ/Z
p′

)

were trivial on K then it would be trivial on all of

KZ, which is impossible, so we conclude that

(

NZ
p′/kpα,K/k

p

)

is a non-trivial norm
residue symbol for K/k.

Proof of Assertion for Kummer extensions. Let n be prime, let k contain the
n-th roots of unity, and let K/k be a cyclic extension of degree n. By lemma 8.7,
there exists an element γ of k∗ so that K = k

(

n
√

γ
)

. Let q be a prime of k. The

Galois group G
(

kq

(

n
√

γ
)

: kq

)

does not depend on the choice of the prime of K

dividing q.
Let E be a set of primes of k containing q, primes dividing (n) or (γ), all infinite

primes, and primes such that Ik = k∗Ik(E). Suppose that E contains s+1 primes.
By the unit theorem (6.13), k∗(E)/k∗(E)n is the direct product of s + 1 cyclic
groups of order n. Let β0, . . . , βs be a set of generators. In the proof of Lemma
8.18, it was established that there exist primes p0, . . . , ps not in E such that

kpi

(

n
√

βj

)

= kpi
if i 6= j

kpj

(

n
√

βj

)

6= kpj
and the extension is not ramified.
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For j = 0, . . . , s, choose an element πj in kpj
so that pj = (πj) and put

ij = i(πj, pj ,k).

Choose αj in k∗ so that ijα
−1
j is in Ik(E). Note that if p /∈ E then αj is in up

except at p = pj , and at p = pj , we have (αj) = (πj).

Lemma 10.26. If p /∈ E ∪ {p0, . . . , ps} then
(

αj ,βi

p

)

= 1 for 0 ≤ i, j ≤ s.

Proof. The only primes of k which can ramify in kp

(

n
√

βi

)

are those dividing

n or βi, all of which are in E, so if p is not in E then kp

(

n
√

βi

)

is unramified. If p
is not in E and not in {p0, . . . , ps} then αj is a unit, so the norm residue symbol
(

αj ,βi

p

)

is trivial for 0 ≤ i, j ≤ s.

Lemma 10.27. For the primes p0, . . . , ps and 0 ≤ i, j, k ≤ s, we have

(

αj, βi

pk

)

=







1 unless i = j = k
(

βk

pk

)

if i = j = k,

and Legendre symbol
(

βk

pk

)

is a primitive n-th root of unity.

Proof. If i 6= k then kpk

(

n
√

βi

)

= kpk
so
(

αj ,βi

pk

)

= 1 for every j. Suppose

i = k. If 0 ≤ j ≤ s and j 6= k, then αj is in upk
. Since kpk

(

n
√

βk

)

/kpk
is unramified

then
(

αj ,βk

pk

)

= 1. Finally, if j = k, then since (αk) = (πk) we have
(

αk,βk

pk

)

=
(

βk

pk

)

by lemma 10.8.

Lemma 10.28.
(

k∗(E)In
k(E)

)

/In
k(E) is the direct product of s + 1 cyclic groups

of order n, and the elements β0, . . . , βs generate k∗(E)In
k(E) modulo In

k(E).

Proof. We have

k∗(E)In
k(E)

In
k(E)

' k∗(E)

k∗(E) ∩ In
k(E)

=
k∗(E)

k∗(E)n
,

since, by (8.19a), we have k∗(E) ∩ In
k(E) = k∗(E)n.

If i is in Ik, let iE denote the projection of i onto
∏

p∈E k∗
p, that is

(iE)p =

{

ip if p ∈ E

1 if p /∈ E.

For each of the elements α0, . . . , αs we have the projections αE
0 , . . . , αE

s .
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Lemma 10.29. Ik(E)/
(

k∗(E)In
k(E)

)

is the direct product of ns+1 cyclic groups

of order n, and the projections αE
0 , . . . , αE

s generate Ik(E) over k∗(E)In
k(E).

Proof. We found [Ik(E) : k∗(E)In
k(E)] = ns+1 at formula (8.18) in the proof of

lemma 8.16. Since n is prime and the order of every element of Ik(E)/
(

k∗(E)In
k(E)

)

divides n, then the group must be the product of ns+1 cyclic groups of order n.
Let α = αa0

0 . . . αas
s . Then α = αE

∏

p/∈E αp, and αE = (αE
0 )a0 . . . (αE

s )as . We

want to show that the ns+1 products

(αE
0 )a0 . . . (αE

s )as 0 ≤ aj < n, 0 ≤ j ≤ s

all lie in different cosets modulo k∗(E)In
k(E). Suppose that αE is in k∗(E)In

k(E).
If we can show that aj = 0(mod n) for 0 ≤ j ≤ s, then we will be done.

For i = 0, . . . , s, the only primes of k which can ramify in k
(

n
√

βi

)

are those
dividing n or βi (lemma 8.9), and βi is in k∗(E). Therefore all primes which can
ramify in k

(

n
√

βi

)

are in E. This shows that

In
k(E) ⊂ N

k

(

n
√

βi

)

/k
I
k

(

n
√

βi

),

so

k∗(E)In
k(E) ⊂ k∗N

k

(

n
√

βi

)

/k
I
k

(

n
√

βi

) ⊂ ker
(

φ
k

(

n
√

βi

)

/k

)

.

Therefore, if αE is in k∗(E)In
k(E), then φ

k

(

n
√

βi

)

/k
(αE) = 1, so we have

1 = φ
k

(

n
√

βi

)

/k
(α) = φ

k

(

n
√

βi

)

/k
(αE)

∏

p/∈E

φ
k

(

n
√

βi

)

/k
(αp) =

∏

p/∈E

(

α,k
(

n
√

βi

)

/k

p

)

.

Since α = αa0

0 . . . αas
s , then by lemma 11.4 the only primes for which the norm

residue symbols in the above formula can be non-trivial are p0, . . . , ps, so we have

1 =
s
∏

k=0

(

α,k
(

n
√

βi

)

/k

pk

)

=
s
∏

k=0

s
∏

j=0

(

αj , βi

pk

)aj

for i = 0, . . . s.

By lemma 10.27, all terms of the product are trivial except when i = j = k, so

1 =

(

αi, βi

pi

)ai

=

(

αi

pi

)ai

for i = 0, . . . , s.

The symbols
(

αi

pi

)

are primitive n-th roots of unity (lemma 10.27), so

ai = 0(mod n) for i = 0, . . . , s.

This completes the proof of the lemma.
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Lemma 10.30. Let K = k
(

n
√

γ
)

be a cyclic extension of prime degree n over
field k containing the n roots of unity, and let prime ℘ of K divide prime q of k.
Then Assertion holds for K/k.

Proof. The Galois group G(K℘ : kp) does not depend on the choice of ℘
dividing q. Since k

(

n
√

γ
)

/k is cyclic of prime degree, then kq

(

n
√

γ
)

/kq is either

trivial or cyclic of degree n. If kq

(

n
√

γ
)

= kq then there is nothing to prove, so

suppose that kq

(

n
√

γ
)

6= kq . We need to show that there exists an element α in k∗
q

for which the norm residue symbol for q is not trivial. Let us make the hypothesis
that all norm residue symbols for k

(

n
√

γ
)

/k are trivial at the prime q. We will show
this to be impossible.

Consider the idele i(γ, q,k) in Ik(E). By lemmas 10.28 and 10.29, we have

i(γ, q,k) = αEβi

where
α = αa0

0 . . . αas
s , β = βb0

0 . . . βbs
s , i ∈ In

k(E).

At prime q, we have γ = αEβiq. Since q is in E, we therefore have γ 'n αβ, and
kq

(

n
√

αβ
)

= kq

(

n
√

γ
)

. But kq

(

n
√

γ
)

6= kq , so αβ 6= 1.
For any δ in k∗, we have

1 =
∏

p

(

δ, αβ

p

)

=
∏

p/∈E

(

δ, αβ

p

)

∏

p∈E

(

δ, αβ

p

)

.

Consider the product over primes p in E. If p 6= q then we have 1 = αβip with

ip ∈ (k∗
p)n, so αβ 'n 1 in k∗

p, and therefore
(

δ,αβ
p

)

= 1; if p = q, then
(

δ,γ
q

)

= 1 by

our hypothesis. Therefore all terms of the product over E vanish, and we have

(10.6) 1 =
∏

p/∈E

(

δ, αβ

p

)

for δ ∈ k∗.

Since αβ 6= 1 then either α 6= 1 or β 6= 1. Suppose that α 6= 1. Then ak 6= 0(mod n)
for some k. In this case, take δ = βk. Then (10.6) becomes

1 =
∏

p/∈E

(

βk, αβ

p

)

=
∏

p/∈E

(

βk, α

p

)

∏

p/∈E

(

βk, β

p

)

.

If p is not in E then
(

βk,β
p

)

= 1 because kp

(

n
√

βk

)

/kp is unramified and β is in

k∗(E); also,
(

βk,α
p

)

= 1 unless p is one of p0, . . . , ps by lemma 10.26. Then, by
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lemma 10.27, we have

1 =
s
∏

j=0

(

βk, α

pj

)

=
s
∏

j=0

(

α, βk

pj

)−1

=

(

α, βk

pk

)−1

=

s
∏

i=0

(

αi, βk

pk

)−ai

=

(

αk, βk

pk

)−ak

=

(

βk

pk

)−ak

But this is impossible since
(

βk

pk

)−ak

is a primitive n-root of unity by lemma 10.27.

Therefore α = 1. The other possibility is that β 6= 1, and we have bk 6= 0(mod n)
for some k. In this case, take δ = αk. Applying lemma 10.26 to (10.6), we obtain

1 =
∏

p/∈E

(

αk, αβ

p

)

=
∏

p/∈E

(

αk, β

p

)

=
s
∏

j=0

(

αk, β

pj

)

.

By lemma 10.27, we have

1 =

s
∏

j=0

s
∏

i=0

(

αk, βi

pj

)bi

=

(

αk, βk

pk

)bk

=

(

βk

pk

)bk

.

But this is also impossible since
(

βk

pk

)bk

is a primitive n-root of unity. Since both

cases are impossible, the hypothesis that
(

δ,γ
q

)

= 1 for all δ in k∗
q has led to a

contradiction. This concludes the proof.

Proposition 10.31. Let K/k be an abelian extension and let prime ℘ of K

divide prime p of k. Then homomorphism

α →
(

α,K/k

p

)

maps k∗
p onto G(K℘ : kp).

Proof. The proposition follows from lemma 10.24, 10.25 and 10.30.

Second inequality for local extensions. The assertion that [k∗ : NK℘/kp
K∗

℘]
divides [K℘ : kp] is the second inequality for local extensions. We will show that if
K/k is abelian then the second inequality holds for the completions K℘/kp.
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Proposition 10.32. Suppose that K/k is an abelian extension and L1, L2, L3

are subfields of K℘ such that K℘ ⊃ L1 ⊃ L2 ⊃ L3 ⊃ kp. If the second inequality
holds for both L1/L2 and L2/L3, then the second inequality holds for L1/L3.

Proof. (By lemma 10.2, local fields L1, L2, L3 are the completions of subfields
of K containing k, but the primes of these three intermediate fields are not explicitly
needed.) In the following diagram, homomorphism NL2/L3

is onto, so ιNL2/L3
is

onto and the kernel contains NL1/L2
L∗

1.

L∗
2

NL2/L3−−−−−→ NL2/L3
L∗

2




y





y

ι

L∗

2

NL1/L2
L∗

1

NL2/L3−−−−−→ NL2/L3
L∗

2

NL1/L3
L∗

1

The induced homomorphism NL2/L3
is onto, so [NL2/L3

L∗
2 : NL1/L3

L∗
1] divides

[L∗
2 : NL1/L2

L∗
1]. We have

[L∗
3 : NL1/L3

L∗
1] = [L∗

3 : NL2/L3
L∗

2][NL2/L3
L∗

2 : NL1/L3
L∗

1].

Therefore [L∗
3 : NL1/L3

L∗
1] divides [L∗

3 : NL2/L3
L∗

2][L
∗
2 : NL1/L2

L∗
1]. By the hypoth-

esis, [L∗
3 : NL1/L3

L∗
1] must divide [L3 : L2][L1 : L2] = [L1 : L3], as claimed.

Lemma 10.33. If K℘/kp is abelian then [k∗
p : NK℘/kp

K∗
℘ divides [K℘ : kp].

Proof. The abelian group G(K℘ : kp) has subgroups Gi for 0 ≤ i ≤ s such
that

G(K℘ : kp) = G0 ⊃ G1 ⊃ · · · ⊃ Gs = {1}
and Gi/Gi+1 is cyclic. Let Ki be the fixed field of Gi. The second inequality holds
for the cyclic extensions Ki+1/Ki (proposition 7.4). If the second inequality holds
for Ki/K0 then it holds for Ki+1/K0 by lemma 10.32. By induction, the second
inequality holds for Ks/K0 = K℘/kp, and the conclusion follows.

Theorem 10.34. If K/k is abelian then α →
(

α,K/k
p

)

maps k∗
p onto G(K℘ : kp)

and the kernel is NK℘/kp
K∗

℘.

Proof. If H is the kernel of α →
(

α,K/k
p

)

, then we know that NK℘/kp
K∗

℘

is contained in H (lemma 10.5), so [k∗
p : H] divides [k∗ : NK℘/kp

K∗
℘]. We know

that [k∗
p : H] = [K℘ : kp] (proposition 10.31), and that [k∗ : NK℘/kp

K∗
℘] divides

[K℘ : kp] (lemma 10.33). Therefore [k∗ : NK℘/kp
K∗

℘] = [K℘ : kp]. Finally, since
NK℘/kp

K∗
℘ ⊂ H, then we have NK℘/kp

K∗
℘ = H.
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Ramification and the conductor. If K/k is abelian, let H be the kernel of
φK/k → G(K : k), and let modulus n be the conductor of H. Then W (n) ⊂ H and
if n′ is a modulus such that W (n′) ⊂ H then n divides n′.

Let mp be the conductor of
(

α,K/k
p

)

, that is, let mp be the smallest non-negative

integer such that Wp(mp) is contained in the kernel of α →
(

α,K/k
p

)

.

Lemma 10.35. n =
∏

p mp.

Proof. Let m =
∏

p mp. We first want to show that W (m) ⊂ H. Let E contain
all infinite primes of k and all primes that ramify in K. Let E1 contain all primes
of k not in E such that mp = 0, and let E2 contain all primes not in E such that
mp > 0. E and E2 contain only finitely many primes. If i is in Ik then i = i1i2
where

i1 =
∏

p∈E1

i(ip, p,k),

i2 =
∏

p∈E2∪E

i(ip, p,k).

Since i1 ∈ Ik{E} then φK/k(i1) may be computed from definition (2.1). Since
|i1|p = 1 at every prime p then φK/k(i1) = 1. At each coordinate of i2 we have
(i2)p ∈ Wp(mp), so

φK/k(i2) =
∏

p

φK/k

(

i(ip, p,k)
)

=
∏

p

(

ip,K/k

p

)

= 1.

Therefore φK/k(i) = φK/k(i1)φK/k(i2) = 1. This shows that W (m) ⊂ H, so n
divides m.

We next show that n cannot be a proper divisor of m. Suppose that np < mp for

some p. Then there exists an element α in Wp(np) ⊂ k∗
p such that

(

α,K/k
p

)

6= 1.

Put i = i(α, p,k). Then i is in W (n) ⊂ ker
(

φK/k

)

, so
(

α,K/k
p

)

= φK/k

(

i) = 1, a
contradiction.

Proposition 10.36. If K/k is an abelian extension, then a prime of k is ram-
ified in K if and only if it divides the conductor of the kernel of φK/k.

Proof. Let m be the conductor of the kernel of φK/k. Let p be a prime of k

and let e be the ramification index of p. We want to show that e > 1 if and only if
mp > 0 or, equivalently, that e = 1 if and only if mp = 0.

Suppose that p is finite and not ramified in K. Since every unit of an unramified

extension is a norm then Wp(0) is contained in the kernel of
(

α,K/k
p

)

. Therefore
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mp = 0 if p is finite. Suppose that p is infinite and not ramified in K. This means
K℘ = kp, so every element of k∗

p is a norm. This shows that Wp(0) = k∗
p is contained

in the kernel of the norm residue symbol, so mp = 0 if p is infinite. In both case, if
e = 1 then mp = 0.

Conversely, suppose that p is ramified. If p is infinite then kp is real and K℘

is complex. Not every element of k∗
p is a norm, so we must have mp = 1. Now

suppose that p is a finite prime of k with ramification index e > 1 in K. To show
that mp > 0, we need to show that not every unit (element of Wp(0)) has a trivial
norm residue symbol. Let I = I℘ be the inertial subgroup of the splitting group
S = S℘. Let T be the fixed field of I and let q be the prime of T which ℘ divides.
I has order e, and q is completely ramified in K/T with degree and ramification
index both equal to e. I has a subgroup I ′ so that I/I ′ is cyclic of order e′ > 1.
Let T′ be the fixed field of I′ and let q′ be the prime of T′ which ℘ divides.

{1} ⊂ I ′ ⊂ I ⊂ G
K ⊃ T′ ⊃ T ⊃ k

K℘ ⊃ T′
q ⊃ Tq ⊃ kp

Then T′/T is a cyclic extension of degree e′, and q is completely ramified in T′/T
with ramification index e′. By proposition 7.3, we have

[

uq : NTq′/Tq
Uq′

]

= e′ > 1

Let α be an element of uq that is not in NTq′/Tq
Uq′ . Then

(

α,T′/T
q

)

is not trivial

on T′, so
(

α,K/T
q

)

is not trivial. By corollary 10.4, we have

(

α,K/T

q

)

=

(

NTq/kp
α,K/k

p

)

.

Then NTq/kp
α is an element of up = Wp(0) with non-trivial norm residue symbol.

This shows that mp > 0.

Remark. We have not determined the precise value of [up : NK℘/kU℘] except
in the cyclic case, but we have at least shown that [up : NK℘/kU℘] > 1 if e > 1.

Behavior under isomorphisms. Suppose that K and K′ are two finite exten-
sions of the rational number field and let τ : K → K′ be an isomorphism. Let k be
a subfield of K and let k′ be the image of k under τ .

Lemma 10.37. If K/k is a normal extension then K′/k′ is also normal and
G(K′ : k′) = τG(K : k)τ−1.

Proof. We first show that K′/k′ is normal. Any element τα in K′ is a root
of an irreducible polynomial g(x) over k′, and g(x) = τ

(

f(x)
)

for some irreducible
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polynomial f(x) over k. We have τ
(

f(α)
)

= g(τα) = 0, so α is a root of f(x). If
K/k is normal then f(x) splits completely over k, so g(x) splits completely over k′,
and therefore K′/k′ is normal. We have τG(K : k)τ−1 ⊂ G(K′ : k′). Apply this
result to the inverse isomorphism τ−1 : K′ → K to obtain τ−1G(K′ : k′)τ ⊂ G(K :
k), so the groups are identical.

Lemma 10.38. For each prime p of k we can define a valuation p′ of k′ by
|α′|p′ = |τ−1α′|p. If p is a prime ideal of k then p′ is a prime ideal of k′ and
τ(p) = p′. (Note: if p is an infinite prime then set τ(p) = p′ by formal definition.)

Proof. If p is a prime ideal then we have α′ ∈ p′ if and only if |α′|p′ < 1 if and
only if |τ−1α′|p < 1 if and only if τ−1α′ ∈ p if and only if α′ ∈ τ(p).

Lemma 10.39. Let ℘1, . . . , ℘g be the primes of K dividing p. Then the primes
of K′ dividing τ(p) are τ(℘1), . . . , τ(℘g).

Proof. Certainly |τ−1α′|℘i
is a valuation of K′ extending τ(p), so τ(℘i) is a

prime dividing τ(p). Conversely, if ℘′ is a prime of K′ dividing τ(p) then τ−1(℘′)
is a prime of K dividing p, so τ−1(℘′) = ℘i for some i, and ℘′ = τ(℘i).

Lemma 10.40. If ℘ is unramified in a normal extension K/k the τ(℘) is un-
ramified in K′/k′.

Proof. If α is an integral element in k then τ(α) is integral in k′ and vice versa.
If σ(℘) = ℘ then τστ−1τ(℘) = τ℘, so σ is in the splitting group of ℘ if and only if
τστ−1 is in the splitting group of τ(℘). We have

σ(α) − α ∈ ℘ ⇐⇒ τστ−1(τα) − τ(α) ∈ τ(℘).

so σ is in the inertial group of ℘ if and only if τστ−1 is in the inertial group of τ(℘).

Lemma 10.41. If K/k is an abelian extension and τ : K → K′ is an ismorphism
with k′ = τ(k) and p′ = τ(p) then

τ

(

K/k

p

)

τ−1 =

(

K′/k′

p′

)

.

Proof. The isomorphism τ mapping o to o′ and p to p′ determines an iso-
morphism of the finite field o/p onto o′/p′, so we have Np = Np′. If α′ is in o′

then
(

K/k

p

)

τ−1(α′) =
(

τ−1(α′)
)Np

(mod ℘)

so

τ

(

K/k

p

)

τ−1(α′) = (α′)Np′(

mod τ(℘)
)

,

and this is the defining property of the Artin symbol for p′ in K′/k.
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Lemma 10.42. Let K/k be an abelian extension. The isomorphism τ deter-
mines an isomorphism Ik → Ik′ of idele groups by

(

τ(i)
)

τ(p)
= ip, and we have

τφK/k(i)τ−1 = φK′/k′

(

τ(i)
)

, so the following diagram is commutative.

Ik
φK/k−−−−→ G(K : k)





y

τ





y
τ(·)τ−1

Ik′

φ
K′/k′

−−−−→ G(K′ : k′)

Proof. Let E and E′ contain the infinite and ramified primes of k and k′,
respectively. There is a one-to-one correspondence between primes in E and E′.
Putting i′ = τ(i), we need to show that τφK/k

(

τ−1(i′)
)

τ−1 = φK′/k′(i′) for any idele

i′ in Ik′ . Certainly τφK/k

(

τ−1(i′)
)

τ−1 is a homomorphism of Ik′ onto G(K′ : k′),
and the kernel contains k′∗. We need to show that it agrees with φK′k′(i′) on
Ik′{E′}. Note that since τ(i)τ(p) = ip then ordτ(p)

(

τ(i)
)

= ordp(i), or ordp′(i′) =
ordp(i) where i′ = τ(i) and p′ = τ(p). Then

φK′/k′(i′) =
∏

p′ /∈E′

(

K′/k′

p′

)ordp′ (i′)

=
∏

p/∈E

(

τ

(

K/k

p

)

τ−1

)ordp(i)

= τ





∏

p/∈E

(

K/k

p

)ordp(i)


 τ−1 = τφK/k

(

τ−1(i′)
)

τ−1.

Since φK′/k′(i′) and τφK/k

(

τ−1(i′)
)

τ−1 agree on Ik′{E′} then they agree on all of
Ik′ , which completes the proof.

Lemma 10.43. If K/k is an abelian extension and τ : K → k′ is an isomorphism
with k′ = τ(k), α′ = τ(α) and p′ = τ(p), then we have

(

α′,K′/k′

p′

)

= τ

(

α,K/k

p

)

τ−1.

Proof. Under the isomorphism τ : Ik → Ik′ , we have τ
(

i(α, p,k)
)

= i(α′, p′,k′),
so the conclusion follows by Lemma 10.42.


