
CHAPTER I

PRELIMINARIES

Unique factorization of ideals in algebraic number fields. Let k be a
finite extension of the rational number field Q. An integer of k is an element of k

which satisfies a monic irreducible polynomial with coefficients in the ring of rational

integers Z. The integers of k form a ring o that is finitely generated over Z. Every
ideal of o is finitely generated, and every prime ideal is maximal.

A subset a of k is a fractional ideal of o if a is an o-module such that for
some element γ of o depending on a we have γa ⊂ o. Any non-zero element α
of k generates a principal fractional ideal (α) = αo. (If α is a root of polynomial
a0x

n+a1x
n−1+· · ·+an over Z, then an

0α is an integer in k, and an
0 (α) = (an

0α) ⊂ o.)
The product of fractional ideals a and b is the fractional ideal generated by products
αβ with α in a and β in b. For principal fractional ideals, we have (α)(β) = (αβ).
Every non-trivial fractional ideal a of o is invertible: there is a fractional ideal a′

so that aa′ = o. Non-zero principal fractional ideals are invertible because if α 6= 0
then (α)(α−1) = (1) = o. In fact,

Although o is not in general a unique factorization domain, every non-trivial
fractional ideal a of o has a unique factorization

a = pn1

1 . . . pnk

k ,

where p1, . . . , pg are distinct prime ideals of o and the rational integer exponents ni

are non-zero (but may be positive or negative).

Valuations and completions. A valuation of field k is a non-negative real-
valued function ψ defined on k satisfying

ψ(α) = 0 if and only if α = 0,

ψ(αβ) = ψ(α)ψ(β),

ψ(α+ β) ≤ ψ(α) + ψ(β).

Valuation ψ is non-trivial if there is some α in k for which ψ(α) 6= 0 and ψ(α) 6= 1.
Two valuations ψ1 and ψ2 are equivalent if a sequence converges to zero with respect
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to ψ1 if and only if it converges to zero with respect to ψ2, in which case there is
some positive real constant c such that ψ1(α) =

(

ψ2(α)
)c

.
Valuations are classified as archimedian or non-archimedian. A valuation is non-

archimedian if it satisfies the stronger inequality

(1.1) ψ(α+ β) ≤ max
(

ψ(α), ψ(β)
)

,

otherwise it is archimedian. Every archimedian valuation of Q is equivalent to the
ordinary absolute value.

Archimedian valuations on k. If k is generated by α0 over the rational field Q,
let f0(x) be the irreducible polynomial over Q satisfied by α0. Over the real field R,
f0(x) splits into a product of r1 linear and r2 irreducible quadratic factors. Corre-
sponding to the r1 roots of linear factors, there will be r1 isomorphisms σ1, . . . , σr1

of k onto subfields of R. Corresponding to the r2 conjugate pairs of roots of qua-
dratic factors, there will be r2 pairs (τ1, τ̄1), . . . , (τr2

, τ̄r2
) of isomorphisms of k onto

subfields of the complex field C. Members of each pair (τj, τ̄j) differ by complex
conjugation.

τ̄j(α) = τj(α)

These r1 +2r2 isomorphisms do not depend on the choice of α0. Each isomorphism
σi of k into R determines an archimedian valuation on k; the normalized valuation
is defined using the ordinary real absolute value.

(1.2) |α|σi
= |σi(α)|

Each pair (τj, τ̄j) of isomorphisms of k into C determines an archimedian valuation
on k; the normalized valuation is defined using the square of the ordinary complex
absolute value.

(1.3) |α|τj
= |α|τ̄j

= τj(α)τ̄j(α) = τj(α)τj(α) = |τj(α)|2

Non-archimedian valuations on k. Let ψ be a non-trivial non-archimedian valu-
ation of k. Every rational integer a satisfies ψ(a) ≤ 1, because

ψ(a) = ψ(1 + · · · + 1) ≤ max(ψ(1), . . . , ψ(1)) = 1.

Every integer α in o satisfies ψ(α) ≤ 1, because α is a root of a monic polynomial
xn + a1x

n−1 + · · · + an with rational integer coefficients and by (1.1) we have

ψ(α)n ≤ max
(

ψ(a1)ψ(αn−1), . . . , ψ(an−1)ψ(α), ψ(an)
)

≤ max
(

ψ(α)n−1, . . . , ψ(α), 1
)

,
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which is possible only if ψ(α) ≤ 1. The subset of elements α of o satisfying ψ(α) < 1
is a prime ideal of o which depends only of the equivalence class of ψ.

Conversely, we can construct a non-trivial non-archimedian valuation of k for
each prime ideal of o. Let p be a prime ideal of o. If α is a non-zero element of k,
consider fractional ideal (α). We have

(α) = pmb

where b is a (possibly trivial) fractional ideal relatively prime to p. Put ord(p, α) =
m. Choose a positive real constant c. Define p-adic valuation ψc by

ψc(α) =

{

cord(p,α) for α 6= 0

0 for α = 0.

This is a non-trivial non-archimedian valuation on k; different choices for c produce
equivalent valuations. Thus there is a one-to-one correspondence between equiva-
lence classes of non-trivial non-archimedian valuations of k and prime ideals of the
ring o.

Since o is finitely generated over Z and prime ideals of o are maximal, the
quotient ring o/p is a finite field. Let Np be the number of elements in o/p. The
normalized p-adic valuation of k is defined by

|α|p = (Np)−ord(p,α) for α 6= 0.

The concept of prime of k is generalized to mean equivalence class of non-trivial

valuations on k. We have non-archimedian finite primes of k corresponding to
prime ideals of ring o, and archimedian infinite primes defined by (1.2) and (1.3).
Taking the product over all primes p using normalized valuations, we have

∏

p

|α|p = 1 for α ∈ k, α 6= 0.

Completion of k with respect to a non-trivial valuation. An infinite
sequence {αi} of elements of k is Cauchy with respect to valuation ψ on k if and
only if limi,j→∞ (ψ(αi − αj)) = 0. The set of Cauchy sequences forms a ring, in
which the set of sequences converging to zero is a maximal ideal. The quotient ring
kp is a field that depends only on the prime p determined by ψ. The valuation can
be extended to kp by defining ψ ({αi}) = limi→∞ ψ(αi) (the right side converges in
R). Then kp is complete with respect to the extended valuation. There is a natural
isomorphism σ : k → kp mapping each element of k to a constant sequence.
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If p is archimedian then kp is isomorphic to the real field R or the complex
field C, depending whether the valuation is defined by (1.2) or (1.3). If p is non-
archimedian then kp is the field of p-adic numbers. Since the p-adic valuation takes
a discrete set of values, a basic neighborhood Um(α0) of α0 in kp, defined for m > 0
by

Um(α0) =
{

α ∈ kp

∣

∣ |α− α0|p < (Np)m
}

=
{

α ∈ kp

∣

∣ |α− α0|p ≤ (Np)m−1
}

,

has the property of being both open and closed. The ring op of p-adic integers
defined by

op =
{

α ∈ kp

∣

∣ |α|p ≤ 1
}

has the following properties. (1) o is contained in op and is dense in op. (2) Every
ideal of op is principal. (3) The only prime ideal of op is p =

{

α ∈ op

∣

∣ |α|p < 1
}

.

(4) The only proper ideals of op are p, p2, p3, . . . . (5) op is open, closed and compact;
(6) op/p is a finite field isomorphic to o/p. (Note: symbol p denotes ideals of both
o and op, but the context will resolve any ambiguity.)

Ideles over k. Consider the product
∏

p k∗
p over all primes of k. If i is an

element of the product then ip is its p-th coordinate. Let |ip|p be denoted simply
by |i|p. The Idele group Ik is defined by

Ik =
{

i ∈
∏

p

k∗
p

∣

∣ |i|p = 1 for all but a finite number of primes p
}

.

Define |i| by

|i| =
∏

p

|i|p for i ∈ Ik,

and define subgroup I0
k

by

I0
k

=
{

i ∈ Ik
∣

∣ |i| = 1
}

.

The multiplicative group k∗ is a subgroup of I0
k

because of product formula (1.4).
For the topology of Ik, let E be any finite set of primes containing all infinite

primes; for each prime p in E let εp be a positive real number. Then a basic
neighborhood of idele i0 is the set

U(E, {εp}) =
{

i ∈ Ik
∣

∣ |i(i0)
−1|p = 1 if p /∈ E;

|i(i0)
−1 − 1|p < εp and |(i0)i

−1 − 1|p < εp if p ∈ E
}

.
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Arithmetic in a finite extension of k. Let K/k be a finite extension of
degree n. The ring O of integers in K is a free o-module of degree n. A prime ideal
p of o generates an ideal pO of O which splits into a finite product

p = ℘e1

1 . . . ℘eg
g ,

where ℘1, . . . , ℘g are distinct primes ideals of O. Each ℘i-adic valuation of K extends
the p-adic valuation of k, so K℘i

is an extension of kp.
There is a correspondence between the splitting of p in K and the splitting

of a generating polynomial in kp. Let K = k(α), and let α be a root of monic
irreducible polynomial f(x) with coefficients in k. Suppose that ℘i, . . . , ℘g are the
distinct primes of K dividing p. For each ℘i, let σi : K → K℘i

be the natural
isomorphism. Let fi(x) be the monic irreducible polynomial over kp satisfied by
σi(α). Then the polynomials f1(x), . . . , fg(x) are all distinct, and

f(x) = f1(x) . . . fg(x).

Element σi(α) generates K℘i
over kp, so [K℘i

: kp] = deg
(

fi(x)
)

, and

(1.4) [K : k] =

g
∑

i=1

[K℘i
: kp]

Except for a finite number of ramified primes p, all of the exponents ei are equal
to 1. A prime for which all of the ei are equal to one is unramified in K. Each of
the finite fields O℘i

/℘i is a finite extension of finite field op/p; Let fi be the degree
of this extension.

fi = [O℘i
/℘i : op/p]

Then [K℘i
: kp] = eifi, and

n = e1f1 + . . . egfg.

O℘i
is a free op-module of degree eifi. For each K℘ = K℘i

over kp, with
e = ei and f = fi, a basis may be found as follows. Choose elements ω1, . . . , ωf of
O℘ which map to a basis of O℘/℘ over op/p. Choose an element π of O℘ which
generates ideal ℘ (which is a principle ideal of O℘). Then the ef products πjωk,
where 0 ≤ j < e and 1 ≤ k ≤ f , are a basis of K℘ over kp and of O℘ over op.

Norm and Trace functions. Extension field K is an n-dimensional vector space
over k. For each α in K, the operation of multiplication by α defines a linear
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transformation Tα : K → K, where Tα(β) = αβ. The norm NK/k and trace SK/k

are functions from K to k defined by

NK/k(α) = det(Tα), SK/k(α) = trace(Tα).

If L is an intermediate subfield, K ⊃ L ⊃ k, then we have

NK/kα = NL/kNK/Lα.

For each prime p of k, let ℘1, . . . , ℘g be the primes of K which divide p, and let
σi : K → K℘i

be the natural isomorphism. If α of K, then

(1.5) NK/k(α) =

g
∏

i=1

NK℘i
/kp

(

σi(α)
)

SK/k(α) =

g
∑

i=1

SK℘i
/kp

(

σi(α)
)

.

If α is identified with σi(α) then we may write NK/k(α) =
∏

℘|p NK℘/kp
(α) and

SK/k(α) =
∑

℘|p SK℘/kp
(α). Finally, for any element β in K℘i

we have

∣

∣

∣
NK℘i

/kp
β
∣

∣

∣

p
= |β|℘i

.

These formulae hold for all primes of k, both finite and infinite. We can now show
that the product formula holds in the extension field. For α in K, we have

(1.6)
∏

℘

|α|℘ =
∏

p





∏

℘|p

∣

∣NK℘/kp
α
∣

∣

p



 =
∏

p

∣

∣NK/kα
∣

∣

p
= 1

A norm for ideals can also be defined. If a is an ideal of O then NK/ka is the
ideal of o generated by all elements NK/kα for α in O. For principal ideal a = (α),
we have NK/ka = (NK/kα). For each prime ideal ℘i of O dividing prime p of o, a
fundamental property of the norm is

NK/k℘i = pfi .

The different δK/k is an ideal of O determined by defining its inverse to be

δ−1
K/k =

{

α ∈ K | β ∈ O =⇒ SK/k(αβ) ∈ o
}

,

and the discriminant DK/k is the norm NK/kδK/k of the different. A prime of k

is ramified in K if and only if it divides the discriminant. Suppose that x1, . . . , xn
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forms an integral basis of O over o. The discriminant is the following principal
ideal.

DK/k =
(

det
(

SK/k(xixj)
)

)

For each ℘ of K, the local different δK℘/kp
is determined by its inverse

δ−1
K℘/kp

=
{

α ∈ K℘ | β ∈ O℘ =⇒ SK℘/kp
(αβ) ∈ op

}

,

and the local discriminant DK℘/kp
is the norm NK℘/kp

δK℘/kp
of the local different.

Then p ramifies in K℘ if and only if it divides DK℘/kp
, which is equivalent to saying

DK℘/kp
is not trivial. If x1, . . . , xm is an integral basis of O℘ over op, then

DK℘/kp
=

(

det
(

SK℘/kp
(xixj)

)

)

Splitting and inertial subgroups in normal extensions. Let σ be an automorphism
in the Galois group G(K : k) of normal extension K/k. Let ℘1, . . . , ℘g be the prime
ideals of O which divide p. The image σ℘i of ℘i is a prime ideal of O and contains p;
therefore σ℘i is one of the ℘j . For each pair ℘i and ℘j , there is some automorphism
σ so that σ℘i = ℘j . Therefore there are rational integers e and f depending only
on p so that

e = e1 = · · · = eg and f = f1 = · · · = fg.

The set S℘i
of automorphisms which leave ℘i invariant is the splitting group of ℘i.

S℘i
= S℘i

(K : k) =
{

σ ∈ G(K : k)
∣

∣ σ℘i = ℘i

}

Each subgroup S℘i
has index g in G(K : k), so S℘i

has order ef . Automorphisms in
S℘i

are precisely those which can be extended to the completion K℘i
, so S℘i

(K : k)
is the Galois group of K℘i

over kp.

S℘i
= S℘i

(K : k) = G (K℘i
: kp)

There is a natural homomorphism of S℘i
to the Galois group of finite field O℘i

/℘i

over op/p.
S℘i

→ G (O℘i
/℘i : op/p) .

The kernel I℘ is the inertial subgroup of ℘i. The degree of the finite field extension
is f , so the inertial subgroup has order e.

I℘ = I℘(K : k) = {σ ∈ S℘(K : k) | σα = α(mod ℘i) for all α ∈ O℘i
} .

If p is unramified in K then the inertial subgroup of ℘i is trivial and the splitting
group S℘i

is isomorphic to G (O℘i
/℘i : op/p).



8 I. PRELIMINARIES

Splitting and inertial subfields. In a normal extension K/k, the parameters e, f
and g of finite prime ℘ may be determined from the splitting subgroup S = S℘ and
inertial subgroup I = I℘ of Galois group G.

e = [I : {1}] f = [S : I] g = [G : S]

Two subfields of particular interest are the fixed field of S, or splitting field Z, and
the fixed field of I, or inertial field T. Let p′ be the prime of Z which ℘ divides.
Since G(K : Z) = S then every automorphism σ in G(K : Z) satisfies σ℘ = ℘, so
S℘(K : Z) = G(K : Z), and

G(K℘ : Zp′) = S℘(K : Z) = G(K : Z) == S℘(K : k) = G(K℘ : kp)

and therefore
Zp′ = kp.

Z/k has degree g, and p splits completely into g primes in Z.
As to T, let ℘′ be the prime of that field which ℘ divides. We have G(K : T) =

I ⊂ S, so every automorphism in G(K : T) is in the splitting group S℘(K : T) and
acts trivially modulo ℘. We have

I℘(K : T) = S℘(K : T) = G(K : T) = I.

K/T is completely ramified, having degree e and ramification index e.

Artin symbol. The Galois group G (O℘i
/℘i : op/p) is cyclic of order f generated

by automorphism ᾱ → ᾱNp. If p is unramified then for each ℘i dividing p there
exists a unique automorphism σi in S(℘i) defined by the property

σiα = αNp(mod ℘i) α ∈ O℘i
.

This distinguished generator of S(℘i) is the Frobenius automorphism
(

K:k
℘i

)

.

If ℘i and ℘j are two primes in O dividing p then there is an automorphism τ in
G(K : k) such that τ℘i = ℘j . Then S(℘j) = τS(℘i)τ

−1 and

τσiτ
−1α = αNp(mod ℘j) α ∈ O℘j

.

The Frobenius automorphisms for primes of K dividing p are therefore conjugate.
(

K : k

℘j

)

= τ

(

K : k

℘i

)

τ−1

When G(K : k) is abelian the groups S(℘i) coincide and the Frobenius automor-

phisms
(

K:k
℘i

)

coincide. There is a unique automorphism σ0 in G(K : k) depending

only on p such that

(1.7) ασ0 = αNp(mod ℘) α ∈ O℘ for all primes ℘ of O dividing p.

The automorphism satisfying the above condition is the Artin symbol
(

K:k
p

)

.
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Cyclotomic extensions. The cyclotomic extension of Q generated by n-th
roots of unity is the splitting field of xn − 1. The irreducible polynomial over Z

satisfied by primitive n-th roots of unity has degree ϕ(n) (the number of residue
classes modulo n that are relatively prime to n). If ζ is a primitive n-th root of
unity then a complete set of conjugates consists of all ζi where i runs through a set
of representatives for the distinct residue classes modulo n that are relatively prime
to n. The Galois group G

(

Q(ζ) : Q
)

is isomorphic to the group Z∗
n of integers

relatively prime to n. If j ∈ Z∗
n then the automorphism σ determined by j does not

depend on the choice of ζ because if ζσ = ζj then (ζi)σ = (ζi)j .


