
Fast Partial Distance Estimation and Applications

Christoph Lenzen
MPI for Informatics

Saabrücken, Germany
clenzen@mpi-inf.mpg.de

Boaz Patt-Shamir
∗

Tel Aviv University
Tel Aviv, Israel

boaz@tau.ac.il

ABSTRACT
We study approximate distributed solutions to the weighted
all-pairs-shortest-paths (APSP) problem in the congest
model. We obtain the following results.
• A deterministic (1 + ε)-approximation to APSP with

running time O(ε−2n logn) rounds. The best previously
known algorithm was randomized and slower by a Θ(logn)
factor.

In many cases, routing schemes involve relabeling, i.e.,
assigning new names to nodes and that are used in distance
and routing queries. It is known that relabeling is necessary
to achieve running times of o(n/ logn). In the relabeling
model, we obtain the following results.
• A randomized O(k)-approximation to APSP, for any in-

teger k > 1, running in Õ(n1/2+1/k +D) rounds, where D is
the hop diameter of the network. This algorithm simplifies
the best previously known result and reduces its approxima-
tion ratio from O(k log k) to O(k). Also, the new algorithm
uses O(logn)-bit labels, which is asymptotically optimal.
• A randomized O(k)-approximation to APSP, for any

integer k > 1, running in time Õ((nD)1/2 · n1/k + D) and

producing compact routing tables of size Õ(n1/k). The node
labels consist of O(k logn) bits. This improves on the ap-
proximation ratio of Θ(k2) for tables of that size achieved
by the best previously known algorithm, which terminates
faster, in Õ(n1/2+1/k +D) rounds.

In addition, we improve on the time complexity of the best
known deterministic algorithm for distributed approximate
Steiner forest.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

∗Supported in part by the Israel Science Foundation (grant
No. 1444/14) and by a grant from Israel Ministry of Science
and Technology.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PODC’15, July 21–23, 2015, Donostia-San Sebastián, Spain.
Copyright c© 2015 ACM 978-1-4503-3617-8 /15/07 ...$15.00.
DOI: http://dx.doi.org/10.1145/2767386.2767398 .

Keywords
CONGEST model, weighted all-pairs shortest paths, routing
table construction, Steiner forests, source detection

1. INTRODUCTION
To allow a network to be useful, it must facilitate routing

messages between nodes. By the very nature of networks,
this computation must be distributed, i.e., there must be
a distributed algorithm that computes the local data struc-
tures that support routing at network junctions (i.e., routing
tables at nodes). A trivial distributed algorithm for this pur-
pose is to collect the entire topology at a single location, ap-
ply a centralized algorithm, and distribute the result via the
network. This simplistic approach is costly, in particular if
the available bandwidth is limited. To study the distributed
time complexity of routing table computation, we use the
congest model, i.e., we assume that in an n-node network,
each link can carry only O(logn) bits in each time unit.

In this work, we consider networks modeled by weighted
undirected graphs, where the edge weights represent some
abstract link cost, e.g., latency. As to the task routing, we
note that it is a generic problem with many variants. The
specific problems we focus on are the following.
• Distance Estimation: How fast can each node obtain

an estimate of its distance to each other node, and how good
is that estimate?
• All-Pairs Shortest Paths: How fast can we construct

local data structures so that when given a destination node
identifier, the node can locally determine the next hop on
a path to the destination, and what is the stretch of the
resulting route w.r.t. the shortest path?

In modern routing systems, it is common practice to as-
sign to nodes labels (identifiers) that contain some rout-
ing information. IP addresses, for example, contain a “net-
work”and a“host”parts which allow for hierarchical routing.
Thus, the following questions are also of interest to us.
• Routing Table Construction: What are the answers to

the above questions if we permit relabeling, i.e., allow the
algorithm to choose (small) labels as node identifiers, and
require that distance and routing queries refer to nodes using
these labels?
• Compact Routing: What are the answers to the above

questions when the storage space at the nodes (i.e., routing
table size) is small?

Some history. Shortest paths are a central object of study
since the dawn of the computer era. The Bellman-Ford
algorithm [4, 8], although originally developed for central-
ized optimization, is one of the very few fundamental dis-

tributed algorithms. Implemented as RIP, the algorithm
was used in the early days of the Internet (when it was still
called ARPANET) [19]. Measured in terms of the congest
model, a Bellman-Ford all-pairs shortest paths computation
in weighted graphs takes Θ(n2) time in the worst case, and
requires Θ(n logn) bits of storage at each node. Another
simple solution to the problem is to collect the complete
topology at each node (by flooding) and then apply a local
single-source shortest paths algorithm, such as Dijkstra’s.
This solution has time complexity Θ(m) and storage com-

plexity Θ̃(n), where m denotes the number of links in the
network.1 Since it also enjoys improved stability and flexi-
bility, it became the Internet’s routing algorithm in its later
stages of evolution (see [18]). Standardized as OSPF [20], it
also contains provisions for hierarchical routing.

State of the art: Lower bounds. Recently there has
been a flurry of new results about routing in the congest
model. Below we review some known lower bounds to help
placing our results in the context of what is possible. We
use D to denote the hop diameter, i.e., the diameter of the
network when ignoring weights.
• Without relabeling, any polylog-ratio approximation to

APSP requires Ω̃(n) rounds [21, 22]. This holds also if tables
must only enable either distance estimates or routing.
• With node relabeling, any non-trivial approximation to

APSP requires Ω̃(
√
n + D) rounds [7]. The bound holds

for both routing and distance queries, and even for D ∈
O(logn). (However, if routing may be stateful, i.e., rout-
ing decisions may depend on the tables of previously visited
nodes, no non-trivial lower bound is known; all our routing
algorithms are stateless.)

• If the routing table size is Õ(n1/k), then the approxi-
mation ratio of the induced routes is at least 2k − 1 [1, 25].
(This result does not hold for stateful routing.) For distance
approximation, the same bound has been established for the
special cases of k ∈ {1, 2, 3, 5}, and is conjectured to hold
for any k (see [29]).
• Any randomized (2−o(1))-approximation of APSP, and

any (2 − o(1))-approximation of the weighted diameter re-

quires Ω̃(n) time in the worst case [12]. In the unweighted

case, Ω̃(n) time is required to f -approximate the diameter
for f < 3/2 [9].

Upper bounds: Our results vs. previous work. We
now list our new results (which are all upper bounds), and
compare them to the best previously known bounds.
• For any ε > 0, we give a deterministic (1 + ε)-approxi-

mation to APSP that runs in O(ε−2n logn) rounds. The
best known previous result, due to Nanongkai [21], achieves
the same approximation ratio within O(ε−2n log2 n) rounds
with high probability—Nanongkai’s algorithm is random-
ized. We note that independently and concurrently to our
work, Holzer and Pinsker [12] derived the same algorithm
and result for the Broadcast Congested Clique model, in
which in each round, each node posts a single O(logn)-bit
message which is delivered to all other nodes.
• Given k ∈ N, we can compute a randomized (6k − 1 +

o(1))-approximation to APSP in time Õ(n1/2+1/(4k) + D).
The algorithm succeeds with high probability (cf. Section 2),
as do all our randomized algorithms. This simplifies our pre-
vious work [22] and reduces the approximation ratio from

1Throughout this paper, we use Õ-notation, which hides
poly-logarithmic factors. See Section 2.

O(k log k) to O(k). Also, the new algorithm relabels nodes
with labels of O(logn) bits, whereas the previous one re-
quired O(logn log k)-bit labels.
• For any k ∈ N, we can compute a randomized (4k− 3 +

o(1))-approximation to APSP running in Õ(min{(nD)1/2 ·
n1/k, n2/3+2/(3k)} + D) rounds with tables of size Õ(n1/k).
This improves over the stretch of O(k2) in [22], at the cost

of increasing the running time (from Õ(n1/2+1/k +D)). We
point out, however, that the proposed algorithm is the first
to achieve an asymptotically optimal trade-off between table
size and stretch in time õ(n) for all k > 2 and graphs of
diameter D ∈ õ(n).
• Using partial distance estimation, we also improve on

the running time of the best known algorithm for distributed
Steiner forest construction. A precise statement is provided
in Section 4.3; let us just say here that in the worst case,
the previous algorithm may give rise to a trivial Õ(n2) time
complexity, while the running time of the new algorithm is
always bounded by Õ(n3/2).

Technical Summary. Our key algorithmic tool is a gen-
eralization of the (S, h, σ)-detection problem, defined as fol-
lows [16].2 Given a graph with a distinguished set of source
nodes S, the task is for each node to find the distances to
its closest σ ∈ N sources within h ∈ N hops (cf. Defini-
tion 2.1). In [16] it is shown that this task can be solved in
h + σ rounds on unweighted graphs. The main new ingre-
dient in all our results is an algorithm that, within a com-
parable running time, produces an approximate solution to
(S, h, σ)-detection in weighted graphs. We call this version
partial distance estimation, abbreviated PDE.3

Weighted graphs present significant difficulty, because the
number of hops in a shortest (by weight) path between two
nodes may be a factor of Θ(n) larger than the minimal num-
ber of hops on any path connecting the same two nodes (a
weighted clique may demonstrate this phenomenon). There-
fore, näıvely finding the absolute closest σ sources (w.r.t.
weighted distance) within h hops may require Ω(n) rounds
in the worst case, for any h and σ. One may circumvent this
difficulty by replacing the underlying graph metric by h-hop
distances, which for v, w ∈ V is defined as the minimum
weight of all v-w paths that consist of at most h hops. The
collection of h-hop distances does not constitute a metric,
but one can solve the (S, h, σ)-detection problem under h-
hop distances in time σh using techniques similar to those
used in the unweighted case [22].

Unfortunately, as illustrated in Figure 1, this time com-
plexity is optimal in the worst case. To avoid this bottle-
neck, Nanongkai [21] uses a rounding technique that had
previously been employed in the centralized setting [30],
solving the problem to within a (1 + ε)-factor by essentially
reducing the weighted instance to O(logn/ε) unweighted in-
stances and solving each instance using breadth-first-search.
To avoid collisions, independent random delays are applied
in [21] to the starting times of these instances. The re-
sult is, w.h.p., (1 + ε)-approximate distances to all sources
in O(ε−2(h + |S|) log2 n) rounds. We replace this part of

2In [16], the third parameter is called k. We use σ because
here, k denotes the parameter controlling the trade-off be-
tween approximation ratio and table size.
3We note that Henziger et al. already employed our PDE al-
gorithm for deterministic (1+o(1))-approximation of single-
source shortest paths in almost optimal time [11].

ଵ,ଶݏଵ,ଵݏଵݒ ଶ,ଶݏଶ,ଵݏଵ,ఙݏଵ,ଷݏ ଶ,ఙݏଶ,ଷݏ
,ଶݏ,ଵݏଶݒ ,ఙݏ,ଷݏ

ݑଷݑଶݑଵݑݒ

Figure 1: A graph where (S, h + 1, σ)-detection cannot be

solved in o(hσ) rounds. Edge weights are 4ih for edges {vi, si,j}
for all i ∈ {1, . . . , h} and j ∈ {1, . . . , σ}, and 1 (i.e., negli-

gible) for all other edges. Node ui, i ∈ {1, . . . , h}, needs to

learn about all nodes si,j and distances wdh+1(ui, si,j), where

j ∈ {1, . . . , σ}. Hence all this information must traverse the

dashed edge {u1, vh}. The example can be modified to attach

the same source set to each vh. Varying distances, then still

σh = |S|h values must be communicated over the dashed edge.

Hence, the special case |S| = σ is not easier.

the algorithm with the deterministic source detection algo-
rithm from [16], obtaining a deterministic algorithm that
runs in O(ε−2(h+ |S|) logn) rounds. This, using S = V and
h = σ = n, yields the immediate corollary of a deterministic
(1 + o(1))-approximation to APSP.

For our other results, we abandon the special case of
S = V and define (see Definition 2.2) a (1 + ε)-approximate
version of the (S, h, σ)-detection problem which we call par-
tial distance estimation (PDE). The crucial insight is that by
combining Nanongkai’s and Zwick’s rounding scheme with
the algorithm from [16], PDE can be solved within O((h +
σ) logn/ε2) rounds, so that no node sends more than O(σ2)
messages. Exploiting these properties carefully, we obtain
our other results.

Further ingredients. Our compact routing schemes can
be viewed as distributed constructions of the routing hierar-
chies of Thorup and Zwick [28]. These make use of efficient
tree labeling schemes presented in the same paper, which
allow for a distributed implementation in time Õ(h) in trees
of depth h if relabeling is permitted. For compact routing
table construction, we continue the Thorup-Zwick construc-
tion by simulating the partial distance estimation algorithm
on the skeleton graph [22], broadcasting all messages via a
BFS tree. This avoids the quadratic stretch incurred by
the approach in [22] due to approximating distances in the
skeleton graph using a spanner [24], which is constructed
by simulating the Baswana-Sen algorithm [3]. If compact
tables are not required, the partial distance estimation algo-
rithm enables to collapse the Thorup-Zwick hierarchy of the
lower levels into a single step, giving constant approximation
ratio. This shaves off an O(log k)-factor from [22].

Paper organization. In Section 2 we define the model
and problems. In Section 3 we give an algorithm for partial
distance estimation. In Section 4 we present applications
to the tasks of APSP, compact routing table construction,
and Steiner forest construction. Due to lack of space, many
details are omitted from this extended abstract; we refer to
the full paper for further details [14].

2. MODEL AND PROBLEMS
Computational Model. We follow the congest model as
described by [23]. The distributed system is represented by a
simple, connected weighted graphG = (V,E,W), where V is
the set of nodes, E is the set of edges, and W : E → N is the
edge weight function. As a convention, we use n to denote
the number of nodes. We assume that all edge weights are

bounded by some polynomial in n, and that each node v ∈ V
has a unique identifier of O(logn) bits (we use v to denote
both the node and its identifier).

Initially, nodes are aware only of their neighbors; input
values (if any) are assumed to be fed by the environment
before the first round. Throughout this paper, we assume
that node v is given the weight of each edge {v, w} ∈ E
as input. Output values, which are computed at the end
of the final round, are placed in special output-registers.
In each round, each edge can carry a message of B bits
for some given parameter B of the model; we assume that
B ∈ Θ(logn) throughout this paper.

Graph-Theoretic Concepts. Fix a weighted undirected
graph G = (V,E,W). A path p connecting v, w ∈ V is a
sequence of nodes 〈v = v0, . . . , vk = w〉 such that for all
0 ≤ i < k, {vi, vi+1} is an edge in G. Let paths(v, w) denote
the set of all paths connecting nodes v and w. We use the
following unweighted concepts.
• The hop-length of a path p, denoted `(p), is the number

of edges in it.
• A path p0 between v and w is a shortest unweighted

path if its hop-length `(p0) is minimum among all p ∈
paths(v, w).
• The hop distance hd : V × V → N0 is defined as the

hop-length of a shortest unweighted path, hd(v, w)
def
=

min{`(p) | p ∈ paths(v, w)}.
• The hop-diameter of G is D

def
= maxv,w∈V {hd(v, w)}.

We use the following weighted concepts.
• The weight of a path p, denoted W (p), is its total edge

weight, i.e., W (p)
def
=
∑`(p)
i=1 W (vi−1, vi).

• A path p0 between v and u is a shortest weighted path
if W (p0) = min {W (p) | p ∈ paths(v, w)}.
• The weighted distance wd : V × V → N is wd(v, u)

def
=

min{W (p) | p ∈ paths(v, u)}.
• The weighted diameter of G is WD

def
= max{wd(v, u) |

v, u ∈ V }.
Finally, we define the notion of the shortest paths distance.
• If p0 ∈ paths(v, w) is a shortest weighted path and
`(p0) = min {`(p) |W (p) = wd(v, w)}, then p0 is a
min-hop shortest path. The shortest path distance of v

and w in this case is hv,w
def
= `(p0).

• SPD
def
= max {hv,w | v, w ∈ V } is the shortest path di-

ameter of G.

Routing. In the routing table construction problem (ab-
breviated rtc), the output at each node v consists of (i) a
unique label λ(v) and (ii) a function “nextv” that takes a
destination label λ and produces a neighbor of v, such that
given the label λ(w) of any node w, and starting from any
node, following the “next” pointers leads to w. Formally, the
requirement is as follows. Given a start node v and a desti-
nation label λ(w), let v0 = v and define vi+1 = nextvi(λ(w))
for i ≥ 0. Then vi = w for some i.

The performance of a solution is measured by its stretch.
A route has stretch ρ ≥ 1 if its total weight is at most ρ
times the weighted distance between its endpoints, and a
solution to rtc has stretch ρ if all its induced routes have
stretch at most ρ.

Distance Approximation. The distance approximation
problem is closely related to the routing problem. Again,
each node v outputs a label λ(v), but now, v needs to con-

struct a function distv : λ(V)→ R+ (the table) such that for
all w ∈ V it holds that distv(λ(w)) ≥ wd(v, w). The stretch
between v and w is distv(λ(w))/wd(v, w), and the solution
has stretch ρ ≥ 1 if maxv,w∈V {distv(λ(w))/wd(v, w)} = ρ.

Partial Distance Estimation. The basic problem we at-
tack in this paper is partial distance estimation, which gener-
alizes the source detection problem. Let us start by defining
the simpler variant.

Given a set of nodes S ⊆ V and a parameter h ∈ N, L
(h)
v

denotes the list obtained by ordering {(wd(v, w), w) |w ∈ S∧
hv,w ≤ h} lexicographically in ascending order. Formally, we
say that (wd(v, w), w) < (wd(v, u), u) if either wd(v, w) <
wd(v, u) or (wd(v, w)=wd(v, u) ∧ w<u).

Definition 2.1 ((S, h, σ)-detection). The input con-
sists of a set of sources S ⊆ V and parameters h, σ ∈ N.
Each node is assumed to know h, σ, and whether it is in
S or not. The goal is to compute at each node v ∈ V the

list Lv of the top σ entries in L
(h)
v , or the complete L

(h)
v if

|L(h)
v | ≤ σ.

Relaxing this by allowing approximation to within (1+ε),
we arrive at the following definition.

Definition 2.2 (Partial Distance Estimation).
Given S ⊆ V , h, σ ∈ N, and ε > 0, (1 + ε)-approximate
(S, h, σ)-estimation is defined as follows. Determine a dis-
tance function wd′ : V × S → N ∪ {∞} satisfying
• ∀v ∈ V, s ∈ S : wd′(v, s) ≥ wd(v, s) and
• if hv,s ≤ h, then wd′(v, s) ≤ (1 + ε) wd(v, s).

For each v ∈ V , sort the set {(wd′(v, s), s) | s ∈ S} in as-
cending lexicographical order. The output Lv at each node v
are the (at most) top σ elements with wd′(v, s) <∞.

Note that setting ε = 0 and choosing wd′ as h-hop distances
results in an exact weighted version of the source detection
problem. Specializing further to unweighted graphs, h-hop
distances just become hop distances to nodes within h hops.

General Concepts. We extensively use “soft” asymptotic
notation that ignores polylogarithmic factors. Formally, we
say that g(n) ∈ Õ(f(n)) if and only if there exists a constant
c ∈ R+

0 such that f(n) ≤ g(n) logc n for all but finitely many

values of n ∈ N. We define õ(·), Ω̃(·) and Θ̃(·) similarly.
When we say that a certain event occurs“with high proba-

bility” (abbreviated “w.h.p.”), we mean that the probability
of the event not occurring can be set to be less than 1/nc

for any desired constant c. Using the union bound, this def-
inition implies that any polynomial number of events that
occur w.h.p. also jointly occur w.h.p. We make frequent use
of this fact throughout the paper.

3. FROM WEIGHTED TO UNWEIGHTED
Fix 0 < ε ∈ O(1). Following Nanongkai [21] and oth-

ers [5, 13, 17, 26], we reduce PDE to O(log1+ε WD) in-
stances of the unweighted problem as follows. Let imax =
dlog1+ε wmaxe, where wmax is the largest edge weight in G.
Note that by assumption that edge weights are polynomial
in n, imax ∈ O(ε−1 logn). Clearly imax can be determined
in O(D) rounds.

For i ∈ {0, . . . , imax}, let b(i) = (1 + ε)i, and define Wi :

E → b(i) · N by Wi(e)
def
= b(i)dW (e)/b(i)e, i.e., by rounding

up edge weights to integer multiples of (1 + ε)i. Denote by

wdi the resulting distance function, i.e., the distance func-
tion of the graph (V,E,Wi). Clearly wdi(v, w) ≥ wd(v, w)
for any v, w ∈ V . Regarding an upper bound, we have the
following property.

Lemma 3.1 (adapted from [21]). For all v, w ∈ V

let iv,w
def
= max

{
0,
⌊
log1+ε(ε

wd(v,w)
hv,w

)
⌋}

. Then

wdiv,w (v, w) < (1 + ε) wd(v, w) ∈ O
(
ε−1b(iv,w)hv,w

)
.

Proof. If iv,w = 0, then b0 = 1, wd0 = wd and the claim
is clear. Assume now that iv,w > 0. By definition of iv,w,

ε wd(v,w)
(1+ε)hv,w

< bivw ≤
εwd(v,w)
hv,w

and hence

wdiv,w (v, w) < wd(v, w) + b(iv,w)hv,w ≤ (1 + ε) wd(v, w).

To see the second bound, note that by definition of iv,w
and b(iv,w), wd(v, w) ≤ ε−1(1 + ε)b(iv,w)hv,w. Due to the
previous inequality and the constraint that ε ∈ O(1), the
claim follows.

Next, let Gi be the unweighted graph obtained by replacing
each edge e in (V,E,Wi) by a path of Wi(e)/b(i) unweighted
edges. Let hdi(v, w) denote the distance (minimal number
of hops) between v and w in Gi. The previous lemma implies
that in Giv,w , the resulting hop distance between v and w
is not too large.

Corollary 3.2. ∀v, w ∈ V , hdiv,w(v, w) ∈ O(hv,w/ε).

Therefore, an efficient algorithm for unweighted source de-
tection can be used to solve partial distance estimation at
the cost of a small increase in running time.

Theorem 3.3. Given a deterministic algorithm A for un-
weighted (S, h, σ)-detection that runs in R(h, σ) rounds,
(1+ε)-approximate (S, h, σ)-estimation can be solved within
O(log1+ε n ·R(h′, σ) +D) rounds, for some h′ ∈ O(h/ε).

Proof Sketch. Consider the following algorithm for PDE.
1. Let h′ be an upper bound on hdiv,s(v, s) for all v ∈ V

and s ∈ S with hv,s ≤ h. By Corollary 3.2, h′ ∈ O(h/ε).
2. For all i ∈ {0, . . . , imax}, solve (S, h′, σ)-detection on

Gi by A. Communication over an edge e in G simulates
communication over a path in Gi by introducing a delay of
wdi(e) steps. Denote by Lv,i the computed list.

3. For s ∈ S, define

w̃d(v, s)
def
= inf{hdi(v, s)b(i) | (hdi(v, s), s) ∈ Lv,i}.

Each node v outputs the list Lv consisting of the (up to) first

σ elements of the set {
(
w̃d(v, s), s

)
| w̃d(v, s) < ∞}, with

respect to ascending lexicographical order. This concludes
the description of the algorithm.

Clearly, the resulting running time is as stated. The ap-
proximation guarantee follows from Lemma 3.1.

Applying Theorem 3.3 with the source detection algorithm
from [16], we obtain the following.

Corollary 3.4. For 0 < ε ∈ O(1), (1 + ε)-approximate
(S, h, σ)-estimation can be solved in O((h+σ)ε−2 logn+D)
rounds. Tables of size O(σ logn) for routing with stretch
1 + ε from each v ∈ V to the (up to) σ detected nodes can be
constructed in the same time. Moreover, nodes only broad-
cast (i.e., send the same message to all neighbors), and each
node broadcasts in at most O(σ2ε−1 logn) rounds.

4. APPLICATIONS
We now apply Corollary 3.4 to a few distributed tasks. We

improve on (i) the best known results for the running time
required to compute small-stretch routes with and without
node relabeling, (ii) the stretch we can achieve within a given
running time bound, (iii) routing table size, and (iv) the time
required for Steiner forest construction.

4.1 Almost Exact APSP With and Without
Node Relabeling

First we state our results for distributed computation of
all-pairs (1 + ε)-approximate shortest paths. The result fol-
lows simply by applying Corollary 3.4 with all nodes as
sources and h = σ = n. As hv,w < n for all v, w ∈ V ,
wd′(v, w) ≤ (1 + ε) wd(v, w) < ∞ (cf. Definition 2.2). The
returned lists thus contain entries for all n = σ nodes.

Theorem 4.1. (1 + ε)-approximate APSP can be solved
deterministically in O(ε−2n logn) rounds.

We note that Theorem 4.1 improves on the best known result
for computing approximate shortest paths in the congest
model [21] in two ways: first, it is deterministic, and second,
the running time is reduced by a logarithmic factor.

When computing routing tables, node relabeling is usually
allowed. In the remainder of this subsection we use Corol-
lary 3.4 to improve upon the best known previous result to
compute routing tables when node relabeling is allowed [22].
Specifically, we prove the following result.

Theorem 4.2. For any k ∈ N, routing table construction
with stretch 6k − 1 + o(1) and labels of size O(logn) can be

solved in Õ(n1/2+1/(4k) +D) rounds.

The idea is to modify the algorithm of [22]. In [22], for
any given integer 0 < k ≤ logn, the algorithm computes
(w.h.p.) in Õ(n1/2·(1+1/k) + D) rounds node labels of size
O(logn log k) and routes with stretch O(k log k). We reduce
both the stretch and node label size by a log k factor without
changing the running time. We start with a brief review of
the algorithm from [22].

1: Skeleton. Sample nodes independently with probability
Θ̃(1/

√
n), forming the skeleton set S.

2: Skeleton Spanner. Construct and make known to all
nodes an α-spanner of the skeleton graph (S,ES ,WS). Here,

{s, t} ∈ ES if hd(s, t) ≤ h for a certain h ∈ Θ̃(
√
n), and

WS({s, t}) is the minimum weight of an s-t path of at most
h hops. It is shown that w.h.p., distances in the skeleton
graph are identical to distances in the original graph.

3: Short Range. For each v ∈ V , let sv be the skele-
ton node closest to v. For each node v, compute distance
and routing tables with stretch β to all nodes w ∈ V with
(wd(v, w), w) ≤ (wd(v, sv), sv) and from sv to v (we use the
tree routing scheme of [28]).

4: Long Range. If (wd(v, w), w) > (wd(v, sv), sv), then
the v-w route is obtained by concatenating the short-range
route from v to sv, the route from sv to sw in the skeleton
spanner (whose edges represent paths of the same weight in
G), and the short-range route from sw to w.

The induced routes have stretch O(αβ). The same holds
for distance estimation.

To facilitate routing, the label of each node v contains the
following components: for the long range, the identity of
the closest skeleton node sv, its distance wd(v, sv), and v’s

tree routing label for the tree rooted at sv;4 and, of course,
whatever is needed for the short-range scheme.

Spanner construction can be employed as black box, giv-
ing stretch α ∈ Θ(k) within Õ(n1/2+1/k + D) time. Also,
it is known how to construct labels for tree routing of size
(1 + o(1)) logn in time Õ(h) in trees of depth h [27, 28].

We follow the general structure of [22] by implementing
the short range part so that β ∈ O(1) and the shortest-paths
trees are not too deep. To this end, we apply Corollary 3.4
with h = σ ∈ Θ̃(

√
n) and source set V . Note that the error

due to approximation is not limited to inaccurate distance
estimations: we may also consider nodes to fall under the
long-range scheme that should be treated by the short-range
scheme and vice versa. However, we can bound the effect of
such errors on the approximation ratio as follows.

Lemma 4.3. Sample each node into S with independent
probability p and solve (1 + ε)-approximate (V, h, σ)-estima-
tion with min{h, σ} ≥ c logn/p, where c is a sufficiently
large constant. Then w.h.p., the following holds for all v, w ∈
V , where s′v = argmin{(wd′(v, s), s) | s ∈ S}.
(1) (wd′(v, w), w) ≤ (wd′(v, s′v), s′v)
⇒ [wd′(v, w) ≤ (1 + ε) wd(v, w)] ∧ [(wd′(v, w), w) ∈ Lv]

(2) (wd(v, w), w) ≤ (wd(v, sv), sv)
⇒ wd′(v, w) ≤ (1 + ε) wd(v, w)

(3) (wd(v, w), w) > (wd(v, sv), sv)
⇒ wd′(v, sv) ≤ (1 + ε) wd(v, w)

(4) (wd′(v, w), w) > (wd′(v, s′v), s′v)
⇒ wd′(v, s′v) ≤ (1 + ε) wd(v, w)

Proof. Fix v ∈ V and order {(wd′(v, w), w) |w ∈ V }
in ascending lexicographic order. Suppose s′v ∈ S is the
ith element of the resulting list. Then, since s′v minimizes
(wd′(v, s), s) among nodes s ∈ S,

Pr[i ≥ min{h, σ}] ≤ (1− p)min{h,σ} ∈ e−Θ(c logn) = n−Θ(c).

When c is a sufficiently large constant, this implies that
i < h w.h.p., and thus hv,w < i < min{h, σ} for all w
with (wd′(v, w), w) ≤ (wd′(v, s′v), s′v). By the properties
of (V, h, σ)-estimation, it follows that, w.h.p., wd′(v, w) ≤
(1 + ε) wd(v, w) and (wd′(v, w), w) ∈ Lv for all such w.

To show (2), we perform the same calculation for the
list {(wd(v, w), w) |w ∈ V }; the element from S minimizing
(wd(v, s), s) is sv. For (3), we apply the (2) to sv, deducing
that w.h.p.,

wd′(v, sv) ≤ (1 + ε) wd(v, sv) ≤ (1 + ε) wd(v, w)

For (4), note that if wd′(v, w) ≤ (1 + ε) wd(v, w) then

wd′(v, s′v) ≤ wd′(v, w) ≤ (1 + ε) wd(v, w) .

Otherwise, (2) shows that wd(v, w) ≥ wd(v, sv) w.h.p., im-
plying that

wd′(v, s′v) ≤ wd′(v, sv) ≤ (1 + ε) wd(v, sv)

≤ (1 + ε) wd(v, w).

We use s′v where sv was used in the original scheme. By
Lemma 4.3 and Corollary 3.4, this achieves β ∈ 1 + o(1)
stretch within the desired time bound for p ≈ 1/

√
n. How-

ever, since possibly s′v 6= sv, we must show that the resulting
approximation ratio is still O(α); another problem is that
the |S| trees induced by the approximately shortest paths

4We ignore the low-probability event that S = ∅.

from each v to s′v might overlap. The following two lemmas
address these issues, as well as the depth of the trees.

Lemma 4.4. Sample each node into S with independent
probability p and solve (1 + ε)-approximate (S, h, σ)-estima-
tion with h = c logn/p, where c is a sufficiently large con-
stant. Denote by wd′S the associated distance function, and
by wd′ and Lv the distance function and output of v ∈ V ,
respectively, of a solution to (1 + ε)-approximate (V, h, h)-
estimation. If for v, w ∈ V it holds that (wd′(v, w), w) /∈ Lv,
then w.h.p. there exist s0, . . . , sj0 = s′w ∈ S such that
• wd′(w, s′w) ∈ (2 +O(ε)) wdS(v, w), and

• wd′S(v, s0)+
∑j0
j=1 wd′S(sj−1, sj) ∈ (3+O(ε)) wd(v, w).

Proof. By (1) and (4) of Lemma 4.3, (wd′(v, w), w) /∈ Lv
implies that wd′(v, s′v) ≤ (1 + ε) wd(v, w) w.h.p. Hence,

wd(v, sv) ≤ wd(v, s′v) ≤ wd′(v, s′v) ≤ (1 + ε) wd(v, w) .

By the triangle inequality, it follows that w.h.p.,

wd(w, sw) ≤ wd(w, sv) ≤ wd(v, w) + wd(v, sv)

≤ (2 + ε) wd(v, w)

Applying (2) of Lemma 4.3 to w and sw, we obtain

wd(w, s′w) ≤ wd′(w, s′w) ≤ wd′(w, sw) ≤ (1 + ε) wd(w, sw)

≤ 2(1 + ε)2 wd(v, w) ,

and, from (1) of Lemma 4.3

wd′(w, s′w) ≤ (1 + ε) wd(w, s′w) ≤ 2(1 + ε)3 wd(v, w) ,

and the first part of the lemma follows (recall that ε ∈ O(1)).
Moreover, we have that

wd(v, s′w) ≤ wd(v, w) + wd(w, s′w) ≤ 3(1 + ε)2 wd(v, w) .

Consider a shortest path from v to s′w, and denote the sam-
pled nodes that are encountered when traversing it from v
to s′w by s0, . . . , sj0 ∈ S; in particular, sj0 = s′w. By the
same calculation as for Lemma 4.3, w.h.p. any two consec-
utive sampled nodes are no more than h hops apart. As
the path is a shortest path from v to s′w, the subpaths from
sj−1 to sj , j ∈ {1, . . . , j0}, and from v to s0 are also shortest
paths. Therefore, hv,s0 ≤ h and, for each j, hsj−1,sj ≤ h.
We conclude that

wd′S(v, s0) +

j0∑
j=1

wd′S(sj−1, sj)

≤ (1 + ε)

(
wd(v, s0) +

j0∑
j=1

wd(sj−1, sj)

)
= (1 + ε) wd(v, s′v) ≤ 3(1 + ε)3 wd(v, w) ,

and the second part of the lemma follows.

Lemma 4.5. Sample each node into S with independent
probability p and solve (1 + ε)-approximate (V, h, σ)-estima-
tion with h = c logn/p, where c is a sufficiently large con-
stant. For s ∈ S, denote by Ts the tree induced by the routing
paths from v to s for all v ∈ V with s′v = s. The depth of
Ts is bounded by O(h logn/ε2), and each node participates
in at most O(logn/ε) different trees.

Proof. Recall that routing from v to s′v is based on the
routing tables Lv,i determined by the unweighted source de-
tection instances on Gi, i ∈ {0, . . . , imax}. The induced

shortest-paths trees in Gi have depth at most h′ ∈ O(h/ε),
and they cannot overlap. By construction, the respective
paths in G cannot have more hops. However, it is pos-
sible that when routing from v to s′v, some node on the
way knows of a shorter path to s′v due to a source detec-
tion instance on Gj , j 6= i, and therefore “switches” to the
shortest-path tree in Gj . Because wdj(v, w) ≥ wdi(v, w) for
all v, w ∈ V and j ≥ i, we may however w.l.o.g. assume that
the index i such that routing decisions are made according
to Lv,i is decreasing on each routing path from some node
v to s′v. Thus, the total hop count of the path is bounded
by O(imaxh

′) ⊆ O(h logn/ε2). Consequently, the depth of
each Ts is bounded by this value.

Concerning the number of trees, observe that if some node
v decides that the next routing hop to s′v is its neighbor u,
it does so because s′v minimizes the hop distance from v to
s′v in Gi, according to its list Lv,i. As there are imax + 1 ∈
O(logn/ε) different lists Lv,i, this is also a bound on the
number of different trees v may participate in.

We can now prove Theorem 4.2.

Proof of Theorem 4.2. Construct S by sampling nodes
independently with probability p := n−1/2−1/(4k). W.h.p.,
|S| ∈ Θ(n1/2−1/(4k)). Using Corollary 3.4, we solve (1 + ε)-
approximate (V, h, σ)-estimation with h = σ = c logn/p, for
c ∈ O(1) sufficiently large, and, say, ε = 1/ logn. This takes

Õ(1/p) = Õ(n−1/2−1/(4k)) rounds and enables each node v ∈
V to route to all nodes w ∈ V with (wd′(v, w), w) ∈ Lv along
a path of weight at most wd′(v, w). By Lemma 4.3, this en-
ables each v, w ∈ V with (wd′(v, w), w) ≤ (wd′(v, s′v), s′v) to
determine that this condition is satisfied and route from v
to w with stretch (1 + ε).

In case that (wd′(v, w), w) /∈ Lv, we invoke Corollary 3.4
once more. This time we solve (1+ε)-approximate (S, h, |S|)-
detection. W.h.p., Õ(n−1/2−1/(4k)) rounds suffice. Let wd′S
denote the corresponding distance function. Lemma 4.4
shows that there are s0, . . . , sj0 = s′w ∈ S so that wd′(s′w, w) ∈
(2 +O(ε)) wd(v, w) and wd′S(v, s0) +

∑j0
j=1 wd′S(sj−1, sj) ∈

(3 +O(ε)) wd(v, w). If we can route from v to s′w incurring
an additional stretch factor of 2k− 1 and from s′w to w over
a path of weight wd′(s′w, w), the total stretch will be

(2+O(ε))+(2k−1)(3+O(ε)) ∈ 6k−1+O(ε) ⊂ 6k−1+o(1),

i.e., the routing scheme satisfies the claimed stretch bound.
Concerning routing from s′w to w, we employ the algo-

rithm from [28] that terminates in Õ(h) rounds in trees

of depth h. By Lemma 4.5, this can be done in Õ(h) =

Õ(n−1/2−1/(4k)) rounds: since each node is a member in
O(logn) trees, by time-multiplexing we can simulate a round
for all trees in O(logn) rounds. We add the computed
(1 + o(1)) logn-bit label to the label of w, inducing an s′w-w
route of weight at most wd′(w, s′w).

To route from v to s′w, consider the graph on node set
S with edge set {{s, t} | wd′S(s, t) < ∞}, where the edge
weights are given by wd′S . For this graph, each node s ∈ S
knows its incident edges and their weights. Using the simu-
lation of the Baswana-Sen algorithm [3] given in [22], we can
construct and make known to all nodes a 2k − 1 spanner5

of this graph in Õ
(
|S|1+1/k +D

)
⊂ Õ

(
n1/2+1/(4k) +D

)
5I.e., a subgraph in which distances increase by at most a
factor 2k − 1.

rounds. Using this knowledge, the fact that v is aware of
wd′S(v, s0), and the routing tables from the second applica-
tion of Corollary 3.4, w.h.p. we can route with the desired
stretch from v to s′w based on the identifier of s′w, which
we add to the label of v. This completes the proof of the
stretch bound. Checking the individual bounds we picked
up along the way, we see that the label size is O(logn) and

the running time is Õ(n1/2+1/(4k) +D) w.h.p.

4.2 Compact Routing on Graphs of Small
Diameter

We now show how to reduce routing tables size when com-
puting routing tables distributedly. The idea in the algo-
rithm is to construct an (approximate) Thorup-Zwick rout-
ing hierarchy [28]. Our approach is efficient if D is small.

Using exact distances, the construction would look as fol-

lows. Let K0
def
= {0, . . . , k − 1}.

1. For each node v ∈ V , choose its level independently by
a geometric distribution, i.e., the probability to have level
at least l ∈ K0 is pl = n−l/k. Denote the set of nodes of
level at least l by Sl; trivially S0 = V .

2. For each node v and level l ∈ K0 \ {0}, determine the
node sl(v) ∈ Sl closest to v and the set Sl−1(v) ⊆ Sl−1 of
nodes closer to v than sl(v) (ties broken by node identifiers);

for convenience, let s0(v)
def
= v and Sk−1(v)

def
= Sk−1.

3. Determine tables and labels for routing and distance
approximation (i) from v to all nodes in Sl(v) for all l ∈ K0,
and (ii) from sl(v) to v, where l ∈ K0 \ {0}. The final label
of v is obtained by concatenating its individual labels and
the labels for routing from sl(v), l ∈ K0 \ {0}.

In our implementation, we replace exact distances by (1+
ε)-approximate distances for sufficiently small ε. Hence-
forth, we assume that the sets S′l(v) and nodes s′l(v) are
defined as above, but with respect to wd′l, the distance func-
tion corresponding to the instance of partial distance esti-
mation we solve for level l ∈ K0. First we bound the effect
of the approximate distances on stretch. This is done by a
repeated application of the argument of Lemma 4.4.

Lemma 4.6. For l ∈ K0 \{0}, denote by wd′l the distance
function corresponding to a (1 + ε)-approximate solution to
(Sl, hl, σl)-estimation, where hl = σl = c logn/pl for a suffi-
ciently large constant c. Suppose v, w ∈ V and ` ∈ K0 \ {0}
is minimal so that s′`(w) ∈ S′`(v). Then w.h.p.,

wd(v, s′`(w)) + wd(s′`(w), w) ≤ (1 + ε)4`(4`+ 1) wd(v, w).

Lemma 4.6 shows that for ε ∈ o(1/k), routing from v to w
via s′`(w) ∈ S′`(v) for minimal ` achieves stretch 4k−3+o(1).
It remains to construct the hierarchy efficiently. We start
with a general algorithm.

Lemma 4.7. For each level l ∈ K0, we can determine
w.h.p. for all nodes v the set S′l(v) and the respective distance

and routing information in Õ(ε−2n(l+1)/k) rounds, where ta-

bles have O(n1/k log2 n/ε) bits. Within this time, we can
also determine labels of (1 + o(1)) logn bits and tables of
O(log2 n/ε) bits at each node for routing from s′l(v) to v.

Proof. For a sufficiently large constant c, we perform
(1 + ε)-approximate (Sl, hl+1, σ)-estimation with parame-

ters hl+1 = cn(l+1)/k logn and σ = cn1/k logn. For l <
k − 1, the probability that (wd′(v, s′l+1(v)), s′l+1(v)) has in-
dex i ≥ σ if we sort {(wd′(v, s), s) | s ∈ Sl} in increasing

order is (1 − pl/pl+1)σ ∈ n−Ω(c). The probability that
(wd′(v, s′l+1(v)), s′l+1(v)) has index j ≥ hl+1 if we order

{(wd′(v, w), w) |w ∈ V } ascendingly is (1 − 1/pl+1)hl+1 ∈
n−Ω(c). By appending a bit to messages indicating whether
s ∈ Sl is also in Sl+1, we can thus use Corollary 3.4 to
show that, w.h.p., we obtain suitable tables for routing from
v ∈ V to Sl(v) and sl+1(v) within the stated time bound.
If l = k − 1, we have that hl+1 > n and |Sl| = |Sk−1| ≤ σ
w.h.p.; in this case, Corollary 3.4 shows that the construc-
tion can be performed as well.

Regarding the second part of the statement, observe that
analogously to Lemma 4.5, the routing trees rooted at each
node sl+1 ∈ Sl+1 have depth O(hl+1 logn/ε2) and each node
participates in at most O(logn/ε) of them. Thus, we can
apply the construction from [28] to obtain labels (and tables)
of size (1 + o(1)) logn for tree routing on each of the trees

in Õ(hl+1/ε
2) ⊆ Õ(ε−2n(l+1)/k) rounds. As each node par-

ticipates in O(logn/ε) trees, the table size for this routing
information is O(log2 n/ε).

We can now state a useful result for small SPD.

Theorem 4.8. In the congest model, a routing scheme
guaranteeing stretch 4k−3+o(1) using tables of size Õ(n1/k)

and node labels of size Õ(1) can be computed in Õ(SPD +

n1/k) rounds for any k ≥ 1.

Unfortunately, the strategy of Theorem 4.8 can be applied
only if an upper bound on SPD is known (and the running
time depends on that bound), unlike the algorithm of run-

ning time Õ(SPD·n1/k) from [6].6 On the other hand, apply-
ing Lemma 4.7 to all levels (without modifying h) results in

running time Õ(n). In the remainder of this subsection, we
explain how to improve on Theorem 4.8 by“short-circuiting”
the higher levels of the hierarchy. This approach yields bet-
ter results when the hop diameter is small.

The construction is as follows. Let l0 < k − 1 be some
level to be determined later. We truncate the hierarchy at
level l0 by constructing a skeleton graph as follows.

Definition 4.9 (l0 skeleton). Let hl0
def
= cnl0/k logn

for some sufficiently large constant c. The skeleton graph
on level l0 is G(l0) = (Sl0 , El0 ,wd), where {s, t} ∈ El0 if
and only if hs,t ≤ hl0 .

The l0 skeleton graph preserves the original skeleton dis-
tances, as the following lemma states.

Lemma 4.10. For any ε > 0, h, σ ∈ N, and S ⊆ Sl0 ,
denote by wdSl0

the distance function resulting from solv-

ing (1 + ε)-approximate (Sl0 , hl0 , |Sl0 |)-estimation and by
wdS the distance function resulting from solving (1 + ε)-
approximate (S, ch logn, σ)-estimation on G(l0), where c is
a sufficiently large constant. Then w.h.p.,

wd′(v, s)
def
= min{wd′Sl0

(v, t) + wd′S(t, s) | t ∈ Sl0}

is a suitable distance function for (1 + ε)-approximate (S, h ·
hl0 , σ)-estimation on G.
6In [6], the algorithm only handles distance queries and as-
sumes that also the table of the destination can be accessed
(i.e., the labels are identical to the tables). Both assump-
tions can be removed to achieve the same properties as our
solution within Õ(SPD · n1/k) rounds.

Proof. By the triangle inequality, for any v ∈ V , t ∈ Sl0 ,
and s ∈ S,

wd(v, s) ≤ wd(v, t) + wd(t, s) ≤ wd′Sl0
(v, t) + wd′S(t, s).

Suppose hv,s ≤ h · hl0 for some v ∈ V and s ∈ S. The
expected number of nodes in Sl0 on a shortest path from
v to s of hv,s hops is pl0hv,s ∈ O(h logn). By Chernoff’s
bound, this number is smaller than ch logn w.h.p., as c is
sufficiently large. Another application of Chernoff’s bound
shows that the maximum hop distance between nodes from
Sl0 on the path is bounded by hl0 w.h.p.

Denoting by tv,s ∈ Sl0 the first sampled node on the path,
the above shows that the following properties hold w.h.p.
• wd(v, s) = wd(v, tv,s) + wd(tv,s, s),
• wdG(l0)(tv,s, s) = wd(tv,s, s), where wdG(l0) denotes

the weighted distance in G(l0),
• wd′Sl0

(v, tv,s) ≤ (1 + ε) wd(v, tv,s), and

• wd′S(tv,s, s) ≤ (1 + ε) wdG(l0)(tv,s, s).
Overall, this yields

wd′(v, s) = min
t∈Sl0

{wd′Sl0
(v, t) + wd′S(t, s)}

≤ wd′Sl0
(v, tv,s) + wd′S(tv,s, s)

≤ (1 + ε)(wd(v, tv,s) + wdG(l0)(tv,s, s))

= (1 + ε)(wd(v, tv,s) + wd(tv,s, s))

= (1 + ε) wd(v, s).

Corollary 4.11. If in the construction of Lemma 4.10
we replace G(l0) by the graph G̃(l0) constructed by solving
(1+ε)-approximate (Sl0 , hl0 , |Sl0 |)-estimation and assigning
weight wd′Sl0

(s, t) to edge {s, t}, the resulting function wd′

is a suitable distance function for (1+ε)2-approximate (S, h·
hl0 , σ)-estimation.

Next, we address the “truncated” levels. The general idea
is to simulate the construction on the (approximate) skele-
ton graph given by Corollary 4.11, where communication
is pipelined over a global BFS tree. Since nodes broadcast
only Õ(σ2) times in a call to our PDE algorithm (by Corol-
lary 3.4), the total amount of communication does not be-
come too large. However, each simulated round of the al-
gorithm may incur an additive delay of O(D) (the depth of
the BFS tree), which is reflected in the running time bound.

Lemma 4.12. For any integer l0 ≥ k/2 + 1, we can con-

struct level l ≥ l0 of the routing hierarchy in Õ(ε−2(nl0/k +

n(k−l0)/kD)) rounds w.h.p., where the tables and labels are

of size Õ(n1/k/ε) and Õ(ε−1), respectively.

Proof. Recall that ε ∈ O(1). We choose ε′ ∈ Θ(ε) such
that (1 + ε′)2 = (1 + ε). We solve (1 + ε′)-approximate
(Sl0 , hl0 , |Sl0 |)-estimation using Corollary 3.4, w.h.p. in time

Õ(ε−2(hl0 + |Sl0 |) +D) = Õ
(
ε−2

(
nl0/k + n(k−l0)/k

)
+D

)
⊆ Õ

(
ε−2nl0/k +D

)
.

To apply Corollary 4.11, we simulate, for h = hl+1/hl0 and a
sufficiently large constant c, (1+ε′)-approximate estimation

on G̃(l0) with parameters (Sl, c h logn, c n1/k logn), in a way
such that all nodes will learn the output of all nodes in Sl0 .
As in Lemma 4.7, a bit indicating whether a source is in
Sl+1 is added to messages if l < k − 1.

Before we explain how to do this, let us show how this
allows the construction of level l of the routing hierarchy.
From the collected information, w.h.p. nodes can locally
compute the distance function wd′ from Corollary 4.11 for
the σ closest nodes in Sl w.r.t. wd′ and, as in Lemma 4.7,
derive their table for routing from v to S′l and s′l(v).

To enable tree routing from s′l(v) to v, split the tree rooted
at s′l(v) into the unique maximal subtrees rooted at s ∈ Sl0
that contain no internal nodes from Sl0 (i.e., all such nodes
are either the root or leaves). By Lemma 4.5, these subtrees

have depth at most Õ(hl0/ε
2). We use separate labeling

schemes for the (globally known) tree on G̃(l0) that describes
the connections between nodes in Sl0 in the routing tree
rooted at s′l(v) and the subtrees rooted at each s ∈ Sl0 . The
former can be computed locally. The latter can be labeled
in time Õ(ε−3hl0), provided that each node participates in

Õ(ε−1) different trees only. Analogously to Lemma 4.5, this
holds true because each routing decision must correspond
to one of the O(logn/ε) top entries of the routing tables

(either for routing in G to some node in Sl0 or in G̃(l0)).
This approach requires each node in the tree to store two
labels of size (1 + o(1)) logn. Routing can now be executed
by determining the next node from Sl0 to visit on the path
from s′l(v) to v (if there still is one) and then use the label
for the current subtree to find the next routing hop.

It remains to discuss how to solve (1 + ε′)-approximate

(Sl, h, c n
1/k logn)-estimation on G̃(l0) quickly. Recall that

each node in Sl0 knows its neighbors and the weights of
incident edges from the solution of (1 + ε′)-approximate
(Sl0 , hl0 , |Sl0 |)-estimation computed earlier. We simulate
the algorithm given by Corollary 3.4, exploiting the fact
that each node broadcasts in only Õ(n2/k) rounds in to-
tal. For each simulated round i ∈ {1, . . . , h′ + σ} and all
of the O(logn/ε) instances of the unweighted algorithm, we
pipeline the communication over a BFS tree, which takes
O(Mi + D) rounds in G, where Mi is the number of mes-

sages broadcasted by nodes in G̃(l0) in simulated round i;
this time bound includes O(D) rounds for global synchro-
nization of when the next simulated round starts. Therefore,
the total number of communication rounds in G is

h′+σ∑
i=1

O(Mi +D) ⊆ Õ(ε−1(σ2|Sl0 |+ (h′ + σ)D))

⊆ Õ(ε−2(n2/k · n(k−l0)/k + n(l−l0+1)/kD))

⊆ Õ(ε−2(nl0/k + n(k−l0)/kD))

w.h.p., as |Sl0 | ∈ Õ(n(k−l0)/k) w.h.p. The bounds on table
and label size follow from Lemma 4.7 and the above discus-
sion of the tree labeling scheme.

We can now put all the pieces together to obtain the fol-
lowing result.

Theorem 4.13. Suppose we are given k ∈ N and some
integer k/2 + 1 ≤ l0 ≤ k. Then tables of size Õ(n1/k) and
labels of size O(k logn) facilitating routing and distance ap-
proximation with stretch 4k− 3 + o(1) can be constructed in

Õ(nl0/k + n(k−l0)/kD) rounds w.h.p.

We can pick an appropriate value for l0 depending on D.
If the running time is worse than about n2/3, we handle the
higher levels simply by making G̃(l0) known to all nodes and
solving locally.

Corollary 4.14. In the congest model, Õ(n1/k)-bit ta-

bles and Õ(1)-bit labels for routing with stretch 4k − 3 +

o(1) can be computed in Õ
(
D + min

{
(Dn)

1
2 n

1
k , n

2
3

+ 2
3k

})
rounds, for any k ∈ N.

4.3 A Faster (2 + ε)-approximation of Steiner
Forests

The distributed Steiner forest problem (abbreviated SF
henceforth) is defined as follows.

Definition 4.15 (Distributed Steiner Forest).
Input: At each node v, λ(v) ∈ Λ ∪ {⊥}, where Λ is the set

of component identifiers s.t. ⊥ /∈ Λ.
Output: An edge set F ⊆ E such that ∀u, v ∈ V , if λ(u) =

λ(v) 6= ⊥ then u and v are connected by F .
Goal: Minimize W (F) =

∑
e∈F W (e).

The set of nodes v with λ(v) 6= ⊥ is called terminals and is

denoted by T . As customary, we denote t
def
= |T | and k

def
=

|Λ|. For λ ∈ Λ, define input component Cλ ⊆ T to be the set
of all terminals v with λ(v) = λ. The problem specializes
to minimum spanning tree (MST) by letting all nodes be
terminals in a single input component, and to shortest s-t
path by letting s and t be the only terminals, in the same
input component. However, general SF is NP-hard [10].

In the congest model, any randomized approximation al-
gorithm for SF requires Ω̃(k + min{

√
n,SPD}+D) rounds,

and it is known how to get a randomized O(logn)-approxi-
mation within that time (up to a polylogn factor) [15].
The best known deterministic algorithm finds a (2 + ε)-

approximation in Õ(SPD k +
√

min{SPD t, n}) rounds, for
any ε ∈ 1/ polylog n. Note the large gap between the lower
and upper bounds on deterministic construction. In this pa-
per, using our improved PDE result, we reduce this gap as
stated in the following theorem.

Theorem 4.16. If SPD is known, a (2 + o(1))-approxi-
mate Steiner forest can be deterministically constructed in
Õ(
√

min{D, k}(D + k) + SPD +
√

min{SPD t, n}) rounds.

While the time bound of the algorithm in [15] may be as

high as Õ(n2) if both SPD and k are Θ̃(n), the time com-

plexity in Theorem 4.16 is never more than Õ(n3/2) (even
if we use n as an upper bound on SPD).

The algorithm suggested in Theorem 4.16 builds on the
algorithm of [15], which is already quite involved. We only
give a very high level overview of the new ideas we use here.
More details can be found in the full version of the paper [14].

Approximate Distances. The deterministic algorithm
in [15] (which follows the approach of [2]) works in any met-
ric space. In particular, distorting distances in the input
graph G by a factor of 1 + ε′ degrades the approximation
ratio by at most a factor of 1 + ε′. In total, our algorithm
computes approximate distances O(logn) times, so choos-
ing ε′ ∈ 1/polylogn sufficiently small, we can guarantee
that the approximation ratio grows only by a multiplicative
1 + o(1) factor. Note that with this choice of ε′, the run-

ning time of PDE (cf. Corollary 3.4) is Õ(h + σ + D), and

each node broadcasts in no more than Õ(σ2) rounds of the
algorithm.

Fast Deterministic Algorithm. The main idea of the
algorithm is to let moats, rooted at terminals, grow in uni-
form speed until they touch each other, at which point they

merge. A moat becomes inactive and stops growing when
it contains only whole input components, at which point
the whole moat is logically contracted into a single node
(by assigning zero weight to all its edges). To construct
the required forest, the sequence of merges is traced back,
and edges along the paths connecting the moat centers are
added if they don’t close cycles. The problem boils down to
determining the order of merges. We do that using a graph
defined as follows.

1. For each inactive moat M , identify all its nodes with
a single source sM .

2. Identify each terminal in an active moat with a single
source s.

3. Compute for each node (1 + ε′)-approximate distances
wd′ to all sources.

There are at most k sources: up to k−1 sources for inactive
moats and s. Thus, applying Corollary 3.4 with h = SPD
and σ = k, we can complete this computation in Õ(SPD+k)
rounds. Using these distances we define a multigraph Hmoat

with nodes s ∪ {sM |M is an inactive moat} and there is
an edge {s1, s2} of weight w if there is a node v associated
with s1 with wd′(v, s2) = w. An inactive moat M becomes
active after time equal to the distance between s and sM
in this graph—provided that no moats become inactive in
the meantime. This can be computed at a single node, and
the results distributed back, in O(Dk) time. In fact, we
can do better by simulating the PDE algorithm on Hmoat.
The resulting running time depends on SPD(Hmoat), and is
better than O(Dk) if SPD(Hmoat)� k.

Corollary 4.17. For any 0 < δ ∈ 1/polylogn, we can
solve (1 + δ)-approximate single-source shortest paths with

source s on H within Õ(D ·SPD(Hmoat)+k) communication
rounds of G. This requires knowledge of SPD(Hmoat).

Using the shortcut technique of [21], SPD(Hmoat) can be

reduced to at most k/
√
kD/(D + k) before applying Corol-

lary 4.17, yielding the following result.

Corollary 4.18. For any 0 < δ ∈ 1/polylogn, we can
solve (1 + δ)-approximate single-source shortest paths with

source s on H in Õ(
√

min{D, k}(D + k)) communication
rounds of G.

Thus we can reduce the leading term in the complexity of
the algorithm from SPD·k to

√
min{D, k}(D+k) and arrive

at Theorem 4.16.

Leveraging Randomization. Alternatively, we observe
that we can “reduce” SPD by sampling nodes with inde-
pendent probability 1/

√
n and making them into “dummy”

terminals, each of them with their unique input component
label. We obtain the following result.

Corollary 4.19. A (2+o(1))-approximate Steiner forest

can be computed in Õ(
√

min{D, k}(D + k) +
√
n) rounds

w.h.p.

Acknowledgements. The authors thank Stephan Holzer
for providing us with a preprint of [12] and Danupon
Nanongkai for useful comments.

5. REFERENCES
[1] I. Abraham, C. Gavoille, D. Malkhi, N. Nisan, and

M. Thorup. Compact name-independent routing with
minimum stretch. ACM Trans. Algorithms,
4(3):37:1–37:12, 2008.

[2] A. Agrawal, P. Klein, and R. Ravi. When trees collide:
An approximation algorithm for the generalized
Steiner tree problem on networks. SIAM Journal of
Computing, 24:440–456, 1995.

[3] S. Baswana and S. Sen. A simple and linear time
randomized algorithm for computing sparse spanners
in weighted graphs. Random Structures and
Algorithms, 30(4):532–563, 2007.

[4] R. E. Bellman. On a routing problem. Quart. Appl.
Math., 16:87–90, 1958.

[5] A. Bernstein. Maintaining shortest paths under
deletions in weighted directed graphs: [extended
abstract]. In Symp. Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages
725–734, 2013.

[6] A. Das Sarma, M. Dinitz, and G. Pandurangan.
Efficient computation of distance sketches in
distributed networks. In Proc. 24th ACM Symp. on
Parallelism in Algorithms and Architectures, 2012.

[7] A. Das Sarma, S. Holzer, L. Kor, A. Korman,
D. Nanongkai, G. Pandurangan, D. Peleg, and
R. Wattenhofer. Distributed Verification and Hardness
of Distributed Approximation. SIAM Journal on
Computing, 41(5):1235–1265, 2012.

[8] L. R. Ford. Network flow theory. Technical Report
P-923, The Rand Corp., 1956.

[9] S. Frischknecht, S. Holzer, and R. Wattenhofer.
Networks cannot compute their diameter in sublinear
time. In Proc. 23rd ACM-SIAM Symp. on Discrete
Algorithms, pages 1150–1162, 2012.

[10] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP
-Completeness. W.H. Freeman and Company, San
Francisco, 1979.

[11] M. Henzinger, S. Krinninger, and D. Nanongkai. An
Almost-Tight Distributed Algorithm for Computing
Single-Source Shortest Paths. CoRR, abs/1504.07056,
2015.

[12] S. Holzer and N. Pinsker. Approximation of Distances
and Shortest Paths in the Broadcast Congest Clique.
CoRR, abs/1412.3445, 2014.

[13] P. N. Klein and S. Subramanian. A fully dynamic
approximation scheme for shortest paths in planar
graphs. Algorithmica, 22:235–249, 1998.

[14] C. Lenzen and B. Patt-Shamir. Fast Partial Distance
Estimation and Applications. CoRR, abs/1412.7922,
2014.

[15] C. Lenzen and B. Patt-Shamir. Improved distributed
steiner forest construction. In Proc. 32nd ACM Symp.
on Principles of Distributed Computing, pages
262–271, 2014.

[16] C. Lenzen and D. Peleg. Efficient distributed source
detection with limited bandwidth. In Proc. 32nd ACM
Symp. on Principles of Distributed Computing, 2013.

[17] A. Madry. Faster approximation schemes for fractional
multicommodity flow problems via dynamic graph
algorithms. In Proc. 42nd ACM Symp. on Theory of
Computing, STOC 2010, Cambridge, Massachusetts,
USA, 5-8 June 2010, pages 121–130, 2010.

[18] J. McQuillan, I. Richer, and E. Rosen. The new
routing algorithm for the ARPANET. IEEE Trans.
Communication, 28(5):711–719, May 1980.

[19] J. M. McQuillan and D. C. Walden. The ARPANET
design decisions. Networks, 1, 1977.

[20] J. Moy. OSPF ver. 2, April 1998. Internet RFC 2328.

[21] D. Nanongkai. Distributed Approximation Algorithms
for Weighted Shortest Paths. In Proc. 46th Symp. on
Theory of Computing (STOC), pages 565–573, 2014.

[22] B. Patt-Shamir and C. Lenzen. Fast Routing Table
Construction Using Small Messages [Extended
Abstract]. In Proc. 45th Symposium on the Theory of
Computing (STOC), 2013. Full version at
http://arxiv.org/abs/1210.5774.

[23] D. Peleg. Distributed Computing: A Locality-Sensitive
Approach. SIAM, Philadelphia, PA, 2000.

[24] D. Peleg and A. A. Schäffer. Graph spanners. J.
Graph Theory, 13(1):99–116, 1989.

[25] D. Peleg and E. Upfal. A trade-off between space and
efficiency for routing tables. Journal of the ACM,
36(3):510–530, 1989.

[26] P. Raghavan and C. D. Thompson. Provably good
routing in graphs: Regular arrays. In Proc. 17th Ann.
ACM Symp. on Theory of Computing, STOC ’85,
pages 79–87, New York, NY, USA, 1985. ACM.

[27] N. Santoro and R. Khatib. Labelling and Implicit
Routing in Networks. Computer J., 28:5–8, 1985.

[28] M. Thorup and U. Zwick. Compact routing schemes.
In Proc. 13th ACM Symp. on Parallel Algorithms and
Architectures, 2001.

[29] U. Zwick. Exact and approximate distances in graphs
– a survey. In Proc. 9th European Symp. on
Algorithms, pages 33–48, 2001.

[30] U. Zwick. All pairs shortest paths using bridging sets
and rectangular matrix multiplication. Journal of the
ACM, 49(3):289–317, 2002.

http://arxiv.org/abs/1210.5774

	Introduction
	Model and Problems
	From Weighted to Unweighted
	Applications
	Almost Exact APSP With and Without Node Relabeling
	Compact Routing on Graphs of Small Diameter
	A Faster (2+eps)-approximation of Steiner Forests

	References

