CHAPTER X

NORM RESIDUE SYMBOL

Let k be an algebraic number field and let p be a prime of k. We can embed kj
in Iy by @ — i(«, p, k), where

« at prime p of k

i(0,p, k) = { 1

at other primes of k.

Note that if p is a prime of K that divides p and « is in K, then

(101) NK/k(i(a7 £, K)) =i (NKp/kpavpa k)

If K/k is an abelian extension then o — ¢k /x (i(a, p, k)) is a homomorphism of k;,
to G(K : k). Define the norm residue symbol by

<a,K/k

p

) - ¢K/k (i(a7p7 k))

If p is finite and not ramified in K, then the norm residue and Artin symbols are
related by

(10.2) (255 - (Q) i (a) = p°.

p p

If i is an idele in Iy then ¢k /i (i(a,p, k)) can be non-trivial only at the finite
number of primes that are infinite or ramified or for which [i|, # 1, so we may write

o) = w0 — T (2525

» p

Since « in k* is in the kernel of ¢k i, we have the general reciprocity law.

(10.3) 11 (M) =1 foraek’

p p

101
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LEMMA 10.1. If o is a prime of K dividing p then (%/k) s 1n the splitting
group of . Therefore, the norm residue symbol maps ky to G(K, : k;).

PrOOF. Let S be the splitting group of g. let Z be the fixed field of S, and let ¢
be the prime of Z which p divides. We have K, D Z, D k,. Since S = G(K,, : k)
then Z, = k,. Leti =i(a,q,Z)inIz. By (10.1) we have Nz i(a, ¢, Z) = i(a, p, k),

S0
(a,K/k
p

According to proposition 2.19, we have

¢k /x (Nz/ki(o, q,2)) = ¢z (i(e, ¢, Z)).

o, K/k

) = gbK/k (i(a,p, k)) = ¢K/k (NZ/k i(Oé, q, Z))

This shows that

in the image of ¢k z and thus leaves Z fixed. Therefore
(#) is in the splitting group of .

LEMMA 10.2. If TV is a complete field such that k, C T’ C K, then there exists
a field T such that k C T C K, and if p' is the prime of T which g divides then
T, =T.

Proor. Let S be the splitting group of p and H the subgroup of S leaving
T’ fixed. Let T = T N K be the subfield of K fixed by H, and let p’ be the
prime of T which p divides. Then T, C T’, since T’ is complete. On the other
hand [K,, : T)/] divides [K : T], and [K : T| = [H : 1] = [K, : T']. Therefore
K, :Ty]=[K,:T],so T, =T.

LEMMA 10.3. Let T be any finite extension of k, and let K be an abelian exten-
sion of k. If p is a prime of k, let ' be a prime of KT dividing p, and let @' divide
primes @ of k and p’ of T, respectively. Then

(ﬁ,KT/T) _ (NTP//kpﬁ7K/k

p ) ) for B€ Tp.

PROOF. By proposition 2.19 and (10.1), we have

(ﬁlzi"/r/tr) = ¢xr/r(i(6, 0, T)) = dx/x (N1 /ii(8, 0", T))

NTp//kpﬁ7 K/k
» .

= ¢k /x (i(NT,, /x, 0,1, k))
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COROLLARY 10.4. If T C K in lemma 10.3 then KT = K, so

(ﬁ, K/T) _ (NTP,/kpﬁ,K/k

P P

) for B€ Tp.

LEMMA 10.5. The kernel of a — (%/k) contains NKp/ka;;.

PROOF. If @ = Ng_ /k,0 then by corollary 10.4 we have

<a,K/k) _ <NKp/kPB,K/k) _ <ﬁ,K/K) .

p p ©

Kummer extensions. Let k contain the n-th roots of unity, where n is not
necessarily prime, and let p be a prime of k. If 3 is in k}; then consider k;,( /B) /K.

By lemma 4.13, if we choose [y in k* so that |650_1 — 1], is sufficiently small

then 3G3;' = 4™ where v is in k%, so k,(/B) = kp(¥/Bo). Put K = k(3/fo).
The valuation on k,({/8y) restricted to k({/8p) determines a prime p of K which

divides p. Then K, = k,({/5o). If o is in k;, then (%/k) is in G(K,, : k;) by
lemma 10.1. The Galois group G(K,, : k) is isomorphic to a subgroup of the cyclic
group containing the n-roots of unity. There exists an n-root of unity ¢ depending

on « and ( so that
(“50) =<5

p
) = (, we have a map from k; X kj to n-th roots of unity defined by

() 5- () v

p

Setting ( O‘}’f

We may write (O‘Tﬁ) whenever it is necessary to make n explicit.
n

LEMMA 10.6. Symbol (%ﬁ) has the following properties.

D E)EIE) @ -
v (5°)- o (5)-(5)

(c) <#) = (%ﬁﬁ) = <a]’9ﬁ) (f) <1_p0"0‘) —1ifa#0,1




104 X. NORM RESIDUE SYMBOL

PROOF. (a) is obvious. To prove (b), take K, = k,({/a). Let [K, : ky] = m
and d = n/m. Let ¢ be a primitive m-th root of unity. Write N for Nk, /k,- We
would like to show that —a = Nf for some element § in K7. We have

N (¥/a)" = (c¥/a)" (@)’ (" a)" = (arzetmig = (imlmidg

There are three cases to consider. First, suppose that m is odd. Then %m(m +1)d

is divisible by m, so N({L/a)d = a. We have N(—1) = (—-1)" = —1, so
N (—(¢/a)!) = N(-)N(Y/a)! = —a.
Next suppose that m is even and d is odd. Then (z"(m+1d — (—1)(m+d = _1 50
N (¥a)) = —a.

Finally, suppose that m and d are both even. Then C%m(mﬂ)d =1. If (1 be a
primitive n-th root of unity then N(¢;)%/? = C;nd/Q =—1, so

N ( 4/2 (Q/a)d> =(-1)a=—a.
We have found 8 so that —a = Nk _ /i, 0 in all three cases.

To prove (c), choose 3 in k* so that 8 ~, By. Then k(/By) = k(/B) =
k (\"/ ﬂ’y”). Then (O‘Tﬁ> and (%ﬁn) are both determined by norm residue symbol

UZ(M)

p

<a,5) T\L/B:G(q/@) and <a’mn) 7{/57:0(’{/37>=70(T\L/B>

p p

Therefore

(%) - 2052 - ()

To prove (d), choose fy and 7o in kj so that 8 ~, fy and v ~, 7. Then
B ~n Bovo- By (c), we have (O‘T?V) = (%), so we may suppose 3 and 7y are in
k. Since <@) is the restriction to k({/3v) of (a’k( T\L/i’ %)/k), then

(57) V- (2142) 5 (225.508) 5
() ) (222 )

p
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By Lemma 8.5, we have

(=) va=((57) v3) ((557) ) = (5°) (57) v

To prove (e), apply (b) to obtain

1 = <—O[B7O[ﬁ) — <—Oé,04) (ﬁva> <a76) (_676) — <ﬁ,0¢) (Oﬂ,ﬁ)
p p p p p p p /)
To prove (f), suppose that [k, ({/a) : k,] = m, and put d = n/m. Let ¢ be a

primitive n-th root of unity. The conjugates of {/a are (¥ /a for 0 < k < m.
Substitute z = 1 in

" —a=(z— Ya)(z—(Va)... (z - a)

to obtain
n—1 d—1m-—1
i=0 §=0 k=0
d—1m—1 ' d—1 A
= (1= va) = [ N, cvmpm, (1= V).
=0 k=0 j=0

Legendre symbol. If prime p of k does not divide n and {; and (; are two
distinct n-th roots of unity in k, then (; # (2(mod n) by lemma 8.8. The mul-
tiplicative group of o/p therefore contains a subgroup of order n, so n divides
Np — 1. If a € k* and a # 0(mod p), then o?~! = 1(mod p), so aNP~1)/" ig
an n-root of unity modulo p. There is a unique n-root of unity ¢ in k so that
aNP=1)/n — ¢(mod p).

The Legendre symbol (%) is defined to be the n-root of unity satisfying

o = (%) (mod p).

In any finite abelian group having order Np — 1 divisible by n, an element x is an
n-th power if and only if z(NP=1/" = 1. Therefore a is an n-th power modulo p

if and only if (%) = 1. By lemma 8.11, [u, : uj] = n when p does not divide n.
Therefore the homomorphism u,/uy — o,/0; is an isomorphism. This shows that

a is an n-th power in u, if and only if (%) =1
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LEMMA 10.7. Let k contain the n-th roots of unity and let o # 0 be an element
of k. Let p be a prime of k which does not divide n or . The Artin and Legendre

symbols are related by
(5) - (2)

p p

ProoOF. The Artin symbol satisfies

(M) Yo = (/)N (mod p),

p
where prime @ of k({/«) divides p. There is an n-th root of unity ¢ such that

(MDY o)

Then ¢(/a) = (/@) P(mod p). Since ({/a) is a unit in O, we have

Np—1 Np—1

¢ = (@ = (Yo = o™ (mod o)

This show that ( = (%), which completes the proof.

If 8 is a unit in kj, take (p in k sufficiently close to 3 so that 5, 1'is an n-th
power in k7, and we also want 3 = (p(mod p). Then

k(¥ 'k — —
< ( iO) ) . (io) Vi,
and, by (10.2), for a in kj; we have

<a,k<%> /k> _ (W) where () = p"

=D,
D D

SO

<a,k<%) /k) V= (@) B,

D p
Since [y = B(mod p) and k,(/Bo) = k,(/5), we have

)~ ()
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LEMMA 10.8. If k contains the n-th roots of unity, o and 8 are in k,, and p is
a prime of k that does not divide n, then

(59)-() e

p p
<a,5) = <g)_b if (B) = p® and o € u,,.
p p :

PRrROOF. The first formula is (10.4), and the second follows from the first by
lemma 10.6(e).

LEMMA 10.9. If k contains the n-th roots of unity, o and 3 are in k,, and p 1is
a prime of k that does not divide n, then

(O‘_ﬁ> _ (M) if (a) = p® and (8) = p".

p D

PROOF. Choose 7 so that p = (7). Let a = 7%/ and 3 = 7°3’. Then o’ and 3
are in u,, and by lemma 10.6a and 10.6d we have

() (42) (5 9) () ()
p ) p U p p p p )

Applying lemma 10.8, we have (O‘/f’> =1, so0

a,B\  (mm ab BN\ o -0
() -5 G G)

(d) of lemma 10.6, we have (”’”) = (”’—_1) (M) = (ﬂ’_1>, and
_71) by lemma 10.8, so

() (Y () - (2e)

Since 3%/a® = (8')%/(a’)?, the conclusion follows.
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Jacobi symbol; reciprocity law for n-th powers. If k contains the n-th
roots of unity, suppose that the factorization of principal ideals generated by « and
B in k* be (a) = [[p® and (8) = [[p°, where p runs over finite primes of k.
Suppose also that o and § have no common prime divisor, and that [ is relatively
prime to n. Then a,b, = 0 for every finite prime p, and b, = 0 if p divides n. Define
the Jacobi symbol to be the product of Legendre symbols.

bp
(0% (0%
<ﬁ) B bgo <p) '
Note that legendre symbol (%) is defined when b, # 0.
PROPOSITION 10.10 (RECIPROCITY LAW FOR n-TH POWERS). Ifk contains the

n-th roots of unity, and elements o and 3 of k* are relatively prime and are divisible
by no finite prime of k dividing n, then

(5)() -1(%)

where E consists of primes of k that are either infinite or divide n.

PROOF. Applying the general reciprocity (10.3) to k(/3)/k, we have

H<a76) =1 for @ and 3 in k*.

» p

The primes of k for which (O‘};ﬁ ) may be nontrivial belong to four disjoint sets:

primes dividing «, primes dividing 8, primes dividing n, and infinite primes.

IS () TL(%7) I (%)

ap#0 b,#0 pl(n) infinite p

Applying lemma 10.8, we have

SO I )

ap#0 bp#0

and apply the definition of the Jacobi symbol to obtain

() I
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Quadratic reciprocity laws. If pis a complex infinite prime then all extensions

of k, are trivial, so (O"B
J2

when n = 2, since k must contain the n-th roots of unity. If n = 2 then k,(/3) is
nontrivial if and only if b < 0, and in that case « is not a norm if and only if a < 0,

) is always trivial. Real infinite primes may occur only
2

SO (O‘Tﬁ) # 1 for real infinite primes if and only if @ and 3 are both negative, and
we have the following corollary.

COROLLARY 10.11 (GENERAL QUADRATIC RECIPROCITY LAW). Letn =2, and
suppose that k has r real infinite primes. Let o, ..., o0, be the distinct isomorphisms

of k to the real numbers. Put a; = o;(a) and B; = o4(F). If a and B in k* are
relatively prime and are not divisible by any prime dividing (2), then

o\ (B _ 11 (@8 TT(_yystans 1 fei<0,5<0
(E) (a) Bl H ( p )2 H(_l) *, sle, i) = {O otherwise

pl(2) =1

LEMMA 10.12. Suppose that p is a prime of k dividing (2) and (3 is an element
of k; satisfying 8 = 1(mod (4)). Then p is unramified in k,(/p).

PROOF. There is nothing to prove if [k,4/3) : k] = 1, so consider the case that
k,6/B) : kp] = 2. Let x1, x2 form a basis for the ring of integers in k, (/). Write S

for S (\/—) %) /1, and put D = det (S(:clx])) To show that p is unramified, we need

to show that p does not divide the local discriminant D ke, (/3) /iy (D) (chapter
1, p. 6). Let y; =1 and yo = (1 ++/B)/2. We have :

et () S ) = (3 4y ) =

Also, y2 is an integer in k,/3) since it is a root of 22 —z + (1 — 3) /4, a polynomial
with coefficients in o, because 8 = 1(m0d (4)) There are elements a;; in o, such

that y; = Z?Zl a;;x;. Then

t
(S(wiy;)) = (aiz) (S(wiz;)) (aiy)

Putting A = det(a;;), then A is an element of 0,, and 8 = DA?. Since p divides (2),

we have 8 = 1(mod p), so DA% = 1(mod p). Thus p cannot divide the discriminant.

The following special cases of the quadratic reciprocity law are due to Hilbert
and Hecke.
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COROLLARY 10.13 (QUADRATIC RECIPROCITY LAW — HECKE). Suppose that
a and (8 in k* are relatively prime and prime to (2). If either o or (3 is congruent
to a square modulo (4), then

(5) ()

PROOF. Let p be a prime of k dividing (2). If 3 = v*(mod (4)) with v in u,,
then 81 = /7% = 1(mod (4)), and k,(/B1) = kp(/B), so k,4/B) is unramified by
lemma 10.12. Since « is a unit in k,, it is a norm from k,§/3), so (O‘Tﬁ) = 1. The
case for a follows by symmetry (Lemma 10.6e). 2

COROLLARY 10.14 (QUADRATIC RECIPROCITY LAW—HILBERT). Suppose that
k has no real primes, and suppose the class number h is odd. Let p and q are two
distinct prime ideals which do not divide (2). Then p" = (z) and ¢" = (y) are

principal, and
z y) T (%Y
(Q) (p ,E‘ ¢ )

Proor. We have (%) = (E)h = (%), and (%) = (g)h = (%) The result

q P
now follows from corollary 10.11 with » = 0.

COROLLARY 10.15 (QUADRATIC RECIPROCITY LAW FOR RATIONAL NUMBERS).
Suppose that positive integers a and b are relatively prime and both odd. Then

()=

PROOF. Since a and b are positive, we only need to consider p = 2. By lemma
10.12, if b = 1(mod 4) then Q(g)(\/l_))/Q(g) is unramified. Then a is a norm, so

(?—;;) = 1. The same holds if a = 1(mod 4)by lemma 10.6e. Suppose that a =

b = 3(mod 4). Every integer that is a norm from Q(g)(\/l_)) has the form z? — by?
where 2 and y are in integers of that field. But 2% — 3y? = 22 + y?(mod 4), so
norms can take only the values 0, 1, or 2 (mod 4). Therefore a cannot be a norm,

SO (%’) = —1.

Quadratic reciprocity law for Gaussian integers. We need a few preliminary re-
sults. Let i representy/—1, and let k = Q(i), and let o be the ring of integers of
k.
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LEMMA 10.18. The integers of k are the Gaussian integers, that is, 0 = Z + Zi.

PROOF. Since every element of k satisfies a 2-nd degree equation over Q, if
element o = (a/b) + (c/d)i of k is integral over Q then both Sy,qa = —2a/b and
Ny/qa = (a*/b*) +(¢?/d?) = (a*d® +b*c?) /(b*d?) are integers. Then b must divide
a’d?. We may take a and b to be relatively prime, so b divides d. Likewise, d
must divide b%c?; we may take c and d to be relatively prime, so d divides b. Since
d = +b, we have a?d? 4+ b%c® = a?b? + b2c? is divisible by b?*, so a? + ¢? is divisible
by b%. Since —2a/b is an integer then b divides 2. If b = £2 then a? + ¢ would be
divisible by 4, but that is impossible because a and ¢ must both be odd if b = +d
is even. Therefore we must have b = +1, and a = +a + ¢i, so o C Z + Zi.

LEMMA 10.19. (2) is ramified in k. p = (1 4 4) is the prime of k dividing (2)
and [kp : Q(g)} = 2.

PROOF. In the field Q(i), we have (1 +4)? = (2i) = (2). Since efg = 2, it must
be that p = (1 + 4) is prime, (2) is ramified with ramification index e = 2, and
f=1,g=1 Finally, k,: Q] =ef = 2.

LEMMA 10.20. p = (14 1) is ramified in k (/i ), and [k, (/i) : k,] = 2.

PROOF. First, suppose that there exist a and b in Qo so that (a + bi)? = i.
Then a? —b?+2abi = i, so a®> = b? and 2ab = 1. That would mean ords(a) = ordy(b)

and 1+ 2ordy(a) = 0 which is impossible. Therefore z? — i is irreducible over k,,
SO [kp M) : kp} = 2. Next, we have

Ny vy, (V1) = (14V3) (1-Vi) =1-4.

We have 1—i = —i(1+1), so ord,(1—4) = 1. Let p be the prime of k, (/7) dividing
p, and let ord,, (1 +v/i) = a. Then

o= N, (14V5)
But Np = Np/, so af = 1. We must have a = f = 1, so e = 2. We have shown
that p is ramified and also that p = (1 —1—\/;) in k, M)

LEMMA 10.21. Let p be the prime of k dividing (2). If a and 3 are units then

(a];ﬁ) only depends on o and 3 modulo (4).

Np™* = ’1 +Vi

_ 1Nl
p—|1—z|p—Np .

PROOF. If (3 is a unit of 0, and § = (' (mod (4)) then '3 = 1(mod (4)).
Therefore k, (x/ﬁ_lﬂ’> /k, is unramified by lemma 10.12, so (W) =1if «

is a unit of o,. This shows that (O‘TF) = (O"TB/), and the case for a follows by
symmetry using lemma 10.6e.
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LEMMA 10.22. In k,, every unit in o, is congruent modulo (4) to exactly one
of the following set of eight elements

{iz‘a(3+2z‘)a’\ a=0,1 a'zo,l}.

PROOF. Since p = (1 + i) it follows that an integer a + bi is in p if and only if
a = b(mod 2). We have (4) = p*, so the sixteen elements a + bi such that 0 < a < 4
and 0 < b < 4 form a complete set of residues modulo (4). Every element of o not
divisible by p is congruent modulo (4) to exactly one of the set of eight elements

(10.5) {a+bi] 0<a<4,0<b<4,and a## b(mod 2)}.
The eight elements £i%(3i + b)® for a = 0,1 and b= 0,1 are

+1, i, £(3+2), and = (2—3i).
These coincide modulo (4) with the eight elements in (10.5).

PROPOSITION 10.23 (QUADRATIC RECIPROCITY LAW—GAUSSIAN INTEGERS).
Let oo = £i%(3 + 20) modulo (4), and § = £i®(3 + 2i)" modulo (4). Then

(5) ()

PROOF. There are no real infinite primes of k, and p = (i + 4) is the only prime

dividing (2), so
(8) (g) [ (34 20), £ib(3+ 20)
8)\a) p '

We have (%le) = (ﬂ) = 1 and also (%) = (u) (7’—_1> = 1 for every unit

p p p
v of ky, since —1 is a square in k. Therefore

(5)0)- (2 (52 - (252

We need to show that (%) = —1. If (%) = 1, then we would have

(C"Tzﬁ) = 1 for all units a and 3 in o,. However k,(/i)/k, is ramified, so there

exists a unit of o, which is not a norm by lemma 7.6. This shows that (%)
cannot be 1.

REMARK. The quadratic reciprocity law for the rational number field may re-
stated in a form that is analogous to proposition 10.13. If a = (—1)*(mod 4) and

B = (~1)"(mod 4), then (5)(2) = o
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Local class field theory. It will be shown that the norm residue symbol maps
ky onto G(K,, : kj) with kernel Nk, KF. First, we show that the following
assertion holds for abelian extensions by reducing the abelian case to the case of
cyclic extensions of prime degree (lemma 11.24), then to the case Kummer exten-
sions (lemma 10.25), then by proving the assertion for Kummer extensions (lemmas
10.26—10.30). We then prove that the kernel is Nk, /x, K§-

ASSERTION. If p is a prime of K dividing p then homomorphism
- (a,K/k)
p

Because K/k is abelian, if @1, ..., p, are the primes of K dividing p then the
Galois groups G(K,, : k;) all coincide and the norm groups Nk, /x, K, all coincide.

maps k;; onto G(K, : k).

LEMMA 10.24. If Assertion holds for cyclic extensions of prime degree, then
Assertion holds for abelian extensions in general.

PROOF. Suppose Assertion is false for some abelian extension K/k and prime
o dividing p. Let S be the splitting group of p, and let Z be the fixed field of
S. Then S,(K : Z) = S,(K : k). Let g be the prime of Z divisible by p. Then
k, C Z, C K. Every element of Z,, is fixed by S = G(K,, : k), so Z, = k,,, and

N K/k
ot () _ (Namt Y _ (0K,
q p p

Let o be an automorphism in S, (K/k) that is not in the image of k;. Then o is
also an automorphism in S, (K/Z) that is not in the image of Zj. Therefore the
Assertion is false for K/Z and prime p dividing q. We need to show that Assertion
is false of a cyclic extension of prime degree. We have

S=5,K:k)=5,K:Z)=GK:Z) and S=GK,:k,)=GK,:Z,).

Let H the image of Z;. Then H is a proper subgroup of G(K,,/Z,). Let L be the
fixed field of H. There exists a subgroup H' such that H C H' C S and S/H’ is
cyclic of prime degree. Let L’ be the fixed field of H’, and let ¢’ be the prime of L’
which g divides. We will show that the Assertion if false for L’/Z.

K > L > L' > 7Z

| | | |
{1t ¢ H ¢ H c S
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The number of primes of K dividing ¢ is equal to the index of S,(K : Z) in G(K : Z).
It follows that @ is the only prime of K which divides ¢, so ¢’ is the only prime of
L’ which divides q. We conclude that Sy/(L' : Z) = G(L' : Z), so Sy (L' : Z) is
a non-trivial cyclic group of prime degree. On the other hand, if o is in Z, then
(%) is the restriction of (#) (which is in H) to L’ (which is contained in

the fixed field of H), and is therefore always trivial. This shows that Assertion is
false for cyclic extension L’ of Z and prime ¢’ dividing q.

LEMMA 10.25. If Assertion holds for cyclic extensions of prime degree n where
the base field contains the n-th roots of unity, then the assertion holds for all cyclic
extensions of prime degree.

Proor. Let K/k be a cyclic extension of prime degree n, and let p be a prime
of K dividing prime p of k. If [K/k,] = 1 then Assertion holds trivially for K/k,
so let us suppose that K, /k,] = n. We only have to show the existence of some
element of kj with non-trivial norm residue symbol. Let Z = k(¢), where ( is a
primitive n-th root of unity. Let ¢’ be a prime of KZ dividing g, and let p’ be
a prime of Z which ¢’ divides. KZ is a abelian extension of k (lemma 2.12) and
[Z : k] divides n — 1, so Z N K = k and therefore [KZ : Z] = [K : k] = n.

Since [Z, : k] divides n—1 then [(KZ), : Z/] = [K,, : k,] = n. The hypothesis
is that Assertion holds for KZ/Z, so there is an element « in Z;, so that the norm

(a,KZ/Z
/

residue symbol ) is not trivial, and by lemma 10.3, its restriction to K is

N L, K/k
(L/) If (O‘iji,z/z) were trivial on K then it would be trivial on all of

Z.) . . Nz , ipe K/k
KZ, which is impossible, so we conclude that [ ———

residue symbol for K/k. ’

) is a non-trivial norm

Proof of Assertion for Kummer extensions. Let n be prime, let k contain the
n-th roots of unity, and let K/k be a cyclic extension of degree n. By lemma 8.7,
there exists an element v of k* so that K = k ((L/'_y) Let ¢ be a prime of k. The
Galois group G (kq(W) : kq) does not depend on the choice of the prime of K
dividing gq.

Let E be a set of primes of k containing ¢, primes dividing (n) or (), all infinite
primes, and primes such that Iy = k*I(F). Suppose that E contains s+ 1 primes.
By the unit theorem (6.13), k*(E)/k*(E)™ is the direct product of s + 1 cyclic

groups of order n. Let fy,...,0s be a set of generators. In the proof of Lemma
8.18, it was established that there exist primes py,...,ps not in E such that

Ky (V03;) =Kp ifi#]

k,, (\”/ ﬁj) # k,, and the extension is not ramified.



X. NORM RESIDUE SYMBOL 115

For j =0,...,s, choose an element 7; in k,, so that p; = (7;) and put

ij = i(ﬂ—%pj?k)'
Choose «a; in k* so that ijozj_1 is in Iy (E). Note that if p ¢ E then «; is in u,
except at p = p;, and at p = p;, we have («a;) = (7;).

LEMMA 10.26. Ifp ¢ EU{po,...,ps} then (%@) =1for0<i,j <s.

ProOOF. The only primes of k which can ramify in k, (W) are those dividing
n or f3;, all of which are in F, so if p is not in F then k, (ﬁ) is unramified. If p
is not in E and not in {po,...,ps} then a; is a unit, so the norm residue symbol

(%ﬂ) is trivial for 0 <i,5 < s.
LEMMA 10.27. For the primes pg,...,ps and 0 < 1,7,k < s, we have

1 unless i =j =k
ay, ﬁz -
YA
Dk — ifi=7j=k,
Dk
and Legendre symbol (f—:) is a primitive n-th root of unity.
Proor. If ¢ # k then k,, ({L/E) =k, so (O"—’BZ> = 1 for every j. Suppose

P
i=k. If0<j<sandj#k, then o isin u,,. Since k,, (¥/Bk) /kp, is unramified
then (a;%f’“) = 1. Finally, if j = k, then since (ay) = (7x) we have (O";—f’“) = (g—:)
by lemma 10.8.

LEMMA 10.28. (k*(E)IZ(E))/TL(E) is the direct product of s+ 1 cyclic groups
of order n, and the elements By, ..., s generate k*(E)I}(E) modulo I} (E).

Proor. We have

K'(E)g(E) k'(E) _ K'(E)
E) K(E)NIYE) ke (B)"

since, by (8.19a), we have k*(E) NI} (E) = k*(E)™.

If i is in Iy, let i® denote the projection of i onto [] k*, that is

pEE Tp?
. i, ifpekl
( )p_{1 ifp ¢ E.

E

For each of the elements ay, ..., as we have the projections o, ..., aF.
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LEMMA 10.29. I (E)/(k*(E)IX(E)) is the direct product of n**1 cyclic groups
of order n, and the projections ot ,... oF generate I (E) over k*(E)IZ(E).

PRrROOF. We found [Ix(E) : k*(E)I(E)] = n*t! at formula (8.18) in the proof of
lemma 8.16. Since n is prime and the order of every element of Iy (E) / (k*(E)IZ(E))
divides n, then the group must be the product of n**! cyclic groups of order n.
Dyao . (aF)as. We

a _ ~F E _
Let o = g ...a5*. Then o = o™ [[ ¢p ap, and a® = (ag

want to show that the n**! products

(af)w .. (af)e 0<a;j<n, 0<j<s

S

all lie in different cosets modulo k*(E)IZ(E). Suppose that of is in k*(E)IZ(E).
If we can show that a; = 0(mod n) for 0 < j <'s, then we will be done.

For ¢ = 0,...,s, the only primes of k which can ramify in k ({L/E) are those
dividing n or §; (lemma 8.9), and f; is in k*(E). Therefore all primes which can
ramify in k ({L/E) are in E. This shows that

L(E) € Ny () i /)

S0
K (E)(E) C KN, (o () © ker(cbk (VA /k>.
Therefore, if of is in k*(E)IZ(E), then ¢k( V) /k(aE) =1, so we have

o, k(/53;) /k
L=yl = A mnd L o um )g<¥>

Since a = ag°...a%, then by lemma 11.4 the only primes for which the norm

residue symbols in the above formula can be non-trivial are py, ..., ps, S0 we have
= Bi /k> Qi ﬂz .
1:H<(— HH L fori =0,...s.
k=0 p k=0 j=0

By lemma 10.27, all terms of the product are trivial except when i = 7 =k, so

1:(%’—@) :(%) fori=0,...,s
Di i

The symbols (%) are primitive n-th roots of unity (lemma 10.27), so

a; = 0(mod n) fori=0,...,s

This completes the proof of the lemma.
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LEMMA 10.30. Let K = k(W) be a cyclic extension of prime degree n over
field k containing the n roots of unity, and let prime @ of K divide prime q of k.
Then Assertion holds for K/k.

PRrOOF. The Galois group G(K,, : k;,) does not depend on the choice of p
dividing ¢. Since k(W) /k is cyclic of prime degree, then kq({l/'_y) /kq is either
trivial or cyclic of degree n. If kq(W) = k, then there is nothing to prove, so
suppose that kq(w) # k;. We need to show that there exists an element « in kj
for which the norm residue symbol for g is not trivial. Let us make the hypothesis
that all norm residue symbols for k( {1/7) /k are trivial at the prime q. We will show

this to be impossible.
Consider the idele i(7, ¢, k) in Ix(E). By lemmas 10.28 and 10.29, we have

i(v,q,k) = a"pi

where
a=ad...a%, pB=p.. 3% icI}(E).

tvs ) s

At prime ¢, we have v = o 3i,. Since ¢ is in E, we therefore have v ~,, a3, and

kq("aﬁ) = kq(W). But kq(W) # kg, s0 aff # 1.

For any ¢ in k*, we have
0, af 0, afs 0, afs
1:H(p):H(p)H<p)'
P p¢E peE

Consider the product over primes p in E. If p # ¢ then we have 1 = afi, with
i, € (k;)", so aff =, 1in kj, and therefore (‘S’%ﬁ> =1;if p = ¢, then ((%7) =1by

our hypothesis. Therefore all terms of the product over E vanish, and we have

(10.6) 1=1] <5’ 0‘6) for § € k*.

p¢E p

Since a8 # 1 then either v # 1 or 5 # 1. Suppose that « # 1. Then a;, # 0(mod n)
for some k. In this case, take § = . Then (10.6) becomes

) I

p¢E p¢E p¢E

If p is not in E then (B’;Tﬁ> = 1 because kp(\"/ﬁk) /kp is unramified and § is in
k*(FE); also, (BkTa> = 1 unless p is one of py,...,ps by lemma 10.26. Then, by
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lemma 10.27, we have

I -0 - (5
005 -5 -6

—an
But this is impossible since (f—:) is a primitive n-root of unity by lemma 10.27.

Therefore a = 1. The other possibility is that 5 # 1, and we have by # 0(mod n)
for some k. In this case, take § = . Applying lemma 10.26 to (10.6), we obtain

R D) -G

p¢E

By lemma 10.27, we have

CHACE) (5 ()

7=01%=0

k
But this is also impossible since (5—’:) is a primitive n-root of unity. Since both

cases are impossible, the hypothesis that (‘8’77) = 1 for all ¢ in k; has led to a

contradiction. This concludes the proof.

ProposiTION 10.31. Let K/k be an abelian extension and let prime p of K
divide prime p of k. Then homomorphism

e

Proor. The proposition follows from lemma 10.24, 10.25 and 10.30.

maps k;, onto G(K,, : k;).

Second inequality for local extensions. The assertion that [k* : Nk _ /i, K7
divides [K,, : k| is the second inequality for local extensions. We will show that if
K/k is abelian then the second inequality holds for the completions K, /k,.
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PROPOSITION 10.32. Suppose that K/k is an abelian extension and Ly, Lo, Ls
are subfields of K, such that K, D L; D Ly D L3 D k,. If the second inequality
holds for both Ly /Ly and Lo /Lg, then the second inequality holds for L /Ls.

PRrROOF. (By lemma 10.2, local fields Ly, Lo, L3 are the completions of subfields
of K containing k, but the primes of these three intermediate fields are not explicitly
needed.) In the following diagram, homomorphism Ny, /Ly 18 onto, so Ny, /1, 18
onto and the kernel contains Ny, /1,,L7.

Ni,/L
* 2/L3 *
L2 NLQ/L,?,LQ
| [
L; Ni,/L3  Np,,o,L3
Ny, /L, LT Ny, /L3L7

The induced homomorphism Ny, /., is onto, so [Ny, L5 : Ny, L] divides
[L3 : Ny, /L, Li]. We have

[L3 : Ny, r,Li] = [L3 : Ny, 1, L5][Ny, /1, L5 : Ny, /1, Li].

Therefore [Lj : Ny, /1, Li] divides [L3 : N, /1, L5][L5 : Ny, /1, Li]. By the hypoth-
esis, [Lj : Ny, /1,,Li] must divide [Lj : Lo][L; : Lo] = [L; : Lg], as claimed.

LeEMMA 10.33. If K, /k, is abelian then [k; : N i K3, divides [K, : kp].

PRrROOF. The abelian group G(K,, : k,) has subgroups G; for 0 < i < s such
that
GK,:ky)=GyDG D---DGs={1}

and G;/G;41 is cyclic. Let K; be the fixed field of G;. The second inequality holds
for the cyclic extensions K;,1/K; (proposition 7.4). If the second inequality holds
for K;/Kj then it holds for K;;1/Ky by lemma 10.32. By induction, the second
inequality holds for K, /Ky = K, /k,, and the conclusion follows.

THEOREM 10.34. IfK/k is abelian then o — (%ﬁ) maps k; onto G(K,, : kp)
and the kernel is Ny /i, K5,

ProoF. If H is the kernel of o — [ @K/X

is contained in H (lemma 10.5), so [kj : H| divides [k* : Nk s, K;]. We know
that [kj : H] = [K,, : kp] (proposition 10.31), and that [k* : Ng_/ Kj] divides
K, : k] (lemma 10.33). Therefore [k* : Nk /i, Kf] = [K, : k. Finally, since
NKK,/ka;; C H, then we have NKK,/ka;; =H.

), then we know that Nk /i, K
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Ramification and the conductor. If K/k is abelian, let H be the kernel of
¢k /x — G(K : k), and let modulus n be the conductor of H. Then W(n) C H and

if n/ is a modulus such that W(n') C H then n divides n'.

o, K/k

Let m,, be the conductor of ( ), that is, let m,, be the smallest non-negative

integer such that W), (m,) is contained in the kernel of a@ — (%ﬂ‘)
LEMMA 10.35. n =[], my.

PROOF. Let m =[], m;,. We first want to show that W (m) C H. Let E contain
all infinite primes of k and all primes that ramify in K. Let E; contain all primes
of k not in E such that m, = 0, and let Ey contain all primes not in E such that
my, > 0. E and E5 contain only finitely many primes. If i is in Iy then i = i;i
where

il - H i(i;mp?k);
peE;

=[] i(ipp.Kk).

peEESUE

Since i; € Ix{E} then ¢k k(i1) may be computed from definition (2.1). Since
i1], = 1 at every prime p then ¢k i(i1) = 1. At each coordinate of i, we have
(i2)p € Wp(myp), so

oxcpelin) = [ [ oy (ilip, 2. k) = [ (M) .

» p

Therefore ¢K/k(i) = ¢K/k(i1)¢K/k(i2) = 1. This shows that W(m) C H, SO N
divides m.
We next show that n cannot be a proper divisor of m. Suppose that n, < m,, for

some p. Then there exists an element a in W,(n,) C kj; such that %ﬂ‘) # 1.

Put i = (e, p,k). Then iis in W(n) C ker (¢ k), s0 (a’I;/k) =¢xn(i) =1, a

contradiction.

PropPOSITION 10.36. If K/k is an abelian extension, then a prime of k is ram-
ified in K if and only if it divides the conductor of the kernel of ¢k k-

PROOF. Let m be the conductor of the kernel of ¢k /. Let p be a prime of k
and let e be the ramification index of p. We want to show that e > 1 if and only if
m,, > 0 or, equivalently, that e = 1 if and only if m, = 0.

Suppose that p is finite and not ramified in K. Since every unit of an unramified

extension is a norm then W), (0) is contained in the kernel of (#) Therefore
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myp = 0 if p is finite. Suppose that p is infinite and not ramified in K. This means
K, = k;, so every element of k is a norm. This shows that 1¥},(0) = kj, is contained
in the kernel of the norm residue symbol, so m,, = 0 if p is infinite. In both case, if
e =1 then m, = 0.

Conversely, suppose that p is ramified. If p is infinite then k, is real and K,
is complex. Not every element of k; is a norm, so we must have m;, = 1. Now
suppose that p is a finite prime of k with ramification index e > 1 in K. To show
that m, > 0, we need to show that not every unit (element of W,(0)) has a trivial
norm residue symbol. Let I = I, be the inertial subgroup of the splitting group
S =5,. Let T be the fixed field of I and let ¢ be the prime of T which g divides.
I has order e, and ¢ is completely ramified in K/T with degree and ramification
index both equal to e. I has a subgroup I’ so that I/I’ is cyclic of order ¢ > 1.
Let TV be the fixed field of I’ and let ¢’ be the prime of T/ which g divides.

{1y ¢ I ¢ I < G
K > T > T D> k
K, > T, > T, O k

Then T'/T is a cyclic extension of degree €/, and ¢ is completely ramified in T//T
with ramification index ¢’. By proposition 7.3, we have

[uq : NTq//Tqu’] = 6/ > 1

Let a be an element of u, that is not in NTq,/Tqu/. Then (#) is not trivial

on T, so (#) is not trivial. By corollary 10.4, we have

(2 - (umesct)

q B p

Then N /i, is an element of u, = W,,(0) with non-trivial norm residue symbol.
This shows that m, > 0.

REMARK. We have not determined the precise value of [u, : Nk _ /U] except
in the cyclic case, but we have at least shown that [u, : Nx_;Ug] > 1if e > 1.

Behavior under isomorphisms. Suppose that K and K’ are two finite exten-
sions of the rational number field and let 7 : K — K’ be an isomorphism. Let k be
a subfield of K and let k/ be the image of k under 7.

LeMMA 10.37. If K/k is a normal extension then K'/k' is also normal and
GK':K)=7G(K : k)71

Proor. We first show that K’/k’ is normal. Any element 7o in K’ is a root
of an irreducible polynomial g(z) over k', and g(z) = 7(f(z)) for some irreducible
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polynomial f(z) over k. We have 7(f(a)) = g(ra) = 0, so a is a root of f(z). If
K /k is normal then f(x) splits completely over k, so g(z) splits completely over k',
and therefore K’/k’ is normal. We have 7G(K : k)7~! ¢ G(K' : X’). Apply this
result to the inverse isomorphism 77! : K’ — K to obtain 7 !G(K’ : k)7 ¢ G(K :
k), so the groups are identical.

LEMMA 10.38. For each prime p of k we can define a valuation p’ of k' by
/|, = |77 |, If p is a prime ideal of k then p’ is a prime ideal of X' and
7(p) = p'. (Note: if p is an infinite prime then set T(p) = p’ by formal definition.)

PROOF. If p is a prime ideal then we have o’ € p’ if and only if |o/|,y < 1 if and
only if |[771a/|, < 1 if and only if 77!’ € p if and only if o/ € 7(p).

LEMMA 10.39. Let p1,...,p, be the primes of K dividing p. Then the primes
of K’ dividing 7(p) are 7(p1),...,T(pg)-

PrOOF. Certainly |77 1’|, is a valuation of K’ extending 7(p), so 7(p;) is a
prime dividing 7(p). Conversely, if ¢’ is a prime of K’ dividing 7(p) then 771(¢’)
is a prime of K dividing p, so 771(p’) = g; for some i, and ¢’ = 7(p;).

LEMMA 10.40. If p is unramified in a normal extension K/k the 7(p) is un-
ramified in K'/k'.

PROOF. If o is an integral element in k then 7(«) is integral in k’ and vice versa.
If o(p) = p then o717 (p) = Tp, so o is in the splitting group of g if and only if

o7~ ! is in the splitting group of 7(p). We have

ola) —a € p <= Tor (10) — 7(a) € T(p).

1

so o is in the inertial group of g if and only if 707~ is in the inertial group of 7(p).

LEMMA 10.41. IfK/k is an abelian extension and T : K — K’ is an ismorphism
with X' = 7(k) and p’ = 7(p) then

(5-(5)

PRrROOF. The isomorphism 7 mapping o to o’ and p to p’ determines an iso-
morphism of the finite field o/p onto o' /p’, so we have Np = Np/. If o is in o

then
(KT/k) r ) = (r~1(e) ¥ (mod )

SO
K/k /
T (—/ ) 1) = (/)N (mod 7(p)),
p
and this is the defining property of the Artin symbol for p’ in K’ /k.
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LEMMA 10.42. Let K/k be an abelian extension. The isomorphism T deter-
mines an isomorphism Iy — Iy of idele groups by (T(i))T(p) = 1i,, and we have

Tox ()77 = ¢x e (7(3)), so the following diagram is commutative.

L 2%, (K : k)

F e

Ik’ M) (K/ . k/)

PROOF. Let E and E’ contain the infinite and ramified primes of k and K/,
respectively There is a one-to-one correspondence between primes in E and FE'.
Puttmg i’ = 7(i), we need to show that 7ok i (771 (1)) 77! = ¢k i (i) for any idele
i’ in Iir. Certainly 7¢k i (7 1(i"))7! is a homomorphism of I onto G(K' : k'),
and the kernel contains k’*. We need to show that it agrees with ¢k (i’) on
I {E’}. Note that since 7 (')T(p) = i, then ord,, (7(i)) = ordy(i), or ord, (i') =
ord, (i) where i’ = 7(i) and p’ = 7(p). Then

b e (i) = H (K;j//k')olrdp/(l _ H( <K/k) B )ordp(i)

p/ ¢El

SIS ) I E——

pg¢E p

Since ¢k /i (') and Téx i (77(')) 77! agree on I { E'} then they agree on all of
I/, which completes the proof.

LEMMA 10.43. IfK/k is an abelian extension and 7 : K — K’ is an isomorphism
with k' = 7(k), o/ = 7(a) and p’ = 7(p), then we have

() (52

PrOOF. Under the isomorphism 7 : Iy — I/, we have T(i(a,p, k)) =i(a/,p', X),
so the conclusion follows by Lemma 10.42.



