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Abstract—We revisit the classic geometric problem of comput-
ing the volume of the union of n 3-dimensional axis-parallel
boxes (Klee’s measure problem in 3D). It is well known that
the problem can be solved in time O(n3/2) (Overmars, Yap
SICOMP’91; Chan FOCS’13). Can we justify this 30-year old
barrier of n3/2±o(1) under plausible fine-grained complexity
assumptions? The only previous conditional lower bound (Chan
Comp. Geom.’10) shows that this barrier holds for purely combi-
natorial algorithms, i.e., algorithms avoiding algebraic techniques
for fast matrix multiplication. This leaves open an algorithmic
improvement exploiting algebraic techniques, and does not give
any superlinear bound if the matrix multiplication exponent ω
turns out to be equal to 2.

We resolve this issue by giving a tight conditional lower bound
for general algorithms, based on the 3-uniform hyperclique
hypothesis. Specifically, we prove that an O(n3/2−ε) algorithm
for Klee’s measure problem in 3D would give a O(nk−ε

′
)-time

algorithm for counting k-cliques in 3-uniform hypergraphs – this
in turn would give a novel O((2−ε′′)n)-algorithm for Max-3SAT.

Our lower bound can be generalized to n
d

3−3/d
−o(1), which

matches the upper bound up to a factor of n
d−3

6−6/d
+o(1) and

separates the general problem from popular special cases: For all
d ≥ 3, known Õ(n

d+1
3 ) algorithms (Bringmann Comp. Geom.’12;

Chan FOCS’13) compute the problem for arbitrary hypercubes
polynomially faster than our lower bound for the general
problem.

Index Terms—fine-grained complexity theory, geometric algo-
rithms, hyperclique detection, (non-)combinatorial algorithms

I. INTRODUCTION

Klee’s measure problem [1] (KMP) is one of the most
natural problems that you may ask about axis-aligned boxes:
Given n axis-parallel boxes in d-dimensional space, compute
the volume of their union. Besides significant interest as a
fundamental problem of its own, the problem is related to other
interesting geometric problems, such as the depth problem
for an arrangement of boxes1, finding a cluster of k points
with small L∞-diameter [2], [3], Hausdorff distance under
translation [4], discrepancy of boxes [5], the largest empty
box problem [6], and many more.

For d ≤ 2, the problem is essentially resolved: a sim-
ple sweep-line approach due to Bentley [7] solves the 2-
dimensional problem in time O(n log n), and a tight lower
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Studies at ETH Zurich, supported by Dr. Max Rössler, the Walter Haefner
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1Given a set of axis-parallel boxes B, determine the point contained in the
maximum number of B ∈ B.

bound in the decision tree model already holds for d = 1 [8].
However, already the case d = 3 remains an interesting
open problem: Bentley’s approach yields a O(n2 log n)-time
solution, from which van Leeuwen and Wood [9] could
shave off a logarithmic factor. A remarkable improvement to
O(n3/2 log n) was given by Overmars and Yap [10] which was
subsequently improved to O(n3/2) and simplified in works
by Chan [11], [12]. This running time (which generalizes to
O(nd/2) in d dimensions) remains the state of the art since,
even despite interesting special cases such as a restriction to
cubes being solvable in near-linear time [13]; we review the
extensive work on special cases of Klee’s measure problem in
more detail below.

Consequently, it is no surprise that researchers have asked
whether the exponent 3/2 might be optimal, at the latest since
the late 1990s2. Notable evidence for optimality was presented
by Chan [11] who reduces the problem of finding a triangle
in an n-node graph G to the 3-dimensional KMP on O(n2)
boxes. For this, consider the bounding box B = [0, n]3, where
we think of the subcube

Av1,v2,v3 = [v1, v1 + 1)× [v2, v2 + 1)× [v3, v3 + 1)

for v1, v2, v3 ∈ {0, . . . , n−1} as representing a potential trian-
gle (v1, v2, v3). The task is to define a set of boxes B that cover
Av1,v2,v3 if and only if {v1, v2, v3} do not form a triangle in G.
We can do so by adding a box [v1, v1+1)×[v2, v2+1)×[0, n)
whenever {v1, v2} does not form an edge3 in G as well
as analogous boxes for non-edges of the form {v2, v3} and
{v1, v3}. This way, we obtain a set of O(n2) boxes with the
desired property – in particular, the volume of the union of B
is n3 if and only if there is no triangle in G.

This elegant reduction yields several consequences based on
the current state of the art for triangle detection algorithms.
Specifically, the only known way to beat n3±o(1) time for
triangle detection uses fast matrix multiplication based on
algebraic techniques; this results in a time bound of O(nω),
where ω denotes the matrix multiplication constant with a
current bound of ω < 2.37286 [14]. As a consequence, we can
rule out a “purely combinatorial” O(n3/2−ε)-time algorithm
for Klee’s measure problem in 3D if we are willing to assume

2For an early explicit account, see Jeff Erickson’s notes from 1998:
https://jeffe.cs.illinois.edu/open/klee.html.

3This includes the case that v1 = v2.
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that there is no “purely combinatorial” subcubic algorithm for
triangle detection. However, this interpretation is only partially
satisfying since (1) exploiting algebraic techniques for matrix
multiplication appears a reasonable possibility for algorithmic
improvements and (2) there is no universally accepted formal
definition of “purely combinatorial” algorithms. The first ob-
jection might be the most severe: There are numerous instances
of problems with cubic-time lower bounds for combinatorial
algorithms that can be broken by sophisticated uses of fast
matrix multiplication, including various “intermediate” matrix
products (e.g., [15], [16]), node-weighted triangle [17], [18],
RNA folding [19], and more.

Alternatively, we may view Chan’s reduction as a lower
bound for non-combinatorial algorithms: any O(nω/2−ε)-time
algorithm for Klee’s measure problem in 3D would give a
surprising breakthrough for triangle detection, circumventing
fast matrix multiplication. This last statement tacitly assumes
ω > 2 to be meaningful; if the current matrix multiplication
exponent of ω ≈ 2.37286 was optimal, we would obtain
a lower bound of roughly Ω(n1.18643). Given that the long
history of algorithmic progress for this problem has stalled,
we thus ask whether we can close the gap by improved lower
bounds:

Can we prove a tight n1.5−o(1) conditional lower bound
for Klee’s measure problem in 3D, ideally independent of the
assumption that ω > 2?

This question is representative of a diverse family of
problems with a similar fine-grained complexity status: Slid-
ing Window Hamming Distance admits a classic Õ(n1.5)
algorithm [20], which is known to be conditionally tight
for combinatorial algorithms, by a folklore reduction from
Boolean Matrix Multiplication that is credited to Indyk,
see [21]. Likewise, cubic-time algorithms for context-free
language reachability are known to be conditionally opti-
mal for combinatorial algorithms [22], but improved non-
combinatorial algorithms or non-combinatorial lower bounds
remain elusive; recent work [23] gives evidence against certain
non-combinatorial conditional lower bounds (namely, based
on the Strong Exponential Time Hypothesis). For many other
problems, sophisticated uses of matrix multiplication were able
to break a combinatorial cubic barrier.

Our Result: We give an affirmative answer to the above
question by proving a tight n3/2−o(1) lower bound under the
plausible fine-grained complexity assumption that counting
all k-cliques in a 3-uniform hypergraphs requires essentially
exhaustive search time nk−o(1). This assumption is implied by
the 3-uniform hyperclique hypothesis that receives increasing
interest for uncovering hardness barriers in P: among others,
it has been used to show conditional lower bounds for basic
graph problems in sparse graphs [24], the orthogonal vectors
problem [25], for model-checking first-order properties [26],
[27], for query enumeration [28], for Boolean constrainst
satisfaction parameterized by solution size [29], for the d-
dimensional maximum subarray problem [30] and subgraph
isomorphism parameterized by treewidth [31]. A refutation
of our assumption, in fact, already a O(nk−ε)-time algorithm

for detecting k-cliques in 3-uniform hypergraphs, would have
notable consequences: It would give a O((2 − ε)n)-time
algorithm for Max 3-SAT [24] (non-existence of such an
algorithm has recently been used as a working hypothesis
in [32]), and would lead to substantial progress for model-
checking certain first-order properties [26] and for finding size-
k solutions to certain Boolean constraint satisfaction problems
like 3-SAT [29]. We refer to Section II and [24] for further
discussion on the plausibility of this conjecture, in particular,
why the algebraic techniques for clique detection in graphs
fail in hypergraphs.

Our lower bound thus gives an explanation for the barrier
observed for the 3-dimensional Klee’s measure problem: Any
polynomial improvement over O(n3/2) would have significant
consequences beyond its purely geometric setting.

a) Higher Dimensions and Special Cases: Addressing
larger dimensions, we generalize our result to an n

d
3−3/d

−o(1)

lower bound – the gap to the upper bound is thus smallest
for small values of d. However, even for larger dimension,
the lower bound separates the general problem from several
notable special cases4. Such special cases, including the hy-
pervolume indicator, (unit) hypercubes/fat boxes, orthants and
k-grounded boxes, have been addressed by a large body of
works, see, e.g., [12], [13], [33]–[37]; a detailed account of
their relationships is given in [38]. Notably, almost all of these
special cases can be solved in time O(n

d+1
3 ) [12], [36], while

our lower bound of n
d

3−3/d
−o(1) for the general problem is

always strictly larger. This truly seperates the special cases
of hypervolume indicator, orthants, hypercubes and fat boxes
from the general problem, independent of the value of ω. We
refer to Table I for an illustration of our results.

b) Related problem: unweighted depth: With the same
techniques as for Klee’s measure problem, one can compute
the depth of an arrangment of boxes in time n3/2±o(1), even
with weights [10], [12]. For the weighted variant, the natural
generalization of Chan’s reduction to weighted clique yields
a lower bound of nd/2−o(1) under the weighted d-clique
conjecture (which is equivalent to APSP for d = 3), see [40].
Our lower bounds transfer to the unweighted depth problem,
and thus we obtain optimality of n3/2±o(1) in 3D already
for the unweighted case, assuming the 3-uniform hyperclique
conjecture.

II. PRELIMINARIES

Throughout the paper, we let [n] = {1, . . . , n}. We use
(
V
k

)
to denote all k-element subsets of V .

The 3-uniform k-hyperclique problem is the following
problem: We are given a k-partite5 3-uniform hypergraph
G = (V,E), i.e., V is the disjoint union of k sets V1, . . . , Vk
of size n each, and E is a set of edges of the form {va, vb, vc}
for va ∈ Va, vb ∈ Vb, vc ∈ Vc where a, b, c are all different.
For notational convenience, we think of each Vi as a disjoint

4I.e., even without assuming ω > 2, but of course conditional on the 3-
uniform hyperclique hypothesis.

5The assumption that G is k-partite is equivalent to the general problem
using a standard color-coding argument.



d
Unit hypercubes Arbitrary General problem

(incl. Hypervolume Indicator) hypercubes LB UB

3 Õ(n) [13], [39] Õ(n) [13] n1.5−o(1)[here] O(n1.5) [10], [12]
4 Õ(n1.33...) [12] Õ(n1.66...) [12] n1.77···−o(1)[here] O(n2) [10], [12]
5 Õ(n1.66...) [12] Õ(n2) [12] n2.083...−o(1)[here] O(n2.5) [10], [12]

d ≥ 5 Õ(nd/3) [12] Õ(n
d+1
3 ) [12] n

d
3−3/d

−o(1)[here] O(n
d
2 ) [10], [12]

TABLE I
UPPER AND LOWER BOUNDS FOR KLEE’S MEASURE PROBLEM (KMP) AND ITS SPECIAL CASES.

copy of {0, . . . , n − 1}. The task is to detect whether there
are v1 ∈ V1, . . . , vk ∈ Vk that form a clique, i.e., for all
a, b, c ∈

(
[k]
3

)
, we have {va, vb, vc} ∈ E.

Exhaustive search solves the problem in time O(nk), over
which no polynomial improvement is known. This has lead to
the following hypothesis:

Hypothesis 1 (3-Uniform Hyperclique Conjecture). For no
k ≥ 4 and ε > 0, there is an O(nk−ε)-time algorithm for the
3-uniform k-hyperclique problem.

The perhaps most important argument for the plausibility
of this hypothesis is the following: The only known way to
polynomially beat exhaustive search for the clique problem in
graphs (rather than hypergraphs) use fast matrix multiplication,
giving an O(nωk/3) algorithm whenever k is a multiple of 3.
However, such approaches do not transfer to clique detection
in hypergraphs, as the corresponding tensor has full rank,
see [24] for a thorough discussion.

Besides this failure of current techniques, refuting the 3-
uniform hyperclique conjecture would have several significant
consequences: by the split-and-list technique of Williams
(see [24]), it would give an exponential improvement over
current 2n−o(n) algorithms for Max 3-SAT (see [41], [42]
for an overview). Furthermore, it would lead to polynomial
improvements for the best known model-checking algorithm
for certain first-order formulas [26], and polynomially beat
exhaustive search for finding size-k solutions of a class of
Boolean CSPs that includes 3-SAT [29].

It turns out that our lower bounds already follow from
the weaker assumption that counting all k-cliques in a given
3-uniform hypergraph G requires time nk−o(1). Note that
while the fastest known algorithm for detecting k-cliques also
readily returns the number of k-cliques, there is currently little
evidence that these two problems should indeed be equivalent.
We refer to the natural counting variant of Hypothesis 1 as the
3-uniform hyperclique counting conjecture.

III. TECHNICAL OVERVIEW

The natural starting point is an attempt to adapt Chan’s
reduction from clique finding in graphs to clique finding in
3-uniform hypergraphs. Indeed, a straightforward adaptation
results in a lower bound of n

d
3−o(1) for the d-dimensional

problem, where the factor 1/3 in the exponent results from
creating up to Θ(n3) boxes due to the increased arity of the
(non-)edges. Without somehow compressing the size of the

given 3-uniform hypergraph6 to O(n3−ε), this loss appears
unavoidable, and fails to give any superlinear lower bound
for d = 3. Unfortunately, a general-purpose sparsification for
hyperclique detection appears rather unlikely.

However, we may make use of the following surprising (at
least to the author) insight: we can encode a choice of 4 rather
than 3 vertices7 by encoding a fourth vertex redundantly in
the three dimensions, requiring only O(n3) boxes to ensure
consistency of the redundant encoding and O(n3) boxes to
check whether the chosen vertices form a clique.

Specifically, we consider a bounding box B = [0, n2)3

where in each dimension i ∈ {1, 2, 3}, we will encode the
vertices (vi, v4) using a lexicographic ordering: the choice
(vi, v4) ∈ {0, . . . , n− 1}2 is encoded as the length-1 interval
[vin+ v4, vin+ v4 + 1). An important observation is that the
order of vi and v4 in the lexicographic ordering is decisive:
We can represent the set {(vi, 0), . . . , (vi, n− 1)} as a single
interval [vin, (vi+1)n) – note that the same is not true for the
set {(0, v4), . . . , (n − 1, v4)}. Thus, we can efficiently cover
all boxes representing a forbidden choice (v1, ·), (v2, ·), (v3, ·):
for every non-edge {v1, v2, v3}, introduce a single box
[v1n, (v1 + 1)n) × [v2n, (v2 + 1)n) × [v3n, (v3 + 1)n). It is
not difficult to cover non-edges involving v4 using similar
boxes. Thus, it remains to ensure that we cover all parts
of the bounding box representing inconsistent choices, i.e.,
(v1, v

′
1), (v2, v

′
2), (v3, v

′
3) such that v′1, v

′
2, v
′
3 are not all equal.

It turns out that we can cover configurations with v′1 6= v′2 by
“guessing” v1, v

′
1, v2 and including the two boxes

[v1n+ v′1, v1n+ v′1 + 1)× [v2n, v2n+ v′1)× [0, n2) and

[v1n+ v′1, v1n+ v′1 + 1)× [v2n+ v′1 + 1, (v2 + 1)n)× [0, n2).

This covers all configurations except those with v′1 = v′2, since
the first box covers configurations with v′2 < v′1 and the second
covers configurations with v′2 > v′1. Since we only have to
guess three vertices (not four!), we obtain O(n3) boxes for
covering all configurations with v′1 6= v′2. We give the details
of the reduction, generalized to an n

d+1
3 −o(1) lower bound in

arbitrary dimension d ≥ 3, in Section IV.
Tight lower bound for d = 3: One might hope that

the above ideas can be used to also reduce 3-uniform 6-
hyperclique to an instance of 3D-KMP with O(n4) boxes,
which would yield a tight lower bound. However, natural

6More precisely, we would need to compress its complement graph.
7Thus reducing from 4-clique detection in hypergraphs, rather than from

triangle detection.



adaptions of this idea fail. Instead, we are able to give
a tight conditional lower using the full power of the 3-
uniform hyperclique conjecture, by reducing from 3-uniform
k-hyperclique for arbitrarily large k. We may assume that
G is k-partite with parts V1 ∪ · · · ∪ Vk and the task is to
find v1 ∈ V1, . . . , vk ∈ Vk forming a clique. The crucial
idea is to consider k = 3g for large enough g, divide the
k parts into 3 groups (V

(1)
1 , . . . , V

(1)
g ), (V

(2)
1 , . . . , V

(2)
g ) and

(V
(3)
1 , . . . , V

(3)
g ), and encode each group i ∈ [3] in two

different ways: once in the i-th dimension using the order
V

(i)
1 , . . . , V

(i)
g , and a redundant second time in the (i+ 1)-st

dimension (in circular order of [3]) using the reverse ordering
V

(i)
g , . . . , V

(i)
1 . Surprisingly, introducing this group hierarchy

with reverse redundant encodings enables us to encode both
invalid and non-clique encodings efficiently enough to obtain
n3/2-hardness.

Let us elaborate on the corresponding ideas:
Generalizing the above lexicographic encoding, for any
v1, . . . , vg, v

′
g, . . . , v

′
1 ∈ {0, . . . , n − 1}, we define an index

ind(v1, . . . , vg, v
′
g, . . . , v

′
1) by interpreting v1 . . . vgv

′
g . . . v

′
1

as a base-n number with 2g digits, i.e.,

ind(v1, . . . , vg, v
′
g, . . . , v

′
1)

= v1n
2g−1 + · · ·+ vgn

g + v′gn
g−1 + · · ·+ v′1.

Then a candidate solution (v
(1)
1 , . . . , v

(1)
g ) ∈ V (1)

1 ×· · ·×V (1)
g ,

(v
(2)
1 , . . . , v

(2)
g ) ∈ V (2)

1 × · · · × V (2)
g ,(v(3)

1 , . . . , v
(3)
g ) ∈ V (3)

1 ×
· · · × V (3)

g will be encoded as the cube

[ind(v
(1)
1 , . . . , v(1)

g , v(2)
g , . . . , v

(2)
1 ),

ind(v
(1)
1 , . . . , v(1)

g , v(2)
g , . . . , v

(2)
1 ) + 1)

×[ind(v
(2)
1 , . . . , v(2)

g , v(3)
g , . . . , v

(3)
1 ),

ind(v
(2)
1 , . . . , v(2)

g , v(3)
g , . . . , v

(3)
1 ) + 1)

×[ind(v
(3)
1 , . . . , v(3)

g , v(1)
g , . . . , v

(1)
1 ),

ind(v
(3)
1 , . . . , v(3)

g , v(1)
g , . . . , v

(1)
1 ) + 1).

Note that the bounding box B = [0, n2g)3 is the disjoint union
of (1) the volume-1 cubes given by the valid encoding of each
candidate solution and (2) volume-1 cubes representing invalid
encodings, i.e., cubes differing from the form above.

Let us sketch the ideas for ensuring valid encodings (i.e.,
covering all inconsistent encodings) and detecting solutions
(i.e., covering all non-cliques): Consider some cube Q =
[q1, q1+1)×[q2, q2+1)×[q3, q3+1) with qi ∈ {0, . . . , n2g−1}
that represents an invalid encoding, i.e., it encodes vertices
v

(i)
1 , . . . , v

(i)
g , v̄

(i+1)
g , . . . , v̄

(i+1)
1 in some dimension i, and ver-

tices v(i+1)
1 , . . . , v

(i+1)
g (as well as some additional vertices

v̄
(i+2)
g , . . . , v̄

(i+2)
1 ) in dimension i+ 1 such that there is an in-

consistency, namely v(i+1)
j 6= v̄

(i+1)
j for some j. Crucially, we

can catch this inconsistency using two boxes that only depend
on v(i)

1 , . . . , v
(i)
g and v(i+1)

1 , . . . , v
(i+1)
j , v̄

(i+1)
j+1 , . . . , v̄

(i+1)
g : For

the case v̄
(i+1)
j > v

(i+1)
j , we use a box that covers all

encodings with a prefix (v
(i)
1 , . . . , v

(i)
g , v̄

(i+1)
g , . . . , v̄

(i+1)
j+1 , v̄)

with v̄ > v
(i+1)
j in dimension i, and prefix v(i+1)

1 , . . . , v
(i+1)
j

in dimension i+1, and the full range [0, n2g) in the remaining
dimension. Likewise, for the case v̄

(i+1)
j < v

(i+1)
j , we use

almost the same box, except that we change the prefixes
covered in dimension i to (v

(i)
1 , . . . , v

(i)
g , v̄

(i+1)
g , . . . , v̄

(i+1)
j+1 , v̄)

with v̄ < v
(i+1)
j . Note that our lexicographic encoding

nicely allows us to cover such prefixes, see Section V
for details. Finally, we observe that each box only de-
pends on i ∈ [3], j ∈ [g] and the 2g vertex choices
v

(i)
1 , . . . , v

(i)
g , v

(i+1)
1 , . . . , v

(i+1)
j , v̄

(i+1)
j+1 , . . . , v̄

(i+1)
g , thus we

need at most O(gn2g) = O(n2g) such boxes.
For detecting whether a candidate solution S indeed forms

a hyperclique, we need to rule out that there are three vertices
v

(a)
i , v

(b)
j , v

(c)
j ∈ S that do not form an edge. To do so, for

all a, b, c ∈ [3], i, j, k ∈ [g] and {v(a)
i , v

(b)
j , v

(c)
k } /∈ E, we

cover all valid encodings of candidate solutions containing
v

(a)
i , v

(b)
j , v

(c)
k . The case that a, b, c are not all different is

straightforward to handle, so we focus on the case that
a = 1, b = 2, c = 3. The natural approach would be to “guess”
all v(1)

1 , . . . , v
(i)
i−1, v(2)

1 , . . . , v
(2)
j−1 and v(3)

1 , . . . , v
(3)
k−1 and cover

all encodings with prefixes v
(1)
1 , . . . , v

(1)
i in dimension 1,

v
(2)
1 , . . . , v

(2)
j in dimension 2 and v(3)

1 , . . . , v
(3)
k in dimension

3. However, this leads to O(n3g) boxes in the worst case,
which fails to give any superlinear lower bound. Instead, we
crucially exploit the redundant reverse encodings, by observing
that it suffices to cover all cubes with prefixes according to
one of the following options:

1) prefix (v
(1)
1 , . . . , v

(1)
g , v

(2)
g , . . . , v

(2)
j ) in dimension 1 and

prefix (v
(3)
1 , . . . , v

(3)
k ) in dimension 3, or

2) prefix (v
(2)
1 , . . . , v

(2)
g , v

(3)
g , . . . , v

(3)
k ) in dimension 2 and

prefix (v
(1)
1 , . . . , v

(1)
i ) in dimension 1, or

3) prefix (v
(3)
1 , . . . , v

(3)
g , v

(1)
g , . . . , v

(1)
i ) in dimension 3 and

prefix (v
(2)
1 , . . . , v

(2)
j ) in dimension 2,

where we guess all listed vertices except v(1)
i , v

(2)
j , v

(3)
k . Note

that for these options we have to guess 2g − j + k − 2
vertices for Option 1, 2g − k + i − 2 vertices for Option 2,
and 2g − i + j − 2 vertices for Option 3. We will decide
between these options depending on which value among i, j, k
is smallest: Option 1 if k is smallest, Option 2 if i is smallest
and Option 3 if j is smallest. By this choice we need to
guess at most 2g − 2 + min{k − j, i − k, j − i} ≤ 2g − 2

vertices. Thus, over all i, j, k ∈ [g] and v
(1)
i ∈ V

(1)
i , v

(2)
j ∈

V
(2)
j , v

(3)
k ∈ V (3)

k with {v(1)
i , v

(2)
j , v

(3)
k } /∈ E, we need at most

O(g3n2g+1) = O(n2g+1) boxes.
Thus, by checking whether the union of the constructed

boxes is equal to the full bounding box [0, n2g)3, we can
decide any given 3g-hyperclique instance. In particular, a
O(n3/2−ε) algorithm for Klee’s measure problem in 3D would
give an algorithm for 3g-uniform hyperclique running in time
O((n2g+1)3/2−ε) = O(n3g+3/2−(2g+1)ε), which polynomially
beats running time O(n3g) for any g ≥ 1/ε. We give the
formal proof with all details in Section V.



Generalization to d ≥ 3: A naive generalization of the
above reduction to larger dimension d ≥ 3 will quickly fail
to give any lower bound beyond nd/3−o(1): If the redundant
part encoded in each dimension consists of a single group,
then already for d = 6, we will not be able to exploit this
redundant encoding for all possible non-edges.8 On the other
hand, if we encode more than a single group in the redundant
part, we require significantly more boxes to ensure consistent
encodings.

In the remainder of this section, we give a high-level
description how we resolve this tension: We notice that we
may afford to encode, in the redundant part of each dimension
a ∈ [d], short suffixes v(a′)

g , . . . , v
(a′)
(1−α)g of a carefully chosen

number of groups a′ 6= a, where 0 < α < 1. In particular,
we will interleave these short suffixes, so that we first encode
the g-th elements of all considered groups, then the (g− 1)-st
elements, up to the (1− α)g-th elements.

More specifically, in each dimension a, we will encode
d− 2 other groups redundantly, namely all groups except for
a and a + 1. As it turns out, to ensure consistency of the
encoding, we need roughly O(n2g+(d−3)αg) boxes: to check
that group b /∈ {a, a+1} is consistently encoded in dimension
a, we essentially need to guess the complete groups a and b
(giving O(n2g) vertices), as well as the suffixes of all d − 3
other groups (different from b) that are redundantly encoded
in dimension a (giving O(n(d−3)αg) vertices).

It remains to discuss how to cover all non-cliques: For
any non-edge {v(a)

i , v
(b)
j , v

(c)
k } /∈ E, we need to cover all

hypercubes representing a candidate solution S that con-
tains v(a)

i , v
(b)
j , v

(c)
k . Here, we focus on the most interesting

case that a, b, c are all distinct. If i, j, k are all at most
(1 − α)g, then we cannot exploit any redundant encoding,
since we only redundantly encode the last αg elements of
each group. However, in this case we also only need to guess
i−1+j−1+k−1 ≤ 3(1−α)g−3 vertices to cover all prefixes
containing v(a)

i , v
(b)
j , v

(c)
k , leading to only O(n3(1−α)g) boxes

to handle this case. It remains to consider that cases that the
largest element of i, j, k, say i, is at least (1 − α)g + 1.
In this case, we observe that a is redundantly encoded in
dimension b or dimension c (or both), say in dimension b.
We can thus cover v(a)

i , v
(b)
j , v

(c)
k by covering the prefix of

dimension b that contains the redundant encoding of v
(a)
i

(this prefix has length at most g + (d − 2)(g − i + 1) and
contains v(b)

j ) and the prefix of dimension c that contains the
encoding of v(c)

k (this has length k). In total, since k ≤ i and
i ≥ (1 − α)g + 1, the total length of prefixes is bounded
by g + (d − 2)(g − i + 1) + k ≤ 2g + (d − 3)αg + 1.
Thus, by choosing α = 1/d, we can balance the terms
of O(n3(1−α)g) and O(n2g+(d−3)αg), which yields a total
number of O(n(3−3/d)g+1) boxes. From this, the claimed

8E.g., to cover any non-edge v(1)g ∈ V
(1)
g , v

(3)
g ∈ V

(3)
g , v

(5)
g ∈ V

(5)
g using

the previous redundant encoding, we cannot make use of any redundantly
encoded information (since the redundant information in dimensions 1,3,5
encodes groups 2,4,6, which is useless for covering v

(1)
g , v

(3)
g , v

(5)
g ). Instead,

covering this non-edge would require Ω(n3g−3) boxes.

n
d

3−3/d
−o(1) lower bound for KMP in Rd follows. We give

all details in Section VI.

Remark 1. Implicit in our generalization to general d ≥ 3 is
a slightly different construction for the case d = 3, in which
we only redundantly encode suffixes of length g

3 of each group,
rather than the full group as done in Section V. This change in
construction does not affect the lower bound in 3D, but helps
the generalization to larger dimension.

Remark 2. In the below theorems, we formulate our lower
bounds for Klee’s measure problem under the 3-uniform
hyperclique counting conjecture. The proofs all show the same
lower bounds for the coverage problem9 under the usual 3-
uniform hyperclique conjecture – our constructed sets of boxes
cover the full bounding box if and only if there is no desired
hyperclique in G. It is known (cf. [11]) that the coverage
problem in Rd reduces in linear time to the depth problem for
an arrangement of axis-parallel boxes10 in Rd. Thus we obtain
a n

d
3−3/d

−o(1) lower bound under the 3-uniform hyperclique
conjecture also for the depth problem in Rd.

IV. SIMPLE n
d+1
3 −o(1) LOWER BOUND

In this section, we give the details for a relatively simple
n

d+1
3 −o(1) lower bound. Higher lower bounds are proven in

Sections V (for d = 3) and VI (for general d ≥ 3).

Theorem IV.1. For no d ≥ 3 and ε > 0, there is an
O(n

d+1
3 −ε)-time algorithm for Klee’s measure problem in Rd

unless the 3-unifom (d + 1)-hyperclique counting hypothesis
fails.

Throughout the reduction, we fix the bounding box B =
[0, U)d with U = n2 and construct boxes of the following
form:

Definition IV.2. Let i1, . . . , ik be distinct dimensions in [d].
Then for any choice of intervals I1, . . . , Ik in [0, U), we define
the corresponding checking box B(i1 : I1, . . . , ik : Ik) =
J1 × · · · × Jd where Ji = I` if i = i` for some ` ∈ [k] and
Ji = [0, U) otherwise.

Consider any given (d + 1)-partite 3-uniform hypergraph
G = (V1 ∪ · · · ∪ Vd+1, E) where we let each Vi be a disjoint
copy of {0, . . . , n − 1}. Specifically, given G, we construct
three types of boxes:

1) Edges among V1, . . . , Vd: For every {a, b, c} ∈
(

[d]
3

)
and any non-edge {va, vb, vc} /∈ E with va ∈ Va, vb ∈
Vb, vc ∈ Vc, construct the edge-checking box

Cva,vb,vc = B(a : [van, (va + 1)n),

b : [vbn, (vb + 1)n),

c : [vcn, (vc + 1)n)).

9Given a set of axis-parallel boxes B inside a bounding box B0, check
whether B0 is fully covered, i.e.,

⋃
B∈B B = B0.

10Given a set of axis-parallel boxes B, determine the point contained in the
maximum number of B ∈ B.



2) Edges involving Vd+1: For every {a, b} ∈
(

[d]
2

)
and

any non-edge {va, vb, vd+1} /∈ E with va ∈ Va, vb ∈
Vb, vd+1 ∈ Vd+1, construct the edge-checking box

Cva,vb,vd+1
= B(a : [van+ vd+1, van+ vd+1 + 1),

b : [vbn+ vd+1, vbn+ vd+1 + 1)).

3) Consistency boxes: For every {a, b} ∈
(

[d]
2

)
and any

vertices va ∈ Va, vb ∈ Vb, vd+1 ∈ Vd+1, construct the
consistency-checking boxes

Dlower
va,vb,vd+1

= B(a : [van+ vd+1, van+ vd+1 + 1),

b : [vbn, vbn+ vd+1))

Dhigher
va,vb,vd+1

= B(a : [van+ vd+1, van+ vd+1 + 1),

b : [vbn+ vd+1 + 1, (vb + 1)n))

Let B denote the union of boxes. Observe that each box
in B is of the form

∏d
i=1[ci, ci + di) for some ci ∈

{0, . . . , U − 1}, di ∈ {1, . . . , U}, and hence any unit cube
C =

∏d
i=1[ci, ci + 1) with ci ∈ {0, . . . , U − 1} either does

not intersect any box in B or is fully contained in some box
B ∈ B. In the latter case, we say that C is covered by B.

Lemma IV.3. Let v1, . . . , vd, v̄1, . . . , v̄d ∈ {0, . . . , n − 1}
and define A ⊆ [0, U ]d as the axis-parallel cube whose i-
th dimension is equal to [vin+ v̄i, vin+ v̄i+1). Then A is not
covered by B if and only if there is some vd+1 ∈ {0, . . . , n−1}
such that v̄1 = · · · = v̄d = vd+1 and {v1, . . . , vd+1} forms a
clique in G.

Proof. Consider the case that A is not covered by B. We
observe that this implies v̄1 = · · · = v̄d: Otherwise, there
would be {a, b} ∈

(
[d]
2

)
such that v̄a 6= v̄b. Observe that

in this case, we would have A ⊆ Dlower
va,vb,v̄a

if v̄b < v̄a or
A ⊆ Dhigher

va,vb,v̄a if v̄b > v̄a, and thus A would be covered by
B. From now on, we may assume that v̄1 = · · · = v̄d = vd+1

for some vd+1 ∈ {0, . . . , n− 1}.
We observe that there cannot be any edge missing among

{v1, . . . , vd+1}: Consider first the case that there is some
{a, b, c} ∈

(
[d]
3

)
such that {va, vb, vc} /∈ E. Then A ⊆

Cva,vb,vc as [vin+vd+1, vin+vd+1 +1) ⊆ [vin, (vi+1)n) for
i ∈ {a, b, c}. It remains to argue that there is no edge involving
vd+1, i.e., no {a, b} ∈

(
[d]
2

)
such that {va, vb, vd+1} /∈ E.

However, then we would have A ⊆ Cva,vb,vd+1
. Thus,

{v1, . . . , vd+1} forms a clique in G.
Conversely, if {v1, . . . , vd+1} forms a clique in G, then the

corresponding cube A with i-th dimension [vin+ vd+1, vin+
vd+1 + 1) cannot be covered by B: Observe that Cv′a,v′b,v′c
boxes (which implies {v′a, v′b, v′c} /∈ E) can only cover A
if (v′a, v

′
b, v
′
c) = (va, vb, vc); however, no such box Cva,vb,vc

can exist, since {v1, . . . , vd+1} is a clique. Furthermore,
observe that A cannot be covered by any box Dlower

v′a,v
′
b,v
′
d+1

or

Dhigher
v′a,v

′
b,v
′
d+1

by definition of A (as it chooses vd+1 consistently
in all dimensions). This concludes the claim.

With the above reduction, we can prove our lower bound.

Proof of Theorem IV.1. Assume that there is an O(N
d+1
3 −ε)-

algorithm for computing the volume of the union of N
d-dimensional axis-parallel boxes. Then given a 3-uniform
(d + 1)-partite hypergraph G, we construct the set of boxes
B as above. Observe that by definition, B consists of N =
O(
(
d+1

3

)
n3) = O(n3) boxes in [0, n2)d that can be computed

in time O(N). By Lemma IV.3 (noting that the A’s yield a set
of disjoint cubes of volume 1 each), we obtain that there are
n2d−vol(

⋃
B∈B B) many (d+ 1)-cliques in G. Since we can

compute vol(
⋃
B∈B B) in time O(N

d+1
3 −ε) = O(nd+1−3ε)

by assumption, this would refute the 3-uniform (d + 1)-
hyperclique hypothesis.

V. TIGHT BOUND FOR d = 3

In this section, we give the tight n3/2−o(1) lower bound
for R3. To prepare the proof, we define for any tuple t =
(t1, . . . , tL) ∈ {0, . . . , n − 1}L (throughout this section, we
will use L = 2g), a corresponding index

ind(t) = t1 · nL−1 + t2 · nL−2 + · · ·+ tL,

with the understanding that [ind(t), ind(t) + 1) represents the
tuple t. Crucially, we use that we may represent all tuples t
with a prefix p = (p1, . . . , p`) with ` ≤ L using the interval:

[ind(p1, . . . , p`, 0, . . . , 0), ind(p1, . . . , p`, 0, . . . , 0) + nL−`)

= [ind(p1, . . . , p`−1,p`, 0, . . . , 0),

ind(p1, . . . p`−1,p` + 1, 0, . . . , 0));

here the bold font highlights the single coordinate with
changes. (When p` = n− 1, this is a slight abuse of notation,
since we implicitly extend the definition of ind(t) to tuples
t ∈ {0, . . . , n}L in the natural way.) Crucially, this interval
is equal to the union of all [ind(t), ind(t) + 1) where p is a
prefix of t, i.e., t = (p1, . . . , p`, t`+1, . . . , tL).

We are ready to prove the result of this section.

Theorem V.1. There is no ε > 0 such that Klee’s measure
problem in 3D can be solved in time O(n1.5−ε) unless the
3-uniform hyperclique counting conjecture fails.

Proof. Assume there exists some ε > 0 such that Klee’s
measure problem in 3D can be solved in time O(n1.5−ε).
Choose any g ≥ 1/ε and consider an arbitrary 3-uniform 3g-
hyperclique instance G = (V,E) with

V = V
(1)
1 ∪ · · · ∪V (1)

g ∪V (2)
1 ∪ · · · ∪V (2)

g ∪V (3)
1 ∪ · · · ∪V (3)

g .

We define a corresponding 3D-KMP instance B inside the
bounding box [0, U ]3 with U = n2g . To this end, for any
a ∈ [3], b ∈ [g] and v = (v1, . . . , vg), v

′ = (v′1, . . . , v
′
g) ∈

{0, . . . , n − 1}g , we define the consistency-checking boxes



(using checking boxes B(·) as introduced in Definition IV.2)
as follows:11

Dlower
a,b,v,v′

= B(a : [ind(v1, . . . , vg, v
′
g, . . . , v

′
b+1,0, 0, . . . , 0),

ind(v1, . . . , vg, v
′
g, . . . , v

′
b+1,v

′
b, 0, . . . , 0)),

a+ 1 : [ind(v′1, . . . , v
′
b−1,v

′
b, 0, . . . , 0),

ind(v′1, . . . , v
′
b−1,v

′
b + 1, 0, . . . , 0))),

Dupper
a,b,v,v′

= B(a : [ind(v1, . . . , vg, v
′
g, . . . , v

′
b+1,v

′
b + 1, 0, . . . , 0),

ind(v1, . . . , vg, v
′
g, . . . , v

′
b+1,n, 0, . . . , 0)),

a+ 1 : [ind(v′1, . . . , v
′
b−1,v

′
b, 0, . . . , 0),

ind(v′1, . . . , v
′
b−1,v

′
b + 1, 0, . . . , 0))).

Furthermore, for any 0 ≤ i, j, k ≤ 2g with i + j +

k ≤ 2g + 1 and v(1) = (v
(1)
1 , . . . , v

(1)
i ) ∈ {0, . . . , n −

1}i, v(2) = (v
(2)
1 , . . . , v

(2)
j ) ∈ {0, . . . , n − 1}j , v(3) =

(v
(3)
1 , . . . , v

(3)
k ) ∈ {0, . . . , n − 1}k, we do the follow-

ing: For the first i sets of (V
(1)
1 , . . . , V

(1)
g , V

(2)
g , . . . , V

(2)
1 ),

we choose vertices according to v(1), for the first j

sets of (V
(2)
1 , . . . , V

(2)
g , V

(3)
g , . . . , V

(3)
1 ) we choose ver-

tices according to v(2) and for the first k sets of
(V

(3)
1 , . . . , V

(3)
g , V

(1)
g , . . . , V

(1)
1 ), we choose vertices accord-

ing to V (3). If this yields a set Spartial of i + j + k vertices
from distinct sets (i.e., we disregard choices like i = 2g, j =

1, k = 0, as it would contain possibly two choices for V (2)
1 )

and there exists a non-edge {v, v′, v′′} /∈ E among vertices
v, v′, v′′ ∈ Spartial, we define the edge-checking box

Cv(1),v(2),v(3) = B(1 : [ind(v
(1)
1 , . . . ,v

(1)
i , 0, . . . , 0),

ind(v
(1)
1 , . . . ,v

(1)
i + 1, 0, . . . , 0)),

2 : [ind(v
(2)
1 , . . . ,v

(2)
j , 0, . . . , 0),

ind(v
(2)
1 , . . . ,v

(2)
j + 1, 0, . . . , 0)),

3 : [ind(v
(3)
1 , . . . ,v

(3)
k , 0, . . . , 0),

ind(v
(3)
1 , . . . ,v

(3)
k + 1, 0, . . . , 0))).

We call Spartial the partial solution encoded by v(1), v(2), v(3).
We let B denote the set of all boxes

Dlower
a,b,v,v′ , D

upper
a,b,v,v′ , Cv(1),v(2),v(3) constructed this way.

Observe that there are at most 6gn2g = O(n2g) consistency-
checking boxes and at most (2g + 1)3n2g+1 = O(n2g+1)
edge-checking boxes, and that B can be computed in time
O(n2g+1).

By the following claim, we have that n6g−vol(
⋃
B∈B B) is

equal to the number of 3g-cliques in G. Recall that we call a
unit hypercube H =

∏
i[hi, hi + 1) with hi ∈ {0, . . . , U − 1}

covered by B, if it is contained in some B ∈ B. Otherwise,
observe that it does not intersect any B ∈ B.
Claim V.2. Let H = [h1, h1 + 1) × [h2, h2 + 1) ×
[h3, h3 + 1) with h1, h2, h3 ∈ {0, . . . , n2g − 1}. Then

11Recall that we use a circular order for a ∈ [3], so that whenever a = 3,
we have that a + 1 equals 1.

H is not covered by B if and only if there is S =

(v
(1)
1 , . . . , v

(1)
g , v

(2)
1 , . . . , v

(2)
g , v

(3)
1 , . . . , v

(3)
g ) ∈ V

(1)
1 × · · · ×

V
(1)
g × V

(2)
1 × · · · × V

(2)
g × V

(3)
1 × · · · × V

(3)
g such that

ha = ind(v
(a)
1 , . . . , v

(a)
g , v

(a+1)
g , . . . , v

(a+1)
1 ) for all a ∈ [3]

and S is a clique in G.

Proof. We start with the easy direction. For a clique S =

(v
(1)
1 , . . . , v

(1)
g , v

(2)
1 , . . . , v

(2)
g , v

(3)
1 , . . . , v

(3)
g ) ∈ V

(1)
1 × · · · ×

V
(1)
g ×V (2)

1 ×· · ·×V (2)
g ×V (3)

1 ×· · ·×V (3)
g , we show that the

corresponding cube H = [h1, h1+1)×[h2, h2+1)×[h3, h3+1)

with ha = ind(v
(a)
1 , . . . , v

(a)
g , v

(a+1)
g , . . . , v

(a+1)
1 ) for a ∈ [3]

does not intersect any box in B:
• Any Dlower

a,b,v,v′ can intersect [ha+1, ha+1 + 1) in dimen-
sion a + 1 only if (v

(a+1)
1 , . . . , v

(a+1)
b ) = (v′1, . . . , v

′
b).

Likewise, it can intersect [ha, ha + 1) in dimension
a only if we have (v

(a)
1 , . . . , v

(a)
g ) = (v1, . . . , vg),

(v
(a+1)
g , . . . , v

(a+1)
b+1 ) = (v′g, . . . , v

′
b+1) and v

(a+1)
b < v′b.

Thus, if Dlower
a,b,v,v′ intersects H , we obtain the contradic-

tion v′b = v
(a+1)
b < v′b.

• Similarly, any Dupper
a,b,v,v′ intersecting H would give the

contradiction v′b = v
(a+1)
b > v′b.

• Finally, any Cṽ(1),ṽ(2),ṽ(3) with ṽ(1) ∈ {0, . . . , n −
1}i1 , ṽ(2) ∈ {0, . . . , n − 1}i2 , ṽ(3) ∈ {0, . . . , n −
1}i3 can intersect H only if for all a ∈ [3], we
have that the vertices chosen by S in the first ia
sets of (V

(a)
1 , . . . , V

(a)
g , V

(a+1)
g , . . . , V

(a+1)
1 ) agree with

v(a). Note that Cṽ(1),ṽ(2),ṽ(3) exists only if the par-
tial solution Spartial encoded by ṽ(1), ṽ(2), ṽ(3) con-
tains vertices w1, w2, w3 ∈ Spartial forming a non-edge
{w1, w2, w3} /∈ E. Thus, if Cṽ(1),ṽ(2),ṽ(3) intersects H ,
we have w1, w2, w3 ∈ Spartial ⊆ S, which yields the
contradiction that S is not a clique.

We proceed with the more interesting direction. Let H =
[h1, h1 + 1) × [h2, h2 + 1) × [h3, h3 + 1) with ha ∈
{0, . . . , n2g − 1} be such that H is not covered by B. We
let v

(a)
1 , . . . , v

(a)
g , v̄

(a)
1 , . . . , v̄

(a)
g for a ∈ [3] be such that

ha = ind(v
(a)
1 , . . . v

(a)
g , v̄

(a+1)
g , . . . , v̄

(a+1)
1 ) for a ∈ [3]. We

will show that H encodes a clique S as follows:
• Since H is not covered by any Dlower

a,b,v,v′ , D
upper
a,b,v,v′ ,

we claim that (v̄
(a)
1 , . . . , v̄

(a)
g ) = (v

(a)
1 , . . . , v

(a)
g )

for all a ∈ [3]. Otherwise, consider a ∈
[3], b ∈ [g] such that v

(a+1)
b 6= v̄

(a+1)
b : If

v̄
(a+1)
b < v

(a+1)
b , then define v = (v

(a)
1 , . . . , v

(a)
g )

and v′ = (v
(a+1)
1 , . . . , v

(a+1)
b , v̄

(a+1)
b+1 , . . . , v̄

(a+1)
g )

and observe that Dlower
a,b,v,v′ would contain H ,

yielding a contradiction. Symmetrically, if
v̄

(a+1)
b > v

(a+1)
b , then define v = (v

(a)
1 , . . . , v

(a)
g )

and v′ = (v
(a+1)
1 , . . . , v

(a+1)
b , v̄

(a+1)
b+1 , . . . , v̄

(a+1)
g ) and

observe that Dupper
a,b,v,v′ would contain H .

• Thus, this gives a set S =

(v
(1)
1 , . . . , v

(1)
g , v

(2)
1 , . . . , v

(2)
g , v

(3)
1 , . . . , v

(3)
g ) ∈

V
(1)
1 ×· · ·×V (1)

g ×V (2)
1 ×· · ·×V (2)

g ×V (3)
1 ×· · ·×V (3)

g

such that ha = ind(v
(a)
1 , . . . , v

(a)
g , v

(a+1)
g , . . . , v

(a+1)
1 )



for all a ∈ [3]. It remains to show that S is indeed
a clique: Assume for contradiction that there are
w1, w2, w3 ∈ S such that {w1, w2, w3} /∈ E. We show
that then H would be covered by a corresponding
box Cṽ(1),ṽ(2),ṽ(3) , yielding a contradiction. First, if
{w1, w2, w3} contains two vertices from the same
group, i.e., {w1, w2, w3} = {v(a)

i , v
(a)
j , v

(a′)
k } for

a, a′ ∈ [3], then define ṽ(1), ṽ(2), ṽ(3) such that
ṽ(a) = (v

(a)
1 , . . . , v

(a)
g ), ṽ(a′) = (v

(a′)
1 , . . . , v

(a′)
g ) and

ṽ(a′′) being empty for all a′′ ∈ [3] \ {a, a′} (observe
that this is well-defined even if a = a′). Observe
that Cṽ(1),ṽ(2),ṽ(3) exists, since it chooses a partial
solution Spartial of at most 2g vertices that contains
the non-edge {w1, w2, w3}; thus, H would be covered
by Cṽ(1),ṽ(2),ṽ(3) , since ṽ(1), ṽ(2), ṽ(3) agree with S.
It remains to consider the most interesting case, in
which all vertices are from different groups, i.e.,
{w1, w2, w3} = {v(1)

i , v
(2)
j , v

(3)
k }. If k is the smallest

index among i, j, k, then we claim that H is covered by
Cṽ(1),ṽ(2),ṽ(3) with

ṽ(1) = (v
(1)
1 , . . . , v(1)

g , v(2)
g , . . . , v

(2)
j ),

ṽ(2) = (),

ṽ(3) = (v
(3)
1 , . . . , v

(3)
k ).

Note that the prefixes ṽ(1), ṽ(2), ṽ(3) encode a partial
solution containing the non-edge vertices w1, w2, w3 and
that their lengths sum up to g + (g − j + 1) + k =
2g+1+(k−j) ≤ 2g+1 since k ≤ j. Thus, Cṽ(1),ṽ(2),ṽ(3)
exists and covers H , as ṽ(1), ṽ(2), ṽ(3) agree with S. The
remaining cases where i or j are smallest among i, j, k
are symmetric: we use

ṽ(1) = (v
(1)
1 , . . . , v

(1)
i ),

ṽ(2) = (v
(2)
1 , . . . , v(2)

g , v(3)
g , . . . , v

(3)
k ),

ṽ(3) = (),

or

ṽ(1) = (),

ṽ(2) = (v
(2)
1 , . . . , v

(2)
j ),

ṽ(3) = (v
(3)
1 , . . . , v

(3)
k , v(1)

g , . . . , v
(1)
i ),

respectively.

We are ready to conclude the proof of V.1: Given the
3-uniform 3g-hyperclique instance G, we compute the set
B with |B| = O(n2g+1) boxes in time O(|B|). By the
previous claim, the number of 3g-cliques in G is given by
n6g − vol(

⋃
B∈B B). Thus, using a O(|B|1.5−ε)-algorithm for

Klee’s measure problem in 3D, we can count the 3g-cliques in
time O(n(2g+1)(1.5−ε)) = O(n3g+1.5−(2g+1)ε). Since g ≥ 1/ε,
we have 3g+1.5−(2g+1)ε ≤ 3g+1.5−2 = 3g−0.5. Thus, we

would obtain a 3-uniform 3g-clique counting algorithm run-
ning in time O(n3g−0.5), refuting the 3-uniform hyperclique
counting conjecture.

VI. GENERALIZATION TO d ≥ 3

In this section, we extend our tight lower bound for d = 3

to an n
d

3−3/d
−o(1) lower bound in general dimension d ≥ 3.

Theorem VI.1. Let d ≥ 3. There is no ε > 0 such
that Klee’s measure problem in Rd can be solved in time
O(n

d
3−3/d

−ε) = O(n
d+1
3 + 1

3(d−1)
−ε) unless the 3-uniform hy-

perclique conjecture fails.

Let g be large enough integer divisible by d. Let G = (V,E)
be a 3-uniform dg-partite hypergraph with

V = V
(1)
1 ∪ · · · ∪ V (1)

g ∪ · · · ∪ V (d)
1 ∪ · · · ∪ V (d)

g ,

where each V (a)
i is a disjoint copy of {0, . . . , n− 1}. We call

V
(a)
1 ∪ · · · ∪ V (a)

g the a-th group. When referring to groups,
we will let a+ 1 denote the group subsequent to a in circular
order of [d], i.e., we identify d+ 1 with 1.

To a candidate solution S =
(v

(1)
1 , . . . , v

(1)
g , . . . , v

(d)
1 , . . . , v

(d)
g ) ∈ V (1)

1 ×· · ·×V (1)
g ×· · ·×

V
(d)
1 × · · · × V

(d)
g , we will associate a corresponding unit

hypercube Q(S) in [0, nL]d with L =
(
2− 2

d

)
g. The a-th

dimension of Q(S) consists of an encoding of the vertices
v

(a)
1 , . . . , v

(a)
g chosen by S in the a-th group, as well as a

redundant encoding part that encodes a certain choice of
(1 − 2

d )g vertices from other groups in a carefully chosen
way.

To define the encoding, for any a ∈ [d], we define the set
template T (a) as

T (a) := (V
(a)
1 , . . . , V (a)

g ) ◦R(a),

where (V
(a)
1 , . . . , V

(a)
g ) is the main part of the template,

and R(a) denotes the redundant part, defined as a reversed
interleaving of the last g/d sets of all groups except the a-th
and (a+ 1)-st. Formally, we define

R
(a)
S =©g/d

b=1©a′∈[d]\{a,a+1}V
(a′)
g−b+1

=(V (1)
g , . . . , V (a−1)

g , V (a+2)
g , ..., V (d)

g ,

. . . ,

V
(1)
g−g/d+1, . . . , V

(a−1)
g−g/d+1, V

(a+2)
g−g/d+1, ..., V

(d)
g−g/d+1).

Put differently, from the sequence
(V

(1)
g , . . . , V

(d)
g , . . . , V

(1)
g−g/d+1, . . . , V

(d)
g−g/d+1) we leave

out all sets of the form V
(a)
b or V (a+1)

b to obtain R(a) (recall
that for a = d this means that we leave out the sets from
groups d and 1). In dimension a, we will encode a choice of
vertices in the sets given by T (a).



For any candidate solution S, we let t(a)
S denote the encod-

ing of S in the a-th dimension according to T (a), i.e.,

t
(a)
S = ( v

(a)
1 , . . . , v(a)

g︸ ︷︷ ︸
main part

,

v(1)
g , . . . , v(a−1)

g , v(a+2)
g , ..., v(d)

g︸ ︷︷ ︸
g-th elements of redundant groups

,

. . . ,

v
(1)
g−g/d+1, . . . , v

(a−1)
g−g/d+1, v

(a+2)
g−g/d+1, ..., v

(d)
g−g/d+1︸ ︷︷ ︸

(g−g/d+1)-st elements of redundant groups

).

As before, we will use a lexicographic encoding to map any
t
(a)
S to an interval in [0, U): Given any tuple t = (t1, . . . , tL) ∈
{0, . . . , n− 1}L, we use the corresponding index

ind(t) = t1 · nL−1 + t2 · nL−2 + · · ·+ tL,

with the understanding that [ind(t), ind(t) + 1) represents the
tuple t. We define Q(S) =

∏d
a=1[ind(t

(a)
S ), ind(t

(a)
S ) + 1).

The prefix of the first ` positions of t = (t1, . . . , tL) will
be denoted as t[..`] = (t1, . . . , t`). Similar to before, tuples
with prefix p = (p1, . . . , p`) are uniquely represented by a
corresponding interval

I(p) = [ind(p1, . . . , p`, 0, . . . , 0),

ind(p1, . . . , p`, 0, . . . , 0) + nL−`).

Note that this interval is equal to the union of all
[ind(t), ind(t) + 1) such that p1, . . . , p` is a prefix of t.

We are ready to define the set of boxes B for the given
dg-partite 3-uniform hyperclique instances G.

Edge-checking box: For all a, b, c ∈
(

[d]
3

)
, 0 ≤ i, j, k ≤ L

with i + j + k ≤ (3 − 3/d)g + 1 and all v(a) ∈ {0, . . . , n −
1}i, v(b) ∈ {0, . . . , n−1}j , v(c) ∈ {0, . . . , n−1}k , we include
the edge-checking box

Cv(a),v(b),v(c) = B(a : I(v(a)), b : I(v(b)), c : I(v(c)))

if and only if v(a), v(b), v(c) give a valid encoding12 (according
to T (a), T (b), T (c)) of a partial solution Spartial ⊆ V that con-
tains a non-edge {w1, w2, w3} /∈ E, i.e., w1, w2, w3 ∈ Spartial.

Consistency-checking box: For all a ∈ [d], a′ ∈ [d] \
{a, a+1}, as well as v ∈ {0, . . . , n−1}g, v′ ∈ {0, . . . , n−1}g
and vother ∈ {0, . . . , n− 1}(1−3/d)g , we consider all 0 ≤ b <
g/d and v̄ ∈ {0, . . . , n − 1} such that v̄ 6= v′g−b. We let
vR denote the encoding of the redundant part R(a) given by
using (v′g, . . . , v

′
g−b+1, v̄, v

′
g−b−1, v

′
g−g/d+1) for the vertices

corresponding to the group a′, and using vother for the vertices
corresponding to the remainings groups [d]\{a, a+1, a′}. We
define the consistency-checking box

Da,a′,b,v,v′,vother,v̄ = B(a : I(v ◦ vR[..(d− 2)b]),

a′ : I(v′[..g − b])).

12More precisely, an encoding is valid, if the set obtained by choosing the
vertices for the first i sets of T (a) according to v(a), the vertices for the first
j sets of T (b) according to v(b) and the vertices for the first k sets of T (c)

according to v(c) yields a set Spartial of vertices, where for each set V (a′)
b′

we chose at most one vertex.

Recall that we call a unit hypercube H =
∏d
i=1[hi, hi + 1)

with hi ∈ {0, . . . , U − 1} covered by B, if it is contained in
some B ∈ B. Otherwise, observe that it does not intersect any
B ∈ B, and we call it uncovered.

Claim VI.2. Let H = [h1, h1 + 1) × · · · × [hd, hd + 1) be a
unit hypercube in [0, U)d with hi ∈ {0, . . . , nL − 1}. Then
H is uncovered by B if and only if H = Q(S) for some set
S = (v

(1)
1 , . . . , v

(1)
g , . . . , v

(d)
1 , . . . , v

(d)
g ) ∈ V (1)

1 × · · · ×V (1)
g ×

· · · × V (d)
1 × · · · × V (d)

g that forms a clique in G.

Proof. Consider a clique S =

(v
(1)
1 , . . . , v

(1)
g , . . . , v

(d)
1 , . . . , v

(d)
g ) ∈ V

(1)
1 × · · · ×

V
(1)
g × · · · × V

(d)
1 × · · · × V

(d)
g and let H = Q(S),

i.e., H = [h1, h1 +1)×· · ·× [hd, hd+1) with ha = ind(t
(a)
S ).

We claim that it cannot intersect any box in B:
• Consider the case that some Da,a′,b,v,v′,vother,v̄ intersects
H: Then I(v′[..g− b]) intersecting [ha′ , ha′ + 1) requires
that (v

(a′)
1 , . . . , v

(a′)
g−b) = (v′1, . . . , v

′
g−b), in particular

v
(a′)
g−b = v′g−b. Similarly, I(v ◦ vR[..(d− 2)b]) intersecting

[ha, ha + 1) requires, by definition of vR, particularly
that v(a′)

g−b = v̄. We obtain the contradiction v
(a′)
g−b = v̄ 6=

v′g−b = v
(a′)
g−b.

• It remains to consider the case that some Cṽ(a),ṽ(b),ṽ(c)

with ṽ(a) ∈ {0, . . . , n − 1}i, ṽ(b) ∈ {0, . . . , n − 1}j and
ṽ(c) ∈ {0, . . . , n − 1}k intersects H: Then let Spartial

denote the choice of vertices given by using ṽ(a) to
choose vertices for the first i sets of T (a), as well as
ṽ(b) for the first j sets of T (b) and ṽ(c) for the first k sets
of T (c). Since Cṽ(a),ṽ(b),ṽ(c) intersects H , we must have
Spartial ⊆ S. Since Spartial contains vertices w1, w2, w3

forming a non-edge in G, we obtain a contradiction to S
being a clique.

It remains to show that if H = [h1, h1 + 1) × · · · ×
[hd, hd + 1) with ha ∈ {0, . . . , nL − 1} is not equal to
Q(S) for some clique S, then H is contained in ∪B∈BB.
For all a ∈ [d], let v(a)

1 , . . . , v
(a)
g , v̄

(a)
1 , . . . , v̄

(a)
(1−2/d)g such

that hi = ind(v
(a)
1 , . . . , v

(a)
g , v̄

(a)
1 , . . . , v̄

(a)
(1−2/d)g). Let S =

(v
(1)
1 , . . . , v

(1)
g , . . . , v

(d)
1 , . . . , v

(d)
g ). If Q(S) 6= H , then there

are a, a′ ∈ [d] and 0 ≤ b ≤ g/d such that v(a′)
g−b is different

from the entry v̄ in t
(a)
S corresponding to V

(a′)
g−b according

to T (a). We consider the smallest such b and show that a
corresponding consistency-checking box contains H: Define
v = (v

(a)
1 , . . . , v

(a)
g ), v′ = (v

(a′)
1 , . . . , v

(a′)
g ), and obtain vother

as the vertices chosen by v̄(a)
1 , . . . , v̄

(a)
(1−2/d)g for the redundant

vertices of the groups except a, a + 1 and a′ (according to
T (a)). It is straightforward to see that H is contained in the
corresponding consistency-checking box Da,a′,b,v,v′,vother,v̄ .

Thus, it remains to show that if H(S) is uncovered by
B, then S must indeed form a clique in G. Thus, assume
for contradiction that there are w1, w2, w3 ∈ S such that
{w1, w2, w3} /∈ E. Let a, b, c ∈ [d] and i, j, k ∈ [g] be
such that w1 = v

(a)
i , w2 = v

(b)
j and w3 = v

(c)
k . First,

assume that {a, b, c} are not all distinct, say that b = c = a′



for some a′ ∈ [d]. Then define ṽ(a) = (v
(a)
1 , . . . , v

(a)
g ),

ṽ(a′) = (v
(a′)
1 , . . . , v

(a′)
g ) and ṽ(a′′) as empty prefix for an

arbitrary a′′ /∈ [d]\{a, a′}, and observe that the edge-checking
box Cṽ(a),ṽ(b),ṽ(c) exists (in particular, it chooses at most
2g ≤ (3 − 3/d)g + 1 vertices) and contains H(S). Thus, the
most interesting case in which {a, b, c} are all distinct remains.

We consider two main cases: If i, j, k are all at most g−g/d,
then none of v(a)

i , v
(b)
j , v

(c)
k are redundantly encoded anywhere.

However, we observe that the edge-checking box Cṽ(a),ṽ(b),ṽ(c)

with ṽ(a) = (v
(a)
1 , . . . , v

(a)
i ), ṽ(b) = (v

(b)
1 , . . . , v

(b)
j ) and ṽ(c) =

(v
(c)
1 , . . . , v

(c)
k ) exists, since {v(a)

i , v
(b)
j , v

(c)
k } /∈ E and i +

j + k ≤ 3(g − g/d) ≤ (3 − 3/d)g + 1. Observe that H(S)
would be covered by this edge-checking box, which would
give a contradiction. It remains to consider the second main
case, which is that at least one of i, j, k is at least g − g/d+
1. We consider the case that i is largest among i, j, k, the
other two case are symmetric. We observe that at least one
of T (b) and T (c) contains V (a)

i in its redundant part, since
T (b) does not encode the a-th group redundantly only if a =

b + 1 (since a 6= b), but then V (a)
i must be encoded in T (c),

which encodes all groups except c 6= a and c + 1 6= b + 1.
For notational convenience, re-order b, c if necessary such that
V

(a)
i is encoded in T (b), i.e., a /∈ {b, b + 1}. We define ṽ(a)

as empty prefix,

ṽ(b) =t
(b)
S [..g + (d− 2)(g − i+ 1)]

=(v
(b)
1 , . . . , v(b)

g︸ ︷︷ ︸
main part

,

v(1)
g , . . . , v(b−1)

g , v(b+2)
g , ..., v(d)

g︸ ︷︷ ︸
g-th elements of redundant groups

,

. . . ,

v
(1)
i , . . . , v

(b−1)
i , v

(b+2)
i , ..., v

(b)
i︸ ︷︷ ︸

i-th elements of redundant groups

)

and ṽ(c) = (v
(c)
1 , . . . , v

(c)
k ). We observe that the cor-

responding edge-checking box Cṽ(a),ṽ(b),ṽ(c) exists, since
{v(a)
i , v

(b)
j , v

(c)
k } /∈ E and

i+ j + k = g + (d− 2)(g − i+ 1) + k

= (d− 1)g − (d− 2)i+ k + (d− 2)

≤ (d− 1)g − (d− 3)i+ (d− 2)

≤ (d− 1)g − (d− 3)(g − g/d+ 1) + (d− 2)

=

(
3− 3

d

)
g + 1,

where we used k ≤ i (since i is largest among i, j, k by
assumption) in the third line and i ≥ g − g/d + 1 in the
fourth line. Thus, Cṽ(a),ṽ(b),ṽ(c) would contain H(S), which
is a contradiction. This concludes the proof of the claim.

We can finally prove the lower bound for general d ≥ 3.

Proof of Theorem VI.1.. Assume that we can solve Klee’s
measure problem in Rd in time O(n

d
3−3/d

−ε). We show that

there would be some g′ and ε′ > 0 such that we can
count g′-hypercliques in 3-uniform graphs in time O(ng

′−ε′),
contradicting the 3-uniform hyperclique counting hypothesis.
To this end, fix an arbitrary integer g ≥ d/ε such that d
divides g. Take any dg-partite 3-uniform hypergraph G =

(V,E) with V = V
(1)
1 ∪ · · · ∪ V (1)

g ∪ · · · ∪ V (d)
1 ∪ · · · ∪ V (d)

g

and construct the set of boxes B as described above in time
O(|B|). Observe that the number of edge-checking boxes is at
most

(
d
3

)
L3n(3−3/d)g+1 = O(n(3−3/d)g+1) and the number

of consistency-checking boxes is at most d(d − 2) · gd ·
n(3−3/d)g+1 = O(n(3−3/d)g+1), thus |B| = O(n(3−3/d)g+1).

By the above claim, we have that nLd−vol(∪B∈BB) is the
number of gd-cliques in G. By running the supposed algorithm
for Klee’s measure problem, we can compute vol(∪B∈BB) in
time

O(|B|
d

3−3/d
−ε) = O(n((3− 3

d )g+1)( d
3−3/d

−ε)) = O(ngd−d),

where we use that d ≥ 3 and g ≥ d/ε imply ((3 − 3/d)g +
1)( d

3−3/d − ε) ≤ gd + d
3−3/d − ε(3 − 3/d)g ≤ gd + d

2 −
2εg ≤ gd−d. This would contradict the 3-uniform hyperclique
counting conjecture, and the theorem statement follows.

VII. CONCLUSION

Our conditional lower bound sheds light on the reasons why
Klee’s measure problem resisted any algorithmic improvement
below n3/2±o(1) in R3. We show that any polynomial improve-
ment for the problem must necessarily lead to O(nk−ε)-time
algorithms for k-hyperclique counting, which in turn would
give novel algorithms for various other problems, including:
exact O((2 − ε)n)-algorithms for Max-3SAT [24], O(mk−ε)
model-checking for certain first-order properties [26], and
O(nk−ε)-time detection of k-sized solutions of 3-CNFs and
other Boolean CSPs [29].

We hope that our work inspires further work on Klee’s mea-
sure problem in high dimensions: Can we show higher non-
combinatorial lower bounds than n

d
3−3/d

−o(1) (in particular,
any nγd−o(d) non-combinatorial lower bound for γ > 1/3)
or can we give an improved algorithm that crucially exploits
large dimension d? Note that by Chan’s combinatorial lower
bound, it is expected that any algorithmic improvement must
rely on fast matrix multiplication techniques.

Finally, can we apply and extend our ideas to other problems
with a similar fine-grained complexity status (i.e., problems
with tight conditional lower bounds for combinatorial algo-
rithms, where no improved non-combinatorial algorithms are
known), or use them to clarify the complexity of special cases
of Klee’s measure problem, such as the hypervolume indicator,
orthants, or arbitrary fat boxes?
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