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Abstract

The Ramsey number R(s, t) for positive integers s and t is the minimum integer
n for which every red-blue coloring of the edges of a complete n-vertex graph
induces either a red complete graph of order s or a blue complete graph of order
t. This paper proves that R(3, t) is bounded below by (1 − o(1))t2/ log t times a
positive constant. Together with the known upper bound of (1 + o(1))t2/ log t, it
follows that R(3, t) has asymptotic order of magnitude t2/ log t.

1 Introduction

Throughout this paper, logarithms are natural logarithms, c denotes a positive constant, s, t

and n are positive integers, Kn and G
(3)

n denote respectively the complete graph and a triangle-

free (K3-free) graph on n vertices, and α(G) and χ(G) are respectively the independence

number and the chromatic number of graph G. Our graph theory terminology follows [8], [5].

The Ramsey number R(s, t) is the minimum n such that every red-blue coloring of the

edges of Kn induces either a red Ks or a blue Kt. Equivalently, R(s, t) is the smallest n such

that every n-vertex graph has either an s-vertex clique or a t-vertex independent set. We focus

on

R(3, t) := min{n : α(G
(3)

n ) ≥ t for every G
(3)

n } .

Our main result is an upper bound on independence numbers of triangle-free graphs.

Theorem 1.1 Every sufficiently large n has a G
(3)

n for which

α(G
(3)

n ) ≤ 9
√

n log n .

Since χ(G) ≥ n/α(G) for every graph G on n vertices, we have the following corollary.
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Corollary 1.2 Every sufficiently large n has a G
(3)

n for which

χ(G
(3)

n ) ≥ 1

9

√

n

log n
.

An easy consequence of Theorem 1.1 is

c(1 − o(1))
t2

log t
≤ R(3, t)

with c = 1/162 = 1/(2 · 92), where o(1) goes to 0 as t goes to infinity. (We make no attempt

here to find the tightest possible constants.) Because it is known [1], [2], [32] also that

R(3, t) ≤ (1 + o(1))
t2

log t
, (1)

we now know that t2/ log t is the correct asymptotic order of magnitude of R(3, t). Also, (1)

easily gives an upper bound of χ(G
(3)

n ) which, together with Corollary 1.2, yields

(1 − o(1))
1

9

√

n

log n
≤ max

G
(3)
n

χ(G
(3)

n ) ≤ (1 + o(1))2
√

2

√

n

log n
.

The asymptotic behavior of R(3, t) has been a major open problem in Ramsey theory for

many years (see e.g [15], Appendix B of [3]). In 1961, Erdős [10] obtained a lower bound

from a lovely probabilistic argument that has become a cornerstone of probabilistic methods

in Combinatorics (see e.g. [3] or [6]). Graver and Yackel [16] found an upper bound in 1968

which, in conjunction with Erdős’s bound, gave

c1

t2

(log t)2
≤ R(3, t) ≤ c2

t2 log log t

log t
.

Ajtai, Komlós and Szemerédi [1], [2] removed the log log t factor in the upper bound, and

Shearer [32] (see also [33]) reduced the constant and simplified the proof to obtain (1).

Meanwhile, the lower bound c1(t/ log t)2 defied improvement although Spencer [34], Bol-

lobás [6], Erdős, Suen and Winkler [12] and Krivelevich [25] simplified its proof and/or in-

creased c1 through refined probabilistic arguments. We consider parts of their arguments

later. More to the point of the present paper, Spencer [37] showed very recently that c1 can

be arbitrarily large, i.e.

lim
t→∞

R(3, t)

(t/ log t)2
= ∞ .

He introduced also a differential equation which first suggested c t2/ log t as a lower bound and

which inspired the present contribution. We consider this in Section 2.

Our approach uses the so-called “semirandom method” or “Rödl’s nibble method”, a ver-

sion of which may have been used first in [2], the paper that removed the log log t factor in the

upper bound. More refined applications of the semirandom method were subsequently used to

settle intriguing conjectures on hypergraph packings, colorings and list colorings, see e.g. [30],
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[13], [28], [14], [29], [18], [19]. The present author [22] used a similar method to make progress

on Vizing’s old problem [38] of upper bounds for the chromatic number of a triangle-free graph

of maximum degree D. We refer [18] and [22] for more on the history of the method.

The next section describes our random block construction of a triangle free graph along with

Spencer’s differential equation. Section 3 introduces basic parameters and proves Theorem 1.1

modulo the proof of our main lemma (Lemma 2.1) on the behavior of those parameters under

the block construction. Section 4 presents tools used in the proof of the main lemma, including

Azuma-Hoeffding type martingale inequalities that lead to proofs of the high concentrations

of our parameters near their expected values. The main lemma is then proved in Section 5.

1.1 Block Construction

One of the most natural ways to construct a random G
(3)

n is the following one-by-one construc-

tion. We assume henceforth that every graph has vertex set V := {v1 , ..., vn} and describe a

graph G by its edge set E(G).

One-by-One Construction

(OC 1) Set m :=
(n
2

)

and choose a random permutation π := (e1 , ..., em) from the uniform

distribution on the m! permutations of the edges of Kn;

(OC 2) Let G0 = ∅, so E(G0) is empty;

(OC 3) Suppose we have Gi. For j > i we say that edge ej “survives” (see [36]) if the graph

E(Gi) ∪ {ej} has no triangle. Define

E(Gi+1) :=

{

E(Gi) ∪ {ei+1} if ei+1 survives
E(Gi) otherwise.

It is obvious that Gm has no triangle. However, it seems hard to find any tight upper

bound on α(Gm). The main obstacle is the fact that the event “ei+1 survives” depends highly

on the ordering e1 , ..., ei . There is no apparent property that all surviving edges share and

this makes it difficult to find a small upper bound on the variance of the random variable

|E(Gi+1)| − |E(Gi)|.
Erdős, Suen and Winkler [12] modified the preceding notion of surviving so that an edge

ei+1 survives only if the graph {e1 , ..., ei+1} has no triangle. Their new notion and a real time

version of the above construction enable them to prove the existence of a G
(3)

n such that

α(G
(3)

n ) ≤ (3/2 + o(1))
√

n log n ,

which automatically yields

R(3, t) ≥ (1 − o(1))
t2

9(log t)2
.
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Our block construction uses a combination of the above two notions of surviving, but is

closer to the original. For our new construction, we write evw for edge {v, w} ∈ E(Kn). With

e, f, g ∈ E(Kn), ef and efg denote the sets {e, f} and {e, f, g} respectively.

Block Construction with Parameter θ

(BC 1) Let G0 = ∅ and E0 = ∅.

(BC 2) Suppose we have a set Ei of edges and a triangle-free graph Gi with E(Gi) ⊆ Ei. We

now say that edge e ∈ E(Kn) \ Ei survives (after stage i) if e cannot be extended to a triangle

using edges from Ei. For small θ > 0 (our θ will be (log n)−2) the random set Xi+1 is defined

by

Pr (e ∈ Xi+1) :=

{

θ/
√

n if e survives
0 otherwise

where all events “e ∈ Xi+1” are mutually independent.

(BC 3) We set Ei+1 := Ei∪Xi+1 and define the set of forbidden pairs of edges in Xi+1 = Ei+1\Ei

by

Λ(Xi+1) := {euvevw : euvevw ⊆ Xi+1, ewu ∈ Ei} . (2)

Thus ef ∈ Λ(Xi+1) means that the pair ef makes a triangle with an edge g in Ei. So we do

not want both e and f in Gi+1 regardless whether g is actually in Gi. The set of forbidden

triples of edges is

∆(Xi+1) := {euvevwewu : euvevwewu ⊆ Xi+1} . (3)

We now take a maximal disjoint collection Fi+1 of elements of Λ(Xi+1) ∪ ∆(Xi+1) and define

E(Gi+1) := E(Gi) ∪ (Xi+1 \ E(Fi+1)),

where E(Fi+1) :=
⋃

F∈Fi+1

F .

This removes all edges which are parts of elements of the maximal collection Fi+1. Because

of maximality, Gi+1 has no triangles. This method, used by Krivelevich [25], will make the

analysis simpler than the usual one that deletes an edge from each element of Λ(Xi+1) ∪
∆(Xi+1).

We would like our block construction to do the following. When θ is small enough, the

number of edges in ∪i
j=0E(Fj) should be small relative to |Ei| so that Gi is approximately Ei.

This is a big advantage because Ei has more random structure than Gi. Moreover, the notion

of surviving in our block construction is now almost as loose as possible since we can not use

any edge that makes a triangle with two edges in Gi(≈ Ei). A similar idea was first used in

[2], [24].
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1.2 Differential Equation

As mentioned earlier, Spencer [37] introduced a differential equation to analyze the behavior of

a graph constructed by one-by-one construction. His differential equation also nicely explains

block construction, which suggests that our constructions are similar. We use “≈” to mean

approximately equal and emphasize that what follows is only an aid to our intuition.

Suppose Gi has
Ψ(iθ)n3/2

2
edges, where Ψ is an unknown function. This might occur because

Pr (e ∈ Gi) ≈ Ψ(iθ)n3/2

2
(n
2

) ≈ Ψ(iθ)√
n

for all e ∈ E(Kn) . (4)

Recall that “e survives” (e 6∈ Ei) if and only if there is no pair f, g ∈ Ei which together with

e makes a triangle. Since n − 2 triangles in E(Kn) contain e, if Gi ≈ Ei and all events are

independent, then (4) would yield

Pr ( “ e survives after stage i” ) ≈
(

1 −
(Ψ(iθ)√

n

)2 )n−2
≈ exp(−Ψ2(iθ)) , (5)

where, as usual, Ψ2(iθ) := (Ψ(iθ))2. So we expect that the number of surviving edges after

stage i is about
(n
2

)

exp(−Ψ2(iθ)).

Therefore, in expectation,

|E(Gi+1)| ≈ |Ei+1| = |Ei| + |Xi+1|

≈ Ψ(iθ)n3/2

2
+

θ exp(−Ψ2(iθ))√
n

(

n

2

)

≈
(

Ψ(iθ) + θ exp(−Ψ2(iθ))
)n3/2

2
,

which means that

Ψ((i + 1)θ) ≈ Ψ(iθ) + θ exp(−Ψ2(iθ)) .

When iθ remains constant, we might obtain

Ψ′(iθ) = lim
θ→0

Ψ((i + 1)θ) − Ψ(iθ)

θ
≈ exp(−Ψ2(iθ)) .

This yields the differential equation

Ψ′(x) = exp(−Ψ2(x)) .

Since Ψ(0) must be 0, Ψ(x) may be defined implicitly by

x =

∫ Ψ(x)

0
eξ2

dξ . (6)

Thus Ψ(x) is very close to
√

log n for sufficiently large x.
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To see where this leads, set a0 := 0, b0 := 1 and

bi := Ψ′(iθ) = exp(−Ψ2(iθ)) , ai :=
i−1
∑

j=0

bjθ =
i−1
∑

j=0

Ψ′(jθ)θ ≈ Ψ(iθ) for i = 1, 2, · · · . (7)

We might expect from (5) that every big subset T of V contains bi
(|T |

2

) ≈ bi|T |2/2 surviving

edges. To be more precise, let

t := d9
√

n log n e , Γi(T ) :≈ {evw ⊆ T : evw survives after stage i}

(cf. (9) in Section 3). In particular, Γ0(T ) :≈ {evw : evw ⊆ T}. What we expect is

|Γi(T )| ≈ bit
2/2 for all i and T with |T | = t. (8)

Suppose Gi ≈ Ei. Then (8) and sufficient independence might give that

Pr (E(Gi) ∩ Γ0(T ) = ∅) ≈
i−1
∏

j=0

(

1 − θ√
n

)bjt2/2
≤ exp

(

−
i−1
∑

j=0

bjθt
2

2
√

n

)

= exp
(

− ait
2

2
√

n

)

for each fixed t-subset T . Let Ti := {T : |T | = t, Γ0(T ) ∩ E(Gi) = ∅}. Then, in expectation,

|Ti| <∼
(

n

t

)

exp
(

− ait
2

2
√

n

)

≤ exp
(

t log n− ait
2

2
√

n

)

= exp
(

9
√

n (log n)3/2 − (81/2)ai

√
n log n

)

.

On the other hand, for io := nδ/θ,

aio
=

io−1
∑

j=0

Ψ′(jθ)θ ≈ Ψ(ioθ) = Ψ(nδ) = (1 + o(1))
√

δ log n .

If δ is not too small, then the expectation of |Tio | is almost 0, which implies α(Gio ) ≤ t with

probability almost 1. Because Gio is triangle-free, we might be done.

This suggests that Theorem 1.1 could follow easily from (8). Our main goal, in fact, is to

derive a property (see Property 7 in Section 3) that is essentially the same as (8). To achieve

it we define a subset Γi of the set of all surviving edges after stage i and adjoin fixed Ei and

Gi to satisfy properties that allows us to continue to the next stage. The triple (Ei, Γi, Gi) is

no longer random when we begin stage i + 1. A small modification in Γi that gives up a few

surviving edges to gain more regularity is noted early in Section 5.

2 Parameters and Main Lemma

This section presents our parameters and their desired properties. Throughout, (E , Γ, G)

denotes a triple of two subsets of E(Kn) and a triangle-free graph. We set E0 = G0 = ∅ and
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Γ0 := E(Kn). In addition, ∆0 := {efg ⊆ E(Kn) : efg makes a triangle}. Triple (Ei, Γi, Gi) for

each i is required to satisfy

E(Gi) ⊆ Ei and Γi ⊆ {e ∈ E(Kn) \ Ei : efg 6∈ ∆0 for all f, g ∈ Ei} . (9)

Our parameters depend only on (Ei, Γi, Gi). We denote the forbidden pairs and triples of

edges in Γi (cf. (2) and (3)) by

Λi := {ef ⊆ Γi : ∃ g ∈ Ei · 3 · efg ∈ ∆0}
∆i := {efg ⊆ Γi : efg ∈ ∆0} .

Given v ∈ V , denote its neighborhood and degree in Ei by

NEi(v) := {w ∈ V : evw ∈ Ei} , dEi(v) := |NEi(v)| ,

and the set of edges in Γi containing v as well as its neighborhood and degree in Γi by

NΓi(v) := {evw : evw ∈ Γi}
NΓi(v) := {w ∈ V : evw ∈ Γi} = {w ∈ V : evw ∈ NΓi(v)}
dΓi(v) := |NΓi(v)| = |NΓi(v)| .

For v ∈ V and evw ∈ Γi, we denote the set of incident edges euv of v which together with evw

form forbidden pairs in Γi, and the set of such vertices u, and their (same) size by

NΛi(evw, v) := {euv ∈ Γi : euvevw ∈ Λi}
NΛi(evw, v) := {u ∈ V : euvevw ∈ Λi} = {u ∈ V : euv ∈ NΛi(evw, v)}
dΛi(evw, v) := |NΛi(evw, v)| = |NΛi(evw, v)| .

Set

NΛi(evw) := NΛi(evw, v) ∪ NΛi(evw, w)

NΛi(evw) := NΛi(evw, v) ∪ NΛi(evw, w) .

Finally, for evw ∈ Γi, denote the set of vertices each of which together with v, w forms a triangle

in Γi by

N∆i(evw) := {u ∈ V : euvevwewu ⊆ Γi, euvevwewu ∈ ∆0} .

Our desired properties use the definitions of ai and bi in (7), i.e.,

bi := Ψ′(iθ) = exp(−Ψ2(iθ)), ai :=
i−1
∑

j=0

bjθ =
i−1
∑

j=0

Ψ′(jθ)θ = ai−1 + bi−1θ,

where θ := (log n)−2 and Ψ is the function defined in (6). Also, for A, B ⊆ V , let

Γi(A, B) := {evw ∈ Γi : v ∈ A, w ∈ B}, and Γi(A) := Γi(A, A) .
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We define eight properties based on the preceding concepts.

Property 1. For all v ∈ V , dEi(v) ≤ ai
√

n + in1/4 log n.

Property 2. For all v ∈ V , dΓi(v) ≤ bin.

Property 3. For all v 6= w in V , |NEi(v) ∩ NEi(w)| ≤ 3i log n.

Property 4. For all evw ∈ Γi, dΛi(evw, v) ≤ bi(ai + 5θ)
√

n.

Property 5. For all e ∈ Γi, d∆i(e) ≤ b2
i n.

Property 6. For all disjoint subsets A, B of V with |A|, |B| ≥ θ2b2
i

√
n,

|Γi(A, B)| ≤ bi|A||B| .

Similarly, for all A ⊆ V with |A| ≥ θ2b2
i

√
n

|Γi(A)| ≤ bi

(

|A|
2

)

.

The final two properties use t := d9√
n log n e,

µi := 1 − 18aiθ − ai

3
√

log n
= µi−1 − 18bi−1θ

2 − bi−1θ

3
√

log n

and

Ti := {T ⊆ V : |T | = t, E(Gi) ∩ Γ0(T ) = ∅} .

Property 7. (cf. (8)) For all T ∈ Ti,

|Γi(T )| ≥ biµi

(

t

2

)

.

Property 8.

|Ti| ≤ ni

(

n

t

)

exp
(

− (1 − ε)
i−1
∑

j=0

bjµjθ√
n

(

t

2

)

)

,

where ε := (log log n)−1/4.

If (4) and (5) held (recall ai ≈ Ψ(iθ)) and all events were independent, then all properties

would seem quite natural except for terms such as in1/4 log n and 5θbi
√

n, which are basically

error term estimates. For example, we would expect

dΛi(evw, v) =
∑

u∈V \evw

1(ewu ∈ Ei and euv survives)

≈ nPr (ewu ∈ Ei and euv survives) in expectation

≈ nPr (ewu ∈ Ei)Pr (ewu survives) assuming independence

≈ n(ai/
√

n)bi = aibi

√
n assuming (4) and (5).
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We note also that all properties are automatic for i = 0, and that Properties 1-6 for i are

needed to guarantee Property 7 for i + 1. Property 8 is a consequence of Property 7, as we

roughly saw in the previous section.

Theorem 1.1 easily follows from our main lemma.

Lemma 2.1 (Main Lemma) Let δ := 1/17−10−5 and 0 ≤ k ≤ bnδ/θc. Suppose (Ek, Γk, Gk)

satisfies (9) and Properties 1 through 8 for i = k. Then some triple (Ek+1, Γk+1, Gk+1) satisfies

(9) and Properties 1 through 8 for i = k + 1.

The rest of this section examines parameters ai, bi and µi, and proves Theorem 1.1 using

Lemma 2.1. The following lemma presents upper and/or lower bounds of various terms in-

volving the parameters which, while not best possible, are ideally suited to their frequent use

in the rest of the paper.

Lemma 2.2 The following inequalities hold for iθ ≤ nδ and sufficiently large n:

0 ≤ ai − Ψ(iθ) ≤ θ, bi > bi+1, bi(ai + 5θ) < 1/2 and bi(ai + 5θ)2 < 1/2 ; (10)

√

log(iθ) − 1 ≤ ai ≤
√

log(iθ) + 1 + θ , for all iθ ≥ 1 ; (11)

n−1/17(log n)3 ≤ bi ≤ 1, 1/2 ≤ µi ≤ 1 ; (12)

|(1 − 2aibiθ) − bi+1

bi
| ≤ 4biθ

2 ; (13)

b2
i ≤ bi+1bi + min{bi+1biθ, 2b2

i θ(ai + 5θ)} ; (14)

θ
i−1
∑

j=0

ajbj ≤ (1/2 + θ1/5) log(iθ) for all i ≥ n10−4
/θ . (15)

Proof. Observe that

Ψ(iθ) =

∫ iθ

0
Ψ′(ξ) dξ =

i−1
∑

j=0

∫ (j+1)θ

jθ
Ψ′(ξ) dξ .

Since Ψ′(ξ) = exp(−Ψ2(ξ)) is strictly decreasing and at most 1, clearly bi+1 < bi and

ai − θ ≤ θ
i−1
∑

j=0

Ψ′((j + 1)θ) ≤ Ψ(iθ) =
i−1
∑

j=0

∫ (j+1)θ

jθ
Ψ′(ξ) dξ ≤ θ

i−1
∑

j=0

Ψ′(jθ) = ai .

This verifies the first part of (10). The other parts of (10) follow easily from the first part and

the fact that both y exp(−y2) and y2 exp(−y2) are less than 0.43.

For (11) and (12) it is enough to point out that

√

log x − 1 ≤ Ψ(x) ≤
√

log x + 1 for x ≥ 1 (16)
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since this implies

Ψ′(x) = exp(−Ψ2(x)) = exp(−(1 + o(1)) log x) = x−1+o(1) .

We apply Taylor’s theorem to Ψ′ to obtain

Ψ′((i + 1)θ) = Ψ′(iθ) + θΨ′′(iθ) + (θ2/2)Ψ′′′(ξ) ,

for some ξ with iθ ≤ ξ ≤ (i + 1)θ. Inequalities (13) and (14) follow routinely from this.

For (15) it is enough to consider

θ
i−1
∑

j=0

ajbj ≤ (1 + 2θ)

∫ iθ

0
Ψ(ξ)Ψ′(ξ) dξ + θ2

i−1
∑

j=0

bj ≤ (1/2 + 2θ)Ψ2(iθ) ≤ (1/2 + θ1/5) log(iθ) ,

where (10) is used in the first inequality, and (16) and θ = (log n)−2 in the last inequality.

2

Proof of Theorem 1.1 modulo Lemma 2.1. Let ko := bnδ/θc + 1. Then by Lemma

2.1 we have a triangle-free graph Gko that satisfies Property 8. Thus it is enough to show that

nko

(

n

t

)

exp
(

− (1 − ε)
ko−1
∑

j=0

bjµjθ√
n

(

t

2

)

)

< 1 (17)

(recall t = 9
√

n log n.) Inequalities (15) and (11) give

θ
ko−1
∑

j=0

bjµj = θ
ko−1
∑

j=0

bj −
(

18θ +
1

3
√

log n

)

θ
ko−1
∑

j=0

ajbj

≥ a
ko

− (1/6 + θ1/5)
log(nδ + θ)√

log n

≥
√

δ log n − 1 − δ(1/6 + 2θ1/5)
√

log n

≥ 0.23
√

log n .

Hence

log
(

nko

(

n

t

)

exp
(

− (1 − ε)
ko−1
∑

j=0

bjµjθ√
n

(

t

2

)

))

≤ ko log n + t log n − 0.23(1 − ε)

√

log n

n

(

t

2

)

≤ n2δ + (9 − (0.23 · 81/2)(1 − 2ε))
√

n(log n)3

≤ −0.3
√

n(log n)3 < 0 ,

and (17) follows.

2
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3 Tools

3.1 Azuma-Hoeffding type martingale inequalities

Most applications of the semirandom method involve Azuma-Hoeffding type martingale in-

equalities (from [17], [4]), which are very useful in showing that many events can happen

simultaneously. Indeed, Azuma-Hoeffding type martingale inequalities, followed by Lovász’s

local lemma, have become the most popular way to prove the existence of certain packings,

colorings and list colorings mentioned in Section 1. (See [9] for general treatment of probabil-

ity, [35] for Lovász’s local lemma, [27], [7], [26], [21], [19], [22] for more on Azuma-Hoeffding

type inequalities, and [31], [20], [23] for simple applications.)

We need a simple version of the Azuma-Hoeffding type martingale inequality. Let Φ =

Φ(τ1 , ..., τm), where τ1 , ..., τm are independent identically distributed (i.i.d) Bernoulli random

variables with probability p:

τi ∈ {0, 1} and Pr (τi = 1) = p .

For τ = (τ1 , ..., τm), τ ′ = (τ ′
1
, ..., τ ′

m
) and j = 1, 2, ..., m we write

τ ≡j τ ′ if τ
l
= τ ′

l
for all l 6= j.

The following lemma is due to Kahn [19] (Proposition 3.8). We present here a simpler version,

a proof of which can be found in the Appendix.

Lemma 3.1 Suppose

|Φ(τ) − Φ(τ ′)| ≤ cj for j = 1, 2, ..., m and τ ≡j τ ′ . (18)

Then for all ρ > 0

Pr (|Φ − E[Φ]| ≥ λ) ≤ 2 exp
(

− ρλ + (ρ2/2)p(1 − p)
m
∑

j=1

c2
j
exp(ρcj )

)

.

Proof. A proof is given in the Appendix.

2

We have the following corollaries.

Corollary 3.2 Suppose the hypotheses of Lemma 3.1 hold and ρ > 0 satisfies

ρ max{cj : j = 1, ..., m} ≤ log 2 .

Then

Pr (|Φ − E[Φ]| ≥ λ) ≤ 2 exp
(

− ρλ + ρ2p
m
∑

j=1

c2
j

)

.
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Proof. Since (1 − p) exp(ρcj ) ≤ 2, for all j, we are done.

2

Corollary 3.3 Let Φ =
m
∑

j=1

1Aj where each Aj is an event that depends only on τj . Then

Pr (|Φ − E[Φ]| ≥ λ) ≤ 2 exp
(

− ρλ + (ρ2/2)E[Φ] exp(ρ)
)

.

Proof. It is easy to see for all τ ≡j τ ′ that

|Φ(τ) − Φ(τ ′)| ≤ cj :=

{

0 if Pr (Aj)(1 − Pr (Aj)) = 0
1 otherwise.

Lemma 3.1 says that

Pr (|Φ − E[Φ]| ≥ λ) ≤ 2 exp(−ρλ + (ρ2/2)p(1 − p) exp(ρ)
m
∑

j=1

c2
j
) .

Thus it is enough to show

p(1 − p)
m
∑

j=1

c2
j

≤ E[Φ] .

But since Pr (Aj) ∈ {0, p, 1 − p, 1},

E[Φ] =
m
∑

j=1

Pr (Aj) ≥
m
∑

j=1

p(1 − p)cj = p(1 − p)
m
∑

j=1

c2
j

.

2

3.2 Disjointness Lemma

Erdős and Tetali introduced a useful lemma in [11]. We will use their proof idea rather than

the lemma itself in Section 5.9, so we simply state the lemma without proof.

Let A be a collection of events in a probability space. We are interested in the simultaneous

occurrence of many independent events in A. Let

In(A) := {B ⊆ A : all events {A}A∈B are mutually independent} .

We want to have a nice upper bound on

Pr (
⋃

B ∈ In(A)
|B| = l

⋂

A∈B
A) .

Lemma 3.4 (Disjointness Lemma). If
∑

A∈A
Pr (A) ≤ η, then

Pr (
⋃

B ∈ In(A)
|B| = l

⋂

A∈B
A) ≤ ηl

l!
for l = 1, 2, · · · .

2
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3.3 Almost Disjoint Covering Lemma

Suppose A1, ..., Al are subsets of a set B. In the proof of the Main Lemma (see Sections 5.7

and 5.8), we need good upper bounds on l and
∑

j |Aj | when the sets Aj are not too small but

their pairwise intersections Aj ∩ Aj′ are small enough. Notice that when |Aj | ≥ |B|1/2 and

Aj ∩ Aj′ = ∅ for all j 6= j′, we easily have l ≤ |B|1/2 and
∑

j |Aj | ≤ |B|. The following lemma

considers more general cases.

Lemma 3.5 Let B be a set of size at least 4, A1, ..., Al ⊆ B, and 1 ≤ β, γ ≤ |B|1/2/2. If

|Aj | ≥ 2βγ|B|1/2 and |Aj ∩ Aj′ | ≤ β2 for all j 6= j′ ∈ [l] := {1, ..., l}

then

l ≤ β−1γ−1|B|1/2 and
l
∑

j=1

|Aj | ≤
(

1 − 1

2γ2

)−1
|B| .

Proof. Suppose to the contrary of the first part that l ≥ l0 := bβ−1γ−1|B|1/2c + 1. Then

|B| ≥ |
l0
⋃

j=1

Aj | ≥
l0
∑

j=1

|Aj | −
∑

1≤j<j′≤l0

|Aj ∩ Aj′ |

≥ 2βγ|B|1/2l0 − (l0)
2β2/2

≥ 2|B| − |B|/2 > |B| .

This is a contradiction.

For the second part, set

A′
j := Aj \

⋃

j′ 6=j

Aj for all j ∈ [l].

Then A′
1, ..., A

′
l are mutually disjoint and

|A′
j | ≥ |Aj | −

∑

j′ 6=j

|Aj ∩ Aj′ | ≥ |Aj | − β−1γ−1|B|1/2β2 ≥
(

1 − 1

2γ2

)

|Aj | .

Therefore,

l
∑

j=1

|Aj | ≤
(

1 − 1

2γ2

)−1
l
∑

j=1

|A′
j | =

(

1 − 1

2γ2

)−1
|

l
⋃

j=1

A′
j | ≤

(

1 − 1

2γ2

)−1
|B| .

2

4 Proof of the Main Lemma

4.1 Preliminaries

Suppose (Ek, Γk, Gk) as stated in Lemma 2.1. We first modify Γk and Λk to obtain exact

equality in Property 4.

13



Modification. For each pair (evw, v) with evw ∈ Γi, let U(evw, v) be a set of bb
k
(a

k
+

5θ)
√

n c − dΛk
(evw, v) new vertices so that U(evw, v) ∩ V = ∅ and all U(evw, v) are mutually

disjoint. Define

V ∗ := V ∪
⋃

(evw,v)

U(evw, v)

Γ∗
k := Γk ∪

⋃

(evw,v)

{euv : u ∈ U(evw, v)}

and

Λ∗
k := Λk ∪

⋃

(evw,v)

{euvevw : u ∈ U(evw, v)} .

We also define N∗(e, v), N ∗(e, v), · · · analogously as in Section 3. Notice that

dΛ∗

k
(evw, v) =

{

b
k
(a

k
+ 5θ)

√
n if evw ∈ Γk

1 if evw ∈ Γ∗
k \ Γk.

(19)

Given θ := (log n)−2 and p := θ/
√

n , we now define a random subset X∗
k+1 of Γ∗

k (cf. (BC

2) of Section 2):

Pr (e ∈ X∗
k+1) = p for all e ∈ Γ∗

k

with all events “e ∈ X∗
k+1” mutually independent. Let

Xk+1 := X∗
k+1 ∩ Γk

Ek+1 := Ek ∪ Xk+1 .

Notice that for all e ∈ Γk,

Pr (e ∈ Xk+1) = Pr (e ∈ X∗
k+1) = p = θ/

√
n , (20)

and all events “e ∈ Xk+1” are mutually independent. Using (BC 3) of Section 2 we may also

define a triangle-free graph Gk+1. Finally, set

Yk+1 := {e ∈ Γk : ∃ f ∈ X∗
k+1 · 3 · ef ∈ Λ∗

k}
Zk+1 := {e ∈ Γk : ∃ f, g ∈ X∗

k+1 · 3 · efg ∈ ∆k}

and

Γk+1 := Γk \ (Xk+1 ∪ Yk+1 ∪ Zk+1) . (21)

The (random) triple (Ek+1, Γk+1, Gk+1) obviously satisfies (9). It remains to verify

Pr ((Ek+1, Γk+1, Gk+1) satisfies Properties 1-8) > 0 .

14



We prove this by showing that (Ek+1, Γk+1, Gk+1) satisfies each property with probability at

least 1 − 1/n, that is,

Pr ((Ek+1, Γk+1, Gk+1) does not satisfy Property l) ≤ 1/n for l = 1, ..., 8 . (22)

Three preliminary lemmas will be needed. Henceforth, we fix k ≤ bnδ/θc, omit subscript

k (Γ = Γk, a = a
k
, dΛ∗(v) = dΛ∗

k
(v), · · ·) and write Γ′, a′, · · · for Γk+1, ak+1

, · · ·. Also, we just

write X ′ for (X∗)′ and generally omit the asterisk if there is another superscript.

Lemma 4.1 For all e ∈ Γ

−14 b θ2 ≤ Pr (e 6∈ Y ′) − b′

b
≤ −5bθ2 .

Proof. By (19) and NΛ∗(evw, v) ∩ NΛ∗(evw, w) = ∅

Pr (e 6∈ Y ′) =
∏

f∈NΛ∗ (e)

Pr (f 6∈ X∗) = (1 − p)2b(a+5θ)
√

n for all e ∈ Γ .

Also, since p = θ/
√

n and

1 − hx ≤ (1 − x)h ≤ 1 − hx + h2x2/2 for all 0 ≤ x ≤ 1, h ≥ 2 ,

(10) gives

1 − 2abθ − 10bθ2 ≤ Pr (e 6∈ Y ′) ≤ 1 − 2bθ(a + 5θ) + 2θ2b2(a + 5θ)2 ≤ 1 − 2abθ − 9bθ2 .

The upper and lower bounds of the lemma follow from (13).

2

Lemma 4.2 Let A ⊆ Γ. Then

∑

e∈Γ∗

|NΛ∗(e) ∩ A| = 2b(a + 5θ)
√

n |A| .

Proof. By (19),

∑

e∈Γ∗

|NΛ∗(e) ∩ A| =
∑

e∈Γ∗

∑

f∈A
1(ef ∈ Λ∗)

=
∑

f∈A

∑

e∈Γ∗

1(ef ∈ Λ∗)

=
∑

f∈A
dΛ∗(f)

= 2b(a + 5θ)
√

n |A| . 2

15



We will prove (22) one property at a time. In most cases we first compute the expectations

of corresponding random variables, then derive good concentration results using the Azuma-

Hoeffding type inequalities of Section 4. Unless specified otherwise, our i.i.d Bernoulli random

variables are {τe}e∈Γ∗ with τe = 1 if and only if e ∈ X∗:

Pr (τe = 1) = p = θ/
√

n .

Applications of Corollary 3.2 will simply note the ce in the hypotheses of Lemma 3.1. If we

do not mention ce for some edges, then those edges are irrelevant.

The following lemma completes our preliminaries. Let

NX′(v) := {w ∈ V : evw ∈ X ′} for v ∈ V .

Lemma 4.3 The following three conditions hold simultaneously with probability at least 1 −
3/n2:

(i) For all v ∈ V , |NX′(v)| ≤ bθ
√

n + n1/4 log n;

(ii) For all v 6= w ∈ V , |NE(v) ∩ NX′(w)| ≤ log n;

(iii) For all v 6= w ∈ V , |NX′(v) ∩ NX′(w)| ≤ log n.

Proof. We show that each of (i), (ii), and (iii) occurs with probability at least 1 − 1/n2.

For (i), let

Φv := |NX′(v)| =
∑

w∈NΓ(v)

1(evw ∈ X ′) .

Property 2 (for i = k, of course) and (20) give

E[Φv] =
∑

w∈NΓ(v)

Pr (evw ∈ X ′) ≤ pbn = bθ
√

n .

Thus it is enough to show

Pr (Φv − E[Φv] ≥ n1/4 log n) ≤ 1/n3 for all v ∈ V ,

which gives

Pr (∃ v ∈ V · 3 · Φv − E[Φv] ≥ n1/4 log n) ≤ n(1/n3) = 1/n2 .

Corollary 3.3 with ρ = 4n−1/4 yields

Pr (Φv − E[Φv] ≥ n1/4 log n) ≤ 2 exp(−ρn1/4 log n + ρ2bθ
√

n )

≤ exp(−3 log n) = 1/n3 .

For (ii), let

Φ(1)
v,w := |NE(v) ∩ NX′(w)| =

∑

u∈NE(v)

1(ewu ∈ X ′) .

16



Property 1 and (11) give

E[Φ(1)
v,w] ≤ p|NE(v)| ≤ θ1/2 ≤ 1 ,

and Corollary 3.3 with ρ = 5 yields

Pr (Φ(1)
v,w ≥ log n) ≤ Pr (Φ(1)

v,w − E[Φ(1)
v,w] ≥ log n − 1)

≤ 2 exp(−ρ(log n − 1) + ρ2)

≤ exp(−4 log n) = 1/n4 .

Because there are at most n2 pairs of v, w, we are done.

For (iii), let

Φ(2)
v,w := |NX′(v) ∩ NX′(w)| =

∑

u∈V

1(euvewu ⊆ X ′) .

Our i.i.d Bernoulli random variables in this case are τu := τeuv
τewu

, indexed by u ∈ V . Because

Pr (τu = 1) ≤ p2 = θ2/n ,

we have

E[Φ(2)
v,w] ≤ p2n = θ2 < 1 .

Let ρ = 5. Then

Pr (Φ(2)
v,w ≥ log n) ≤ Pr (Φ(2)

v,w − E[Φ(2)
v,w] ≥ log n − 1)

≤ 2 exp(−ρ(log n − 1) + ρ2)

≤ exp(−4 log n) = 1/n4 .

This completes the proof.

2

We now consider each property separately to prove (22). The definitions of Φv, Φv,w, · · ·
vary from property to property and therefore hold only within subsections. Also, to prove (22)

for the properties 2,4 and 5, we show that each vertex or pair of vertices violates the properties

with probability at most 1/n2 or 1/n3, respectively. This is enough because there are at most

n vertices and n2 pairs.

4.2 Property 1

Since

NE ′(v) = NE(v) ∪ NX′(v) ,

Property 1 and (i) of Lemma 4.3 give

dE ′(v) = dE(v) + |NX′(v)| ≤ a
√

n + kn1/4 log n + bθ
√

n + n1/4 log n

= a′√n + (k + 1)n1/4 log n

with probability at least 1 − 3/n2 > 1 − 1/n.
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4.3 Property 2

Let

Φv :=
∑

e∈NΓ(v)

1(e 6∈ Y ′) .

Then dΓ′(v) ≤ Φv by (21). Property 2 and Lemma 4.1 imply

E[Φv] =
∑

e∈NΓ(v)

Pr (e 6∈ Y ′)

≤ bn(b′/b − 5bθ2) ≤ b′n − b2θ2n .

We take

ce = |NΛ∗(e) ∩ NΓ(v)| ≤ 2b(a + 5θ)
√

n

for all e ∈ Γ∗. Lemma 4.2 and Property 2 then give

∑

e

c2
e

≤ 2b(a + 5θ)
√

n
∑

e

ce ≤ 4b2(a + 5θ)2n · bn ≤ n2 .

Together with (12) and Corollary 3.2 with ρ = n−3/4, this yields

Pr (Φv − E[Φv] ≥ b2θ2n) ≤ 2 exp(−b2θ2n1/4 + (θ/
√

n )n1/2)

≤ exp(−n1/4−2/17) ≤ 1/n2 .

4.4 Property 3

Since

|NE ′(v)∩NE ′(w)| ≤ |NE(v)∩NE(w)|+|NX′(v)∩NE(w)|+|NE(v)∩NX′(w)|+|NX′(v)∩NX′(w)| ,

we are done by Property 3 and (ii), (iii) of Lemma 4.3.

4.5 Property 4

For evw ∈ Γ \ X ′ let

Φ(1)
v,w :=

∑

e∈NΛ(evw,v)

1(e 6∈ Y ′)

and

Φ(2)
v,w :=

∑

u∈N∆(evw)

1(ewu ∈ X ′) .

Note that Φ
(1)
v,w and Φ

(2)
v,w are considered under the condition evw /∈ X ′. Clearly,

dΛ′(evw, v) ≤ Φ(1)
v,w + Φ(2)

v,w for all evw ∈ Γ′. (23)

Because events “e ∈ X ′ ” are mutually independent, Property 5 yields

E[Φ(2)
v,w|evw 6∈ X ′] = E[Φ(2)

v,w] = pd∆(evw) ≤ b2θ
√

n .
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Thus (12) and Corollary 3.3 with ρ = n−1/4 imply that

Pr (Φ(2)
v,w − b2θ

√
n ≥ b2θ2(a + 5θ)

√
n ) ≤ Pr (Φ(2)

v,w − E[Φ(2)
v,w] ≥ b2θ2(a + 5θ)

√
n )

≤ 2 exp(−b2θ2(a + 5θ)n1/4 + b2θ)

≤ exp(−n1/4−2/17) ≤ 1/n4 . (24)

We now consider Φ
(1)
v,w. Since

Pr (e 6∈ Y ′|evw 6∈ X ′) = Pr (e 6∈ Y ′)(1 − p)−1 for all e ∈ NΛ(evw, v)

Lemma 4.1 and Property 4 give

E[Φ(1)
v,w] ≤ (1 + 2p)Pr (e 6∈ Y ′)dΛ(evw, v)

≤ (1 + 2θ/
√

n )(b′/b − 5bθ2) b(a + 5θ)
√

n

≤ b′(a + 5θ)
√

n − 4b2θ2(a + 5θ)
√

n . (25)

Let

ce := |NΛ(evw, v) ∩ NΛ∗(e)| for e 6= evw.

Since

NΛ(euv, v) ⊆ NE(u) for all euv ∈ Γ, (26)

Property 3 implies for euv ∈ Γ that

|NΛ(evw, v) ∩ NΛ∗(euv, v)| = |NΛ(evw, v) ∩ NΛ(euv, v)|
≤ |NE(w) ∩ NE(u)| ≤ 3k log n .

Hence, for all e ∈ Γ∗ \ {evw},

ce ≤ 1 + 3k log n .

Thus Lemma 4.2 and Property 4 yield

∑

e∈Γ∗\{evw}
c2

e
≤ (1 + 3k log n)

∑

e∈Γ∗\{evw}
ce = 2(1 + 3k log n)b2(a + 5θ)2n .

Let ρ = n−1/4. Then

Pr (Φ(1)
v,w − E[Φ(1)

v,w] ≥ b2θ2(a + 5θ)
√

n )

≤ 2 exp(−b2θ2(a + 5θ)n1/4 + 2(θ/
√

n )(1 + 3k log n)b2(a + 5θ)2n1/2)

≤ exp(−n1/4−2/17) ≤ 1/n4 . (27)

It now follows from (25), (27), (24), and (14) that, with probability at least 1 − 2/n4,

Φ(1)
v,w + Φ(2)

v,w ≤ b′(a + 5θ)
√

n − 2b2θ2(a + 5θ)
√

n + b2θ
√

n ≤ b′(a′ + 5θ)
√

n .

By (23) we are done.
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4.6 Property 5

Let

Φvw :=
∑

u∈N∆(evw)

1(euvewu ∩ Y ′ = ∅)

for each evw ∈ Γ. Then

d∆′(evw) ≤ Φvw . (28)

Because (26) yields

|NΛ(euv, u) ∩ NΛ(ewu, u)| ≤ |NE(v) ∩ NE(w)| ≤ 3k log n ,

Lemma 4.1 gives

Pr (euvewu ∩ Y ′ = ∅) = Pr (euv 6∈ Y ′)Pr (ewu 6∈ Y ′|euv 6∈ Y ′)

≤ Pr (euv 6∈ Y ′)Pr (ewu 6∈ Y ′)(1 − p)−3k log n

≤ (b′/b − 5bθ2)2(1 + 4θk(log n)/
√

n )

≤ (b′/b)2 − bθ2 .

Property 5 easily yields

E[Φvw] =
∑

u∈N∆(evw)

Pr (euvewu ∩ Y ′ = ∅)

≤ ((b′/b)2 − bθ2)b2n ≤ (b′)2n − b3θ2n . (29)

Let

ce :=











b(a + 5θ)
√

n if NΛ∗(e) ∩ N∆(evw) 6= ∅ and evw ∩ e 6= ∅
2 if NΛ∗(e) ∩ (N∆(evw) ∪ evw) 6= ∅ and evw ∩ e = ∅
0 otherwise

for e ∈ Γ∗. (Actually, we may take ce = 1 for the second case.) Clearly, ce ≥ 2 for at most

2b(a + 5θ)
√

n · 2b2n edges (cf. Lemma 4.2), and ce > 2 for at most 2n edges. Hence

∑

c2
e

≤ 4 · 4b3(a + 5θ)n3/2 + 2nb2(a + 5θ)2n ≤ 3b2(a + 5θ)2n2 .

Then (28), (29), (12), and Corollary 3.2 with ρ = n−5/8 imply that

Pr (d∆′(evw) ≥ (b′)2n) ≤ Pr (Φvw − E[Φvw] ≥ b3θ2n)

≤ 2 exp(−b3θ2n3/8 + 3(θ/
√

n )b2(a + 5θ)2n3/4)

≤ exp(−n3/8−3/17) ≤ 1/n3 .
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4.7 Property 6

We prove only the first part. An analogous proof holds for the other part.

It is enough to prove the property for all A, B with |A| = |B| = b2θ2√n . (Of course, we

should really write bb2θ2√n c here.) Let

L := {(e, v) ∈ Γ∗ × V ∗ : v ∈ e}

and for A, B ⊆ V set

L(1)(A, B) := {(e, v) ∈ L : |NΛ∗(e, v) ∩ Γ(A, B)| < 4((k + 1) log n)1/2|A ∪ B|1/2} . (30)

Because

Y ′ =
⋃

e ∈ X∗

(e, v) ∈ L

NΛ∗(e, v) ∩ Γ , (31)

we further define

Y (1)(A, B) :=
⋃

e ∈ X∗

(e, v) ∈ L(1)(A, B)

NΛ∗(e, v) ∩ Γ(A, B) and ΦA,B :=
∑

e∈Γ(A,B)

1(e 6∈ Y (1)(A, B)) .

Then

|Γ′(A, B)| ≤ ΦA,B . (32)

In regard to the expectation of ΦA,B, we claim that, for all evw ∈ Γ(A, B),

Pr (evw 6∈ Y (1)(A, B)) ≤ Pr (evw 6∈ Y ′)(1 − p)−2n1/4
. (33)

This holds if

|{u ∈ NΛ∗(evw, v) : (euv, v) 6∈ L(1)(A, B)}| ≤ n1/4 (34)

and

|{u ∈ NΛ∗(evw, w) : (ewu, w) 6∈ L(1)(A, B)}| ≤ n1/4 . (35)

By (26), (euv, v) 6∈ L(1)(A, B) implies that

4((k + 1) log n)1/2|A ∪ B|1/2 ≤ |NΛ∗(euv, v) ∩ Γ(A, B)|
≤ |NΛ(euv, v) ∩ (A ∪ B)| ≤ |NE(u) ∩ (A ∪ B)| .

This inequality, Property 3, and Lemma 3.5 with β = (3(k + 1) log n)1/2, γ = 1 then imply

that there are at most (3(k + 1) log n)−1/2|(A ∪ B)|1/2 such u ∈ V ∗. Since

(3(k + 1) log n)−1/2|(A ∪ B)|1/2 ≤ n1/4 ,

(34) follows. By the same method (35) also holds.
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Lemma 4.1, Property 6, (33), and our condition of |A| = |B| = b2θ2√n imply

Pr (evw 6∈ Y (1)(A, B)) ≤ (b′/b − 5bθ2)(1 + n−1/4) ≤ b′/b − bθ2

and

E[ΦA,B] ≤ (b′/b − bθ2)|Γ(A, B)| ≤ b′|A||B| − b6θ6n . (36)

Let

ce := min{4((k + 1) log n)1/2|A ∪ B|1/2, |NΛ∗(e) ∩ Γ(A, B)|} ≤ 6((k + 1) log n)1/2bθn1/4

for all e ∈ Γ∗. Then Lemma 4.2 and Property 6 give

∑

c2
e

≤ 6((k + 1) log n)1/2bθn1/4
∑

ce

≤ 6((k + 1) log n)1/2bθn1/4 · 2b(a + 5θ)n1/2|Γ(A, B)|
≤ 12((k + 1) log n)1/2b7θ5(a + 5θ)n7/4 .

It follows from (12) and Corollary 3.2 with ρ = n−1/4−εo , where εo := 1/4− 4/17 = 1/68, that

Pr (ΦA,B − E[ΦA,B] ≥ b6θ6n)

≤ 2 exp
(

− b6θ6n3/4−εo + 12(θ/
√

n )((k + 1) log n)1/2b7θ5(a + 5θ)n5/4−2εo

)

≤ exp(−b
2
θ2(log n)4n3/4−4/17−εo/2)

≤ exp(−b
2
θ2(log n)2n1/2) .

This result along with (32) and (36) then gives

Pr
(

∃ disjoint A, B ⊆ V with |A| = |B| = b2θ2√n · 3 · |Γ′(A, B)| > b′|A||B|
)

≤ Pr
(

∃ disjoint A, B ⊆ V with |A| = |B| = b2θ2√n · 3 · ΦA,B − E[ΦA,B] ≥ b6θ6n
)

≤
(

n

b2θ2n1/2

)2

exp(−b2θ2n1/2(log n)2)

≤ exp(2b2θ2n1/2 log n − b2θ2n1/2(log n)2) ≤ 1/n .

4.8 Property 7

Recall for T ∈ T that |T | = t = d9√
n log n e. Let T ∈ T . (Actually, our proof works for all T

of size t.) We know by (21) that

|Γ′(T )| ≥ |Γ(T )| − |X ′ ∩ Γ(T )| − |Y ′ ∩ Γ(T )| − |Z ′ ∩ Γ(T )| . (37)

We verify Property 7 by first proving

Pr (∃ T ∈ T · 3 · |X ′ ∩ Γ(T )| ≥ b′θ2|Γ(T )|/2 ) ≤ 1/n2 . (38)
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Proof of (38). Set

Φ
(0)
T := |X ′ ∩ Γ(T )| =

∑

e∈Γ(T )

1(e ∈ X ′) .

Then

E[Φ
(0)
T ] = |Γ(T )|Pr (e ∈ X ′) = (θ/

√
n )|Γ(T )| ,

and Corollary 3.3 with ρ = n−5/17, Property 7 and (12) give

Pr (Φ
(0)
T ≥ b′θ2|Γ(T )|/2) ≤ Pr (Φ

(0)
T − E[Φ

(0)
T ] ≥ b′θ2|Γ(T )|/4)

≤ 2 exp(−ρb′θ2|Γ(T )|/4 + ρ2(θ/
√

n )|Γ(T )|)
≤ exp(−ρbb′θ2n)

≤ exp(−n1−5/17−2/17) = exp(−n10/17) .

Thus

Pr (∃ T ∈ T · 3 · Φ
(0)
T ≥ b′θ2|Γ(T )|/2 ) ≤

(

n

t

)

exp(−n10/17)

≤ exp(9
√

n (log n)3/2 − n10/17) ≤ 1/n2 .

2

We now divide |Y ′ ∩ Γ(T )| into two parts (cf. (30)). Let

L(1)(T ) := {(e, v) ∈ L : |NΛ∗(e, v) ∩ Γ(T )| < 4((k + 1) log n)1/2|T |1/2},

L(2)(T ) := L \ L(1)(T ) ,

and

Y (1)(T ) :=
⋃

e ∈ X∗

(e, v) ∈ L(1)(T )

NΛ∗(e, v) ∩ Γ(T ) ,

Y (2)(T ) :=
⋃

e ∈ X∗

(e, v) ∈ L(2)(T )

NΛ∗(e, v) ∩ Γ(T ) .

The corresponding random variables are

Φ
(1)
T := |Γ(T )| − |Y (1)(T )| =

∑

e∈Γ(T )

1(e 6∈ Y (1)(T )) and Φ
(2)
T := |Y (2)(T )| .

By (31),

|Γ(T )| − |Y ′ ∩ Γ(T )| ≥ Φ
(1)
T − Φ

(2)
T .

We claim that

Pr (∃ T ∈ T · 3 · Φ
(1)
T ≤ (b′/b − 15b′θ

2
)|Γ(T )| ) ≤ 1/n2 (39)
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and that

Pr
(

∃ T ∈ T · 3 · Φ
(2)
T >

2b′bθ(1 + 6θ)

9
√

log n

(

t

2

)

)

≤ 3/n2 , (40)

which imply directly that, with probability at least 1 − 4/n2,

|Γ(T )| − |Y ′ ∩ Γ(T )| ≥ (b′/b − 15b′θ
2
)|Γ(T )| − 2b′bθ(1 + 6θ)

9
√

log n

(

t

2

)

. (41)

Proof of (39). Lemma 4.1 (the lower bound) gives

E[Φ
(1)
T ] =

∑

e∈Γ(T )

Pr (e 6∈ Y (1)(T )) ≥
∑

e∈Γ(T )

Pr (e 6∈ Y ′) ≥ (b′/b − 14bθ2)|Γ(T )| .

Since (13) yields b = (1 + O(θ))b′, we have

Pr (Φ
(1)
T ≤ (b′/b − 15b′θ

2
)|Γ(T )|) ≤ Pr (Φ

(1)
T − E[Φ

(1)
T ] ≤ −b′θ

2 |Γ(T )|/2) . (42)

Set

ce := min{|NΛ∗(e) ∩ Γ(T )|, 8((k + 1) log n)1/2t1/2} .

Then Lemma 4.2 yields

∑

c2
e

≤ 8((k + 1) log n)1/2t1/2
∑

ce

≤ 16((k + 1) log n)1/2t1/2b(a + 5θ)
√

n |Γ(T )| .

Let ρ = n−1/4−1/17. Then Property 7 and (12) imply that

Pr (Φ
(1)
T − E[Φ

(1)
T ] ≤ −b′θ

2 |Γ(T )|/2)

≤ 2 exp
(

− ρb′θ2|Γ(T )|/2 + 16ρ2(θ/
√

n )((k + 1) log n)1/2t1/2b(a + 5θ)
√

n |Γ(T )|
)

≤ exp(−n1−1/4−3/17) ≤ exp(−√
n (log n)2) .

We combine this with (42) and the inequality

exp(−√
n (log n)2)

(

n

t

)

≤ 1/n2

to obtain (39).

2

Proof of (40). It is enough to show that (i), (ii), and (iii) of Lemma 4.3 imply (40).

Take NE(w, T ) := NE(w) ∩ T and let

WT := {w ∈ V : |NE(w, T )| ≥ 4((k + 1) log n)1/2t1/2} .
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We show first that

Y (2)(T ) ⊆
⋃

w∈WT

Γ(NE(w, T ), NX′(w, T )) (43)

where, as usual, NX′(w, T ) := NX′(w) ∩ T .

Suppose f ∈ Y (2)(T ) ⊆ Γ(T ). Then there exists (e, v) ∈ L(2)(T ), say e = evw, such that

f ∈ NΛ∗(evw, v) and evw ∈ X ′. In particular, v ∈ f ⊆ T , and the other vertex u of f is in

NE(w, T ). Moreover, since evw ∈ X ′, we have v ∈ NX′(w, T ). Since (evw, v) ∈ L(2)(T ), we

know also by (26) that

4((k + 1) log n)1/2t1/2 ≤ |NΛ∗(evw, v) ∩ Γ(T )| = |NΛ(evw, v) ∩ T | ≤ |NE(w, T )| .

Thus w ∈ WT , and the proof of (43) is complete.

Let

A(w, T ) :=

{

NE(w, T ) if |NE(w, T )| ≥ |NX′(w, T )|
NX′(w, T ) otherwise

and for summations let

∑ ′
:=

∑

w ∈ WT

min{|NE(w, T )|, |NX′ (w, T )|} ≤ b2θ2√
n

and
∑ ′′

:=
∑

w ∈ WT

min{|NE(w, T )|, |NX′ (w, T )|} > b2θ2√
n

.

Note that

|A(w, T )| ≥ |NE(w, T )| ≥ 4((k + 1) log n)1/2t1/2 for all w ∈ WT . (44)

Property 6, (i) of Lemma 4.3, and (43) yield

|Y (2)(T )| ≤
∑

w∈WT

|Γ(NE(w, T ), NX′(w, T ))|

≤
∑ ′|NE(w, T )||NX′(w, T )| + b

∑ ′′|NE(w, T )||NX′(w, T )|

≤ b2θ2√n
∑ ′|A(w, T )| + (1 + θ)b2θ

√
n
∑ ′′|NE(w, T )| .

Moreover, Lemma 3.5 (with β =
√

3(k + 1) log n for both of the following inequalities, γ = 1

for the first inequality, and γ = log n for the second), Property 3, (ii) and (iii) of Lemma 4.3,

and (44) imply
∑ ′|A(w, T )| ≤ 2t and

∑ ′′|NE(w, T )| ≤ (1 + θ)t .

Therefore, by (14),

|Y (2)(T )| ≤ 2b2θ2√n t + (1 + θ)2b2θ
√

n t ≤ 2b′bθ(1 + 6θ)

9
√

log n

(

t

2

)

.

2
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We return to (37) and divide |Z ′ ∩ Γ(T )| into two parts. We recall that NX′(v, T ) =

NX′(v) ∩ T and note that

Z ′ ∩ Γ(T ) =
⋃

v∈V

Γ(NX′(v)) ∩ Γ(T ) =
⋃

v∈V

Γ(NX′(v) ∩ T ) =
⋃

v∈V

Γ(NX′(v, T )) .

Let h := d4((k + 1) log n)1/2t1/2e. Given NX′(v, T ) = {vj1
, ..., vjr

} with j1 < · · · < jr , let

N̂X′(v, T ) :=

{

NX′(v, T ) if r ≤ h
{vj1

, ..., vj
h
} if r > h.

Then

Z ′ ∩ Γ(T ) =
⋃

v∈V

Γ(N̂X′(v, T )) ∪
⋃

v ∈ V
|NX′ (v)| ≥ h

Γ(NX′(v, T )) .

Let

Φ
(3)
T :=

∑

v∈V

|Γ(N̂X′(v, T ))|, and Φ
(4)
T :=

∑

v ∈ V
|NX′ (v, T )| ≥ h

|Γ(NX′(v, T ))| .

Clearly

|Z ′ ∩ Γ(T )| ≤ Φ
(3)
T + Φ

(4)
T . (45)

We now claim that

Pr (Φ
(3)
T ≥ 2b′θ2|Γ(T )| ) ≤ 2 exp(−√

n (log n)2) for all T ∈ T , (46)

which implies

Pr (∃T ∈ T · 3 · Φ
(3)
T ≥ 2b′θ2|Γ(T )| ) ≤ 1/n2. (47)

Proof of (46). Property 5 gives, for expectation,

E[Φ
(3)
T ] ≤ E[

∑

v∈V

|Γ(NX′(v, T ))| ]

=
∑

v∈V

∑

ewu ∈ Γ(T )
v ∈ N∆(ewu)

Pr (euvevw ⊆ X ′)

= p2
∑

ewu∈Γ(T )

∑

v∈N∆(ewu)

1

≤ p2b2n|Γ(T )| = b2θ2|Γ(T )| ≤ (3/2)b′θ2|Γ(T )| .

Thus

Pr (Φ
(3)
T ≥ 2b′θ2|Γ(T )| ) ≤ Pr (Φ

(3)
T − E[Φ

(3)
T ] ≥ b′θ2|Γ(T )|/2) .

We obtain a concentration result by taking

Φ
(5)
T :=

∑

v∈T

|Γ(N̂X′(v, T ))| and Φ
(6)
T :=

∑

v∈V \T

|Γ(N̂X′(v, T ))| .
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Since

Φ
(3)
T = Φ

(5)
T + Φ

(6)
T ,

it is enough to show that

Pr (Φ
(5)
T − E[Φ

(5)
T ] ≥ b′θ2|Γ(T )|/4) ≤ exp(−√

n (log n)2) (48)

and

Pr (Φ
(6)
T − E[Φ

(6)
T ] ≥ b′θ2|Γ(T )|/4) ≤ exp(−√

n (log n)2) . (49)

Consider (48). Let

ce :=

{

2h if e ∈ Γ(T )
0 otherwise.

Then
∑

c2
e

= 4h2|Γ(T )| .

We take ρ = n−1/4−1/17 to obtain

Pr (Φ
(5)
T − E[Φ

(5)
T ] ≥ b′θ2|Γ(T )|/4) ≤ 2 exp(−ρb′θ2|Γ(T )|/4 + 4ρ2(θ/

√
n )h2|Γ(T )|)

≤ exp(−n1−1/4−3/17) ≤ exp(−√
n (log n)2) .

Consider (49). All random variables |Γ(N̂X′(v, T ))| for v ∈ V \T are mutually independent,

so

E[exp(ρΦ
(6)
T )] =

∏

v∈V \T

E[exp(ρ|Γ(N̂X′(v, T ))|)] . (50)

Our aim is to find a good upper bound of E[exp(ρ|Γ(N̂X′(v, T ))|)] so that we may apply

Markov’s inequality with the function exp(ρx) (see (53)). Let

φv(ρ) := E[ exp(ρ|Γ(N̂X′(v, T ))|) ] .

Then there is ρ∗ with 0 ≤ ρ∗ ≤ ρ such that

φv(ρ) = 1 + ρ E[ |Γ(N̂X′(v, T ))| ] + (ρ2/2)φ′′
v(ρ

∗) .

We prove the following claim.

Claim.

φ′′
v(ρ

∗) ≤ 1 if ρ∗ ≤ h−1 . (51)

Proof. Let B = B(v, T ) := NΓ(v) ∩ T . Then, since ρ∗ ≤ h−1,

φ′′
v(ρ

∗) = E[ |Γ(N̂X′(v, T ))|2 exp(ρ∗|Γ(N̂X′(v, T ))|) ]

≤
h−1
∑

l=0

(

|B|
l

)(

l

2

)2

exp
(

ρ∗
(

l

2

)

)

pl(1 − p)|B|−l +

|B|
∑

l=h

(

|B|
l

)(

h

2

)2

exp
(

ρ∗
(

h

2

)

)

pl(1 − p)|B|−l

≤ 1

4

|B|
∑

l=2

(

|B|
l

)

(l + 2)(l + 1)l(l − 1) exp(l/2)pl(1 − p)|B|−l . (52)
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Let

ω(x) := x2(1 − p + x)|B| =

|B|
∑

l=0

(

|B|
l

)

xl+2(1 − p)|B|−l .

Then it is clear that the last term of (52) is exactly (p2 exp(1)/4)ω(4)(p exp(1/2)), where ω(4)

is the fourth derivative of ω. Therefore, with

p|B| ≤ pt ≤ (log n)−1 ,

we easily have

(p2/4)ω(4)(p exp(1/2)) ≤ 1 .

2

We use 51 and set ρ = n−1/4−1/17 (notice that ρ ≤ h−1) to obtain

φv(ρ) ≤ exp(E[ |Γ(N̂X′(v, T ))| ] ρ + ρ2/2) .

Then, by (50),

E[exp(ρΦ
(6)
T )] ≤ exp(ρ

∑

v∈V \T

E[ |Γ(N̂X′(v, T ))| ] + ρ2n/2) = exp(ρE[Φ
(6)
T ] + ρ2n/2) .

Thus Markov’s inequality gives

Pr (Φ
(6)
T − E[Φ

(6)
T ] ≥ b′θ2|Γ(T )|/4 ) = Pr (exp(ρ(Φ

(6)
T − E[Φ

(6)
T ])) ≥ exp(ρb′θ2|Γ(T )|/4) )

≤ exp(−ρb′θ2|Γ(T )|/4)E[ exp(ρ(Φ
(6)
T − E[Φ

(6)
T ])) ]

≤ exp(−ρb′θ2|Γ(T )|/4 + ρ2n/2)

≤ exp(−n1−1/4−3/17) ≤ exp(−√
n (log n)2) , (53)

which completes the proof of (49) and therefore of (46).

2

Finally, we claim that

Pr
(

∃ T ∈ T · 3 · Φ
(4)
T >

b′bθ(1 + 6θ)

9
√

log n

(

t

2

)

)

≤ 3/n2 . (54)

Proof of (54). It is enough to show that (i) and (iii) in Lemma 4.3 imply

Φ
(4)
T ≤ b′bθ(1 + 6θ)

9
√

log n

(

t

2

)

for all T ∈ T .
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Let
∑ ∗

:=
∑

v ∈ V
h ≤ |NX′ (v, T )| < b2θ2√

n

and
∑ ∗∗

:=
∑

v ∈ V
|NX′ (v, T )| ≥ b2θ2√

n

.

Then Property 6 and (i) of Lemma 4.3 give

Φ
(4)
T =

∑

v ∈ V
|NX′ (v, T )| ≥ h

Γ(NX′(v, T ))

≤ 1

2

∑ ∗|NX′(v, T )|2 +
b

2

∑ ∗∗|NX′(v, T )|2

≤ b2θ2√n

2

∑ ∗|NX′(v, T )| + (1 + θ)b2θ
√

n

2

∑ ∗∗|NX′(v, T )| .

Also, (iii) of Lemma 4.3 and Lemma 3.5 (with β =
√

log n for both of the following inequalities,

γ = 1 for the first inequality, and γ = 2 log n for the second) give
∑ ∗|NX′(v, T )| ≤ 2t and

∑ ∗∗|NX′(v, T )| ≤ (1 + θ/2)t .

Thus (14) yields

Φ
(4)
T ≤ b2θ2√n t + (1/2 + θ)b2θ

√
n t ≤ b′bθ(1 + 6θ)

9
√

log n

(

t

2

)

.

2

Therefore, combining (37), (38), (41), (45), (47), (54) and Property 7, we have that, with

probability at least 1 − 1/n,

|Γ′(T )| ≥ (b′/b − 35b′θ2/2)|Γ(T )| − 3b′bθ(1 + 6θ)

9
√

log n

(

t

2

)

≥ b′
(

µ − 35bµθ2/2 − bθ(1 + 6θ)

3
√

log n

)

(

t

2

)

≥ b′
(

µ − 18bθ2 − bθ

3
√

log n

)

(

t

2

)

= b′µ′
(

t

2

)

.

4.9 Property 8

We will show that

E[ |T ′| ] ≤ nk

(

n

t

)

exp
(

− (1 − ε)
k
∑

j=0

bjµjθ√
n

(

t

2

)

)

, (55)

which together with Markov’s inequality implies

Pr
(

|T ′| ≥ nk+1

(

n

t

)

exp
(

− (1 − ε)
k
∑

j=0

bjµjθ√
n

(

t

2

)

))

≤
(

nk+1

(

n

t

)

exp
(

− (1 − ε)
k
∑

j=0

bjµjθ√
n

(

t

2

)

))−1
E[ |T ′| ] ≤ 1/n .

29



Proof of (55). Since

E[ |T ′| ] =
∑

T∈T
Pr (E(G′) ∩ Γ(T ) = ∅) ,

it is enough to show that for each T ∈ T

Pr (E(G′) ∩ Γ(T ) = ∅) ≤ exp
(

− (1 − ε)bµθ√
n

(

t

2

)

)

(56)

(recall that b and µ actually mean bk and µ
k
). But notice that for

F ′(T ) := {F ∈ F ′ : F ∩ Γ(T ) 6= ∅}

(again recall that F ′(= Fk+1) is a maximal disjoint collection of forbidden pairs and triples in

X ′: see (BC 3) in Section 2.1), we clearly have

Pr (E(G′) ∩ Γ(T ) = ∅) ≤ Pr (|X ′ ∩ Γ(T )| ≤ 3|F ′(T )|)

≤ Pr
(

|X ′ ∩ Γ(T )| ≤ 3ε2θ√
n

|Γ(T )| or |F ′(T )| ≥ ε2θ√
n

|Γ(T )|
)

≤ Pr
(

|X ′ ∩ Γ(T )| ≤ 3ε2θ√
n

|Γ(T )|
)

+ Pr
(

|F ′(T )| ≥ ε2θ√
n

|Γ(T )|
)

. (57)

Set

ΦT := |X ′ ∩ Γ(T )| =
∑

e∈Γ(T )

1(e ∈ X ′) .

Then, since all events “e ∈ X ′ ” are mutually independent and Pr (e ∈ X ′) = p, we have

E[exp(ρΦT )] =
∏

e∈Γ(T )

(

1 − p(1 − exp(ρ))
)

≤ exp
(

− θ(1 − exp(ρ))√
n

|Γ(T )|
)

.

Markov’s inequality with ρ = −ε−1/4 then gives

Pr
(

ΦT ≤ 3ε2θ√
n

|Γ(T )|
)

= Pr
(

exp(ρΦT ) ≥ exp
(3ρε2θ√

n
|Γ(T )|

))

≤ exp
(

− 3ρε2θ√
n

|Γ(T )|
)

E[exp(ρΦT )]

≤ exp
(

− θ
(1 − exp(ρ)√

n
+

3ρε2√
n

)

|Γ(T )|
)

≤ 1

2
exp

(

− (1 − ε)bµθ√
n

(

t

2

)

)

.

Therefore

Pr
(

|X ′ ∩ Γ(T )| ≤ 3ε2θ√
n

|Γ(T )|
)

= Pr
(

ΦT ≤ 3ε2θ√
n

|Γ(T )|
)

≤ 1

2
exp

(

− (1 − ε)bµθ√
n

(

t

2

)

)

. (58)
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On the other hand, with l := bε2θ|Γ(T )|/√
n c, we know that

Pr
(

|F ′(T )| ≥ ε2θ√
n

|Γ(T )|
)

≤ Pr
(

∃ F1, ..., Fl ∈ Λ ∪ ∆ · 3 ·

Fj ⊆ X ′ , Fj ∩ Γ(T ) 6= ∅ and Fj ∩ Fj′ = ∅ ∀ j 6= j′
)

.

Let
∑ (l)

:=
∑

{F1, ..., Fl} ⊆ Λ ∪ ∆
Fj ∩ Γ(T ) 6= ∅ ∀j ∈ [l]
Fj ∩ Fj′ = ∅ ∀j 6= j′

.

Then

Pr
(

|F ′(T )| ≥ ε2θ√
n

|Γ(T )|
)

≤
∑ (l)

Pr (Fj ⊆ X ′ ∀j ∈ [l])

=
∑ (l)

l
∏

j=1

Pr (Fj ⊆ X ′)

≤ 1

l!

(

∑

F ∈ Λ ∪ ∆
F ∩ Γ(T ) 6= ∅

Pr (F ⊆ X ′)
)l

(cf. Lemma 3.4). Properties 4 and 5, and (10) yield

∑

F ∈ Λ ∪ ∆
F ∩ Γ(T ) 6= ∅

Pr (F ⊆ X ′) =
∑

F ∈ Λ
F ∩ Γ(T ) 6= ∅

Pr (F ⊆ X ′) +
∑

F ∈ ∆
F ∩ Γ(T ) 6= ∅

Pr (F ⊆ X ′)

≤ 2b(a + 5θ)
√

n |Γ(T )| p2 + b2n|Γ(T )| p3

≤ θ2

√
n

|Γ(T )| + θ3

√
n

|Γ(T )|

≤ 2θ2

√
n

|Γ(T )| .

Thus with η :=
2θ2

√
n

|Γ(T )|, we have

Pr
(

|F ′(T )| ≥ ε2θ√
n

|Γ(T )|
)

≤ ηl

l!
≤ 1

2
exp

(

− θ|Γ(T )|√
n

)

≤ 1

2
exp

(

− bµθ√
n

(

t

2

)

)

, (59)

where the second inequality uses
ηl

l!
≤
(η exp(1)

l

)l
. Hence (57), (58) and (59) yield (56).
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Appendix

To prove Lemma 3.1, set

Ωj := E[Φ|τ1 , ..., τj ] − E[Φ|τ1 , ..., τj−1 ] for j = 1, 2, ...m.

We first verify two more lemmas. The first is from [31].

Lemma A.1 The hypotheses of Lemma 3.1 imply

|Ωj | ≤ cj for j = 1, 2, ..., m .

Proof. Note first for fixed κ = (κ1 , ..., κm) that

E[Φ|τ1 , ..., τj−1 ](κ) =
∑

γj ,···,γm

Φ(κ1 , · · · , κj−1 , γj , · · · , γm)Pr (τj = γj , · · · , τm = γm),

and
∑

γj

Pr (τj = γj · · · , τm = γm) = Pr (τj+1 = γj+1 , · · · , τm = γm) yields

E[Φ|τ1 , ..., τj ](κ) =
∑

γj+1 ,···,γm

Φ(κ1 , · · · , κj , γj+1 , · · · , γm)Pr (τj+1 = γj+1 , · · · , τm = γm)

=
∑

γj ,···,γm

Φ(κ1 , · · · , κj , γj+1 , · · · , γn)Pr (τj = γj , · · · , τm = γm) .

Thus (18) implies

|Ωj(κ)| = |(E[Φ|τ1 , ..., τj ] − E[Φ|τ1 , ..., τj−1 ])(κ)|
≤

∑

γj ,···,γm

|Φ(κ1 , · · · , κj , γj+1 , · · · , γm) − Φ(κ1 , · · · , κj−1 , γj , · · · , γm)|

× Pr (τj = γj , · · · , τm = γm)

≤
∑

γj ,···,γm

cjPr (τj = γj , · · · , τm = γm) = cj .

2

Lemma A.2 The hypotheses of Lemma 3.1 imply

E[(Ωj)
2|τ1 , ..., τj−1 ] ≤ p(1 − p)c2

j
for j = 1, 2, ..., m .

Proof. Jensen’s inequality gives

(Ωj)
2 = (E[Φ|τ1 , ..., τj ] − E[Φ|τ1 , ..., τj−1 ])

2

= (E[Φ − E[Φ|τ1 , ..., τj−1 , τj+1 , ..., τm ]|τ1 , ..., τj ])
2

≤ E[(Φ − E[Φ|τ1 , ..., τj−1 , τj+1 , ..., τm ])2|τ1 , ..., τj ] .
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Hence

E[(Ωj)
2|τ1 , ..., τj−1 ]

≤ E[ (Φ − E[Φ|τ1 , ..., τj−1 , τj+1 , ..., τm ])2 |τ1 , ..., τj−1 ]

= E[ E[ (Φ − E[Φ|τ1 , ..., τj−1 , τj+1 , ..., τm ])2 |τ1 , ..., τj−1 , τj+1 , ..., τm ] | τ1 , ..., τj−1 ] .

Thus it is enough to show that

E[ (Φ − E[Φ|τ1 , ..., τj−1 , τj+1 , ..., τm ])2 | τ1 , ..., τj−1 , τj+1 , ..., τm ] ≤ p(1 − p)c2
j

.

For fixed τ1 , ..., τj−1 , τj+1 , ..., τm let

x := Φ(τ1 , ..., τj−1 , 0, τj+1 , ..., τm) and y := Φ(τ1 , ..., τj−1 , 1, τj+1 , ..., τm)

Then (18) gives

|x − y| ≤ cj .

Since Pr (τj = 1) = p, this implies

E[ (Φ − E[Φ|τ1 , ..., τj−1 , τj+1 , ..., τm ])2 | τ1 , ..., τj−1 , τj+1 , ..., τm ]

= (1 − p)(x − ((1 − p)x + py))2 + p(y − ((1 − p)x + py))2

= p(1 − p)(x − y)2 ≤ p(1 − p)c2
j

.

2

Proof of Lemma 3.1. (cf. Lemma 5.3 of [22]) It is enough to show that

Pr (Φ − E[Φ] ≥ λ) ≤ exp(−ρλ + (ρ2/2)
m
∑

j=1

cj exp(ρcj )) ,

because the same argument gives

Pr (−Φ − E[−Φ] ≥ λ) ≤ exp(−ρλ + (ρ2/2)
m
∑

j=1

cj exp(ρcj )) .

We claim first that

E[exp(ρΩj)|τ1 , ..., τj−1 ] ≤ exp((ρ2/2)p(1 − p)c2
j
exp(ρcj )) . (60)

For fixed τ1 , ..., τj−1 let

φ(ρ) := E[exp(ρΩj)|τ1 , ..., τj−1 ] .

Then Taylor’s theorem and Lemma A.1 imply for some 0 ≤ ρ∗ ≤ ρ that

φ(ρ) = φ(0) + φ′(0)ρ +
φ′′(ρ∗)

2
ρ2

= 1 + (ρ2/2)E[(Ωj)
2 exp(ρ∗Ωj)|τ1 , ..., τj−1 ]

≤ 1 + (ρ2/2)p(1 − p)c2
j
exp(ρcj ) ≤ exp((ρ2/2)p(1 − p)c2

j
exp(ρcj )) ,
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where the second equality uses E[Ωj ] = 0.

Next we show that

E[exp(ρ(Φ − E[Φ]))] ≤ exp((ρ2/2)p(1 − p)
m
∑

j=1

c2
j
exp(ρcj )) . (61)

Since Φ − E[Φ] =
∑m

j=1 Ωj , it is enough to show that

E[exp(ρ
l
∑

j=1

Ωj)] ≤ exp((ρ2/2)p(1 − p)
l
∑

j=1

c2
j
exp(ρcj ))

by induction on l = 1, 2, ..., m. For l = 1, (60) gives

E[exp(ρΩ1)] ≤ exp((ρ2/2)p(1 − p)c2
1
exp(ρc1)) .

For l > 1, (60) and the induction hypothesis yield

E[exp(ρ
l
∑

j=1

Ωj)] = E[E[exp(ρ
l
∑

j=1

Ωj)|τ1 , ..., τl−1
]]

= E[exp(ρ
l−1
∑

j=1

Ωj)E[exp(ρΩl)|τ1 , ..., τl−1
]]

≤ E[exp(ρ
l−1
∑

j=1

Ωj)] exp((ρ2/2)p(1 − p)c
l
exp(ρc

l
))

≤ exp((ρ2/2)p(1 − p)
l
∑

j=1

c2
j
exp(ρcj )) .

Finally, Markov’s inequality and (61) give

Pr (Φ − E[Φ] ≥ λ) = Pr (exp(ρ(Φ − E[Φ])) > exp(ρλ))

≤ exp(−ρλ)E[exp(ρ(Φ − E[Φ]))]

≤ exp(−ρλ + (ρ2/2)p(1 − p)
m
∑

j=1

c2
j
exp(ρcj )) .

2
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