
Optimal Clock Synchronization with Bounded Rates

Christoph Lenzen, Thomas Locher, Roger Wattenhofer
{lenzen, lochert, wattenhofer}@tik.ee.ethz.ch

Computer Engineering and Networks Laboratory (TIK)
ETH Zurich, 8092 Zurich, Switzerland

TIK Report number 301

May 15, 2009

Abstract

We present a novel clock synchronization algorithm and prove that this algorithm achieves
an essentially optimal upper bound on the worst-case clock skew between any two participants
in any given distributed system. More importantly, the clock skew that can occur in the worst
case between neighboring participants is (asymptotically) at most a factor of two larger than the
best possible bound. Furthermore, the algorithm minimizes the number of messages that need
to be exchanged in a given time period and also the number of bits that any node must store
locally. The algorithm achieves these goals while guaranteeing that the clocks run smoothly, i.e.,
all clock rates are always within adjustable, pre-specified bounds, an essential quality of any
practical clock synchronization algorithm. These results all hold in a general model where both
the clock drifts and the message delays may vary arbitrarily within pre-specified bounds, and
algorithms are bound to act only at discrete clock pulses.

1 Introduction

For many tasks in distributed systems it is required that the participants maintain a common
notion of time. Since each participant is typically equipped with its own (hardware) clock, and
all clocks advance at slightly different and potentially variable clock rates, the clocks must be
synchronized from time to time in order to ensure that the clocks do not continually drift apart. To
this end, a clock synchronization algorithm must be used to counterbalance the clock skews caused
by the different clock rates. In order to detect clock skews, any clock synchronization algorithm
requires that timing information is exchanged among the participants. The algorithm may trigger
synchronization messages itself, or timing information may be attached to messages that are sent
by other applications (“piggybacking”). Synchronizing clocks is challenging due to the variable
(and uncontrollable) delay between the time when synchronization messages are sent and the time
when the recipients are able to process them. The distributed system is modeled as an arbitrary
connected graph G = (V,E), where the nodes in V denote the participants in the system and
each edge {v, w} ∈ E represents a bidirectional communication link between v and w. Each node
computes a logical clock value based on its local hardware clock value and the messages it received
from its neighboring nodes. A clock synchronization algorithm strives to minimize the clock skews
between these logical clocks.

1

The objective of this work is to provide tight upper bounds on the degree of synchronization
that can be achieved, taking many parameters such as the maximum delay and the maximum clock
drift rate into account.1 A crucial aspect of clock synchronization, which so far has not received
much attention, is that a practical clock synchronization algorithm must ensure that the rates of
progress of all logical clock values are always within specific bounds, i.e., the clock values are not
allowed to change substantially in a short time. In other words, an algorithm must guarantee that
the logical clocks run smoothly at all times. However, bounding the clock rates inhibits the ability
of an algorithm to react to clock skews, which have to be kept as small as possible. The worst-case
clock skew that can occur between any two nodes when executing a particular algorithm A on
a given graph G is called the global skew. For many distributed applications it is essential that
each node is well synchronized with nodes in its vicinity, i.e., the clock skew between a node v
and another node w must be small at all times if the distance d(v, w) between v and w in G is
small. This is the case if occurrences of events are only of local importance and do not bear any
(immediate) significance for nodes that are not close-by.2 More formally, the goal is to minimize
the worst-case clock skew between any two neighboring nodes, which is referred to as the local
skew. Apart from bounding the logical clock rates in order to ensure that the clock values do not
change abruptly, it may further be desirable to keep the logical clock values as close to real time
as possible, i.e., an algorithm should guarantee the best possible real-time approximation in the
absence of an external timer.

We propose a simple algorithm that bounds the minimum and maximum progress of the logical
clocks and ensures that the logical clock values always remain within a linear envelope of real time,
while guaranteeing the best possible bounds on both the global and the local skew. What is more,
we show that the message frequency can be kept quite low without increasing the worst-case clock
differences significantly, which implies that techniques such as piggybacking can be employed. This
is a viable option especially considering that we only require a few bits to be sent in each message,
which can be included in (or appended to) any message sent by another application. Furthermore,
we assume that the algorithm can only act at certain clock pulses. These results imply that the
techniques in this work solve the synchronization problem asymptotically optimally with respect
to several optimization criteria in a general model.

2 Related Work

There is a large body of work on the fundamental problem of synchronizing clocks in distributed
systems. Most work mainly focuses on bounding the skew that may occur between any two clocks
and also the communication costs that are required in order to guarantee a certain degree of
synchronization (see, e.g., [7, 9, 10, 11]). If the maximum (communication) delay is normalized to
1, it has been shown that a skew of D/2 cannot be avoided on any graph G of diameter D [1].3 A
stronger lower bound of roughly D can be shown for clock synchronization algorithms that strive to
keep all clock values within a linear envelope of real time [4]. The clock synchronization algorithm
by Srikanth and Toueg [11] achieves a bound of O(D) on the skew of any two clocks at all times
and is thus asymptotically optimal. The authors further show that the accuracy of their algorithm

1The matching lower bounds are proved in [4].
2A prominent example is TDMA in wireless networks where nodes depend on locally well synchronized time slots.
3In our theorems we do not normalize the maximum delay and state all results with respect to the maximum delay

and also the clock drift rate in order to show the dependency of the bounds on these parameters.

2

with respect to real time is also optimal as all clocks are always within a linear envelope of real
time. However, their algorithm incurs a skew of Θ(D) between neighboring nodes in the worst case.

In their seminal work [2] that introduced the problem of synchronizing clocks of neighboring
nodes as accurately as possible, Fan and Lynch showed that no algorithm can avoid a clock skew
of Ω(logbD/ logb logbD) between neighboring nodes, where the basis b does not depend on D. The
only imposed constraint is that nodes are required to increase their clock values at a given minimum
progress rate, which is quite natural given that otherwise clocks could simply be halted once critical
skews occur. Subsequently, it has been shown that this bound also holds if all messages arrive
instantaneously, but an adversary can determine when synchronization messages may be sent [8].
Recently, this result has been improved to Ω(logbD) [4], also revealing that b = Θ(1/ε), the inverse
of the maximum relative clock drift.

The first algorithm guaranteeing a sublinear bound on the clock skew between neighboring nodes
achieved a bound of O

(√
εD
)

[5, 6], a result which was subsequently improved to O(logD) [3].
However, the algorithm achieving the logarithmic bound has several disadvantages: Apart from
being quite complicated, the algorithm has the undesirable property that the clock values can
“jump” by O(logD) in a single time step, and thus the clock values may not change smoothly.
Moreover, both the message frequency and the size of the messages are fairly large, which prohibits
techniques such as piggybacking and which may imply that the algorithm is not useful in practice.
What is more, the base of the logarithm can hardly be increased if ε becomes small. Since typically
ε� 1, a notable gap to the lower bound remains open. The algorithm presented in this work does
not have these shortcomings.

3 Model

A distributed system is modeled as an arbitrary connected graph G = (V,E) of diameter D,
where nodes represent computational devices and egdes represent bidirectional communication
links. Each node v can communicate with all neighboring nodes by exchanging messages. The set
of v’s neighbors is denoted by Nv := {w ∈ V | {v, w} ∈ E}. We assume that, for any two nodes
u,w ∈ Nv, node v can distinguish u from w, e.g., by means of a port numbering or node identifiers,
and also that all communication is reliable, i.e., messages are never lost. The time that passes
from the moment a message is sent until the recipient can act upon it may be any value in the
range (0, T]. We do not allow a delay of zero since the delivery of messages takes a certain time.
The upper bound T is referred to as the maximum delay in the following. The maximum delay
subsumes both the maximum message delay, i.e., the maximum time during which a message can be
in transit, and the time it may take at most for the recipient to process the message. This general
definition of T allows us to define that local computations require no time. While the bound T is
unknown to the algorithm, we assume that the nodes know an upper bound T̂ ∈ O(T) on T .

Each node v is equipped with a hardware clock Hv whose value at real time t is denoted by
Hv(t), i.e., Hv : R+

0 → R+
0 is a monotonically increasing function. The first node starts its clock at

real time t = 0. An initialization message is then flooded through the network in order to start the
clocks at the other nodes. For all v ∈ V let tv ≥ 0 be the time when v is initialized. The value of
the hardware clock of v is 0 until time tv and Hv(t) :=

∫ t
tv
hv(τ) dτ afterwards, where hv(τ) is the

hardware clock rate of v at time τ . The clock rates may vary over time, but we assume that there

3

is a constant 0 < ε < 1 such that the following condition holds.

∀v ∈ V ∀t ≥ tv : 1− ε ≤ hv(t) ≤ 1 + ε.

While the exact value of ε is unknown, we assume that the nodes know an upper bound ε̂ that is
strictly smaller than one.

Typically, a computational device synchronizes its operations internally based on a clock pulse.
Therefore, we assume that a node v ∈ V performs computations and sends and receives messages
only at such clock pulses. We define that each node v has a clock pulse at time t if Hv(t) is an
integer value.4 Such a time is called a tick event at node v or simply a tick at v. Note that this
definition implies that

T ≥ 1
1− ε, (1)

as v might have to wait arbitrarily close to 1
1−ε time until it can process a message that arrived

right after the last tick event.
Additionally, each node v has a logical clock Lv, which is also a function Lv : R+

0 → R+
0 whose

value until time tv is 0 as well. It is desirable to keep all logical clock values within an (affine)
linear envelope of real time. Therefore, we require that any algorithm fulfills the following condition,
which takes the different initialization times tv into account.

∀v ∈ V ∀ ticks t at v : (1− ε)t− tv ≤ Lv(t) ≤ (1 + ε)t. (2)

Moreover, we demand that the logical clocks behave normally in the sense that the logical clock
values may not change dramatically in a short time. Formally, there are constants α, β ∈ R+ such
that

∀v ∈ V ∀ ticks t < t′ at v : α(t′ − t) ≤ Lv(t′)− Lv(t) ≤ β(t′ − t). (3)

The increased (or lowered) clock rates of the logical clocks allow the nodes to correct differences
between the logical clock values in the network. The difference between the values of logical clocks
is called clock skew. Ideally, the logical clocks behave just like the hardware clocks even in the
presence of clock skews, albeit with a slightly worse clock drift, i.e., α ∈ 1−O(ε) and β ∈ 1 +O(ε).
Note that Condition (3) implies that clocks are not allowed to run backwards and thus the algorithm
can only manipulate the logical clock value by increasing it.

A clock synchronization algorithm A executed at node v specifies how the logical clock Lv(t) of
node v is adapted based on its hardware clock and the information received from its neighbors up
to time t in such a way that Conditions (2) and (3) are satisfied. Since the algorithm modifies the
value of Lv(·) at discrete points in time, we have to specify the meaning of Lv(t) at times where the
clock value changes. If Lv is increased at time t, we define Lv(t) to be the value after the algorithm
changed it. The same definition applies to all other variables that are modified at time t.

Given a clock synchronization algorithm A and a (connected) graph G, an execution specifies
the delays of all messages and also the hardware clock rates of all nodes at each point in time when
A is executed on G. The global and the local skew are formally defined as follows:

Definition 3.1 (Global Skew) Given a connected graph G = (V,E) and a clock synchronization
algorithm A, the global skew is defined as the value supE,v∈V,w∈V, t {Lv(t)− Lw(t)}, where E is any
execution of A on G.

4Of course, only clock pulses at times t ≥ tv when v has been initialized are considered.

4

Definition 3.2 (Local Skew) Given a connected graph G = (V,E) and a clock synchronization
algorithm A, the local skew is defined as the value supE,v∈V,w∈Nv , t {Lv(t)− Lw(t)}, where E is any
execution of A on G.

Naturally, the goal of an algorithm A is to ensure the best possible bounds on both the global
and the local skew on any graph G.

4 Algorithm

In this section, we introduce the synchronization algorithm Aopt. In order to synchronize the logical
clocks, any node v must perpetually send synchronization messages informing the neighboring nodes
about its current clock value Lv. Node v itself adapts its clock value according to the information
received from its neighbors. However, the information about the neighboring clock values is not
sufficient to guarantee an optimal bound on the global skew, because the neighboring nodes might
have similar clock values while the skew to nodes at greater distances may be large. Naturally,
nodes may not increase their clock values over the largest received clock value as such a behavior
might violate Condition (2). This problem can be solved by including an estimate of the maximum
clock value in the network in each message. Although nodes might not be able to react immediately
to a new estimate, they enable distant nodes to properly adapt their clock rates by forwarding the
estimate to them. Hence, whenever a node v sends a message, it is of the form 〈Lv, Lv + Λmax

v 〉,
where Λmax

v ≥ 0 is the estimated clock skew between v’s clock value and the currently largest clock
value. Similarly, we define for any w ∈ Nv that Λwv is the estimated difference between v’s and w’s
clock value from v’s perspective. This variable is updated whenever v receives a new estimate Lwv
of the current clock value of w. Note that Λwv > 0 (Λwv < 0) indicates that v assumes that its clock
is ahead (behind).

At each tick, any node v ∈ V receives a setM of such messages. The setM may consist of any
number of messages from each neighbor, as messages with different delays may be processed at the
same tick. Therefore, we define the set Lw := {Lw | 〈Lw, Lw + Λmax

w 〉 ∈ M}∪{0} of all clock values
received from w since the last tick event for each neighbor w ∈ Nv. The element 0 is merely added
to simplify the notation as otherwise the algorithm would have to test whether each Lw is empty.
Analogously, let Lmax := {Lu + Λmax

u | 〈Lu, Lu + Λmax
u 〉 ∈ M} ∪ {0} denote the set of estimates of

the maximum clock value received from all u ∈ Nv.
The algorithm takes three parameters, ∂H, µ, and κ. The first parameter ∂H determines the

message frequency : As we will see, each node v sends a message to all neighbors at the latest after
its hardware clock Hv has advanced by ∂H. Since each node has tick events whenever its hardware
clock value increases by 1 and messages can only be sent at tick events, we require that ∂H ≥ 1. In
order to determine whether the next multiple of ∂H is reached, each node v stores a variable H̃v,
which holds v’s estimate of the largest multiple of ∂H that any hardware clock has reached yet. If
there are no clock skews, each node v increases its clock value Lv by exactly 1 at each tick, but v
may increase Lv by more if its clock is behind. We say that v raises its clock value by Rv > 0 if
v increases its clock value by 1 + Rv. The parameter µ > 0 bounds the progress rate in that the
algorithm demands that the raise Rv is always at most µ. Given the bound ε on the clock drift
and the fact that the algorithm increases by at least 1 and at most 1 + µ at each tick event, the
amortized logical clock rates are bounded by α = 1− ε and β = (1 + ε)(1 +µ). It may be desirable

5

to keep the parameter µ as small as possible.5 The analysis of the parameters reveals that we
can set the parameter µ to roughly 24ε, i.e., the precision of the clocks reduces by slightly more
than one order of magnitude while clock skews are corrected. Of course, µ can be set to a larger
value, which leads to a better bound on the worst-case clock skew between neighboring nodes. The
role of the parameter κ ∈ Ω(T) will become clear in the analysis section. For the moment, the
reader might think of κ as a “base unit” that Aopt uses to measure clock skew. As we will see, the
parameter κ ought to be kept as small as possible. The analysis reveals that κ must be set at least
to 2(1 + ε)(1 + µ)T +O(µ∂H + 1/(1− ε)), i.e., to slightly more than 2T if ε� 1� T , and µ and
∂H are (sufficiently) small.

As all variables and parameters have been introduced, we can now proceed to describe the
algorithm Aopt in detail. As mentioned before, any node starts the execution of the algorithm
by flooding an initialization message through the entire network. We simply define that the first
received synchronization message is considered the initialization message. If a node receives a
synchronization message for the first time, it executes Algorithm 1.

Algorithm 1 Initialization(M)

1: Lv := 0; H̃v := bmaxLmaxc; Λmax
v := maxLmax; send := false

2: for w ∈ Nv do
3: Lwv := maxLw
4: Λwv := Lv − Lwv
5: Send 〈Lv, Lv + Λmax

v 〉 to all u ∈ Nv

Note that v might in general receive a setM of more than one synchronization message at time
tv. The clock values in these messages are used to set all variables to the appropriate initial values.
In particular, the largest received clock values Lw are used to initialize Lwv and Λwv for all w ∈ Nv,
and the largest received estimate of the maximum clock value yields the initial values of H̃v and
Λmax
v . The flag send, initialized to false, indicates whether messages have to be sent at the current

tick event. Since the clocks of the neighboring nodes must be activated as well, the node sends
〈Lv, Lv + Λmax

v 〉 anyway at time tv (although the flag send is false).
An initialized node performs three subroutines in the given order at each tick event:

1. UpdateVariables: Adapt the local variables according to the information received since the
last tick event.

2. SetClock: Decide if and by how much the clock value is raised, set the logical clock and
adapt the affected local variables.

3. SendMessage: Send a message if necessary.

We start by discussing the first subroutine, which is given in Algorithm 2. The subroutine
takes into account that Lv is increased by at least 1. For this reason, all variables are updated
using Lv + 1 as the local clock value. In Line 1 of Algorithm 2, v determines the largest received
estimate Lmax of the maximum clock value in the network. In Line 2, v decides whether adopting
Lmax would lead to a larger estimate of the maximum clock value. If this condition is satisfied, v
adjusts H̃v and Λmax

v accordingly and sets the send flag to true since the new estimate needs to be
5Note that if µ ∈ O(ε), the maximum clock rate is bounded by 1 +O(ε).

6

Algorithm 2 UpdateVariables(M)
1: Lmax := maxLmax

2: if Lmax ≥ Lv + 1 + Λmax
v then

3: H̃v := bLmaxc
4: Λmax

v := Lmax − (Lv + 1)
5: send := true
6: for w ∈ Nv where maxLw > Lwv do
7: Lwv := maxLw
8: Λwv := Lv + 1− Lwv
9: Λ↓v := maxu∈Nv {Λuv}

10: Λ↑v := maxu∈Nv {−Λuv}

forwarded to the other nodes. This case implies that Lmax exceeded the next larger multiple of ∂H,
which is exactly bLmaxc.6 In Lines 6-8, v recomputes Λwv for all w ∈ Nv as v might have received
more recent, i.e. larger, clock values. The main part of algorithm Aopt, Algorithm 3, uses only the
estimated clock skew to the two clocks in v’s neighborhood that are ahead and behind the most.
For this purpose, we introduce the variables Λ↑v and Λ↓v, which are updated in Lines 9 and 10.

The goal of the subroutine SetClock is to determine if Lv has to be raised by a certain value
Rv. The steps of this subroutine are summarized in Algorithm 3.

Algorithm 3 SetClock()

1: Rv := sup
{
R ∈ R

∣∣∣ ⌊Λ↑v−R
κ

⌋
≥
⌊

Λ↓v+R
κ

⌋}
2: Rv := max

{
min

{
max

{
κ− Λ↓v, Rv

}
, µ,Λmax

v

}
, 0
}

3: Lv := Lv + 1 +Rv
4: Λmax

v := Λmax
v −Rv

5: for w ∈ Nv do
6: Λwv := Λwv +Rv

In Line 1, the node computes which value Rv should take according to the locally observed
clock skew. Roughly speaking, the goal of Algorithm 3 is to ensure that the clock skew to the
neighbor whose clock is assumed to be behind the most and the clock skew to the neighbor with
the largest estimated clock value are the same integer multiple of κ. The variable Rv attains the
largest value that satisfies this constraint. More precisely, if Λ↑v ≤ sκ and Λ↓v ≥ sκ for some s ∈ N,
v does not raise its clock value, i.e., Rv = 0. If there is no integer s that satisfies this condition,
Rv > 0 becomes exactly the increase of the clock value that causes the condition to hold. Line 1 of
Algorithm 3 is a concise formulation of this rule.

The following simple example illustrates that this strategy is more aggressive than always setting
the clock to the average between the smallest and the largest estimated clock value among all
neighbors.7 If Λ↑v = Λ↓v = sκ + κ

2 for any s ∈ N, Algorithm 3 sets Rv to κ
2 , whereas v does not

increase its clock value, i.e., Rv = 0, when the straightforward averaging strategy is used because
Λ↑v = Λ↓v.

6For a proof of this observation, see Lemma A.1 in Appendix A.
7Note that the latter fails to guarantee good bounds on the worst-case clock skews [6].

7

In Line 2, the final value Rv is determined. Any node is allowed to raise its clock at least κ above
the smallest estimate of its neighbors’ clock value. Therefore, Rv is simply set to the maximum of
κ − Λ↓v and Rv itself. In other words, algorithm Aopt tolerates a clock skew of κ, which ensures
that the node with the smallest clock value in the network is able to raise its clock value even if
it may have received delayed messages from its neighbors containing smaller clock values than its
own. However, v is not allowed to raise its clock by more than µ or to set its clock to a larger clock
value than the (estimate of) the largest clock value in the network. This condition prevents nodes
from violating Condition (2) and gives slow nodes the possibility to catch up as the fast nodes can
only increase their clock values at low rates. The outer maximum simply ensures that Rv ≥ 0.
After computing Rv, Lv is set to the new value and the estimated clock differences are adapted
accordingly in Lines 4-6. Note that the estimates are only changed by Rv, which means that the
nodes assume that the other nodes run at the same clock rate and thus increase their clock values
by 1. This technique ensures that the errors in the estimates grow slowly.

Finally, v must decide whether or not to send a message at this tick event, which is determined
in Algorithm 4.

Algorithm 4 SendMessage()

1: if Lv + Λmax
v ≥ H̃v + ∂H then

2: send := true
3: H̃v := H̃v + ∂H
4: if send then
5: Send 〈Lv, Lv + Λmax

v 〉 to all u ∈ Nv
6: send := false

Node v sends a message if either the flag send has been set to true in Line 2 of Algorithm 2,
i.e., v received an estimate of the maximum clock value larger than its own, or v’s estimate of the
maximum clock value has reached the next integer multiple of ∂H. In this case, H̃v is increased by
∂H, the flag is set to false again, and the message 〈Lv, Lv + Λmax

v 〉 is sent to v’s neighbors.

5 Skew Bounds

It can be shown that the largest estimate of the maximum clock value in the network increases at
a rate of at most 1 + ε. Hence, as nodes refrain from raising their clocks above this value, Aopt

satisfies Condition (2).8 We proceed by discussing the upper bounds on both the global and the
local skew when algorithm Aopt is used.

First, we state the bound on the global skew when executing Aopt on any graph G.

Theorem 5.1 The global skew of Algorithm Aopt is bounded by

G := (1 + ε)T D +
2ε

1− ε∂H +
6

1− ε. (4)

Proof. See Appendix A.2. �
8This is a direct consequence from Statement (iv) of Lemma A.1 (see Appendix A) and the fact that Λmax

v ≥ 0
for all v ∈ V at all times t.

8

It has been shown that no algorithm can guarantee a better bound on the global skew than
(1+ε)T D if the algorithm has to satisfy Condition (2) unless it has an extremely accurate estimate
of either the maximum delays or drifts [4]. Furthermore, even if T̂ = T and ε̂ = ε, the best possible
bound is (1−ε)T D, which is only marginally better if ε� 1. This result implies that the bound on
the global skew of Aopt is optimal up to a small additive term even if the message frequency is kept
low, i.e., ∂H is large. The possibility to keep the message frequency low entails that piggybacking
can indeed be used, provided that other applications communicate reasonably often.

Corollary 5.2 If ∂H ∈ o (Tε), the bound on the global skew of Algorithm Aopt given in Theorem 5.1

is tight up to an additive term of o
(
T

1−ε
)

and is thus optimal for T D →∞.

The proof of the bound on the local skew relies on the fact that the maximum length of a path
with a given average skew decreases exponentially. This implies that the average skew on paths
of length one, i.e., between neighboring nodes, is logarithmically bounded in the diameter D. In
particular, we show that the network is always in a legal state, which is defined as follows.

Definition 5.3 (Legal State) Given the integer constant σ ≥ 2, we say that a network is in a
legal state at time t, if and only if for all s ∈ N0 and all nodes v, w ∈ V at distance

d(v, w) ≥ Cs :=
2G
κ
σ−s

we have that

Lv(t)− Lw(t) ≤ d(v, w)
(
s+

1
2

)
κ.

Note that Theorem 5.1 shows that the legal state is never violated for any path of length at least
C0, because Lv − Lw ≤ G.

Without loss of generality, we can assume that 2G
κ is a power of σ, since we could replace

the diameter D by a (potentially non-integer) D̂ > D such that logσ
2Ĝ
κ =

⌈
logσ

2G
κ

⌉
, where Ĝ

is the bound from Theorem 5.1 with D replaced by D̂. Thus, Cs becomes an integer value for
s ∈ {0, . . . , smax}, where smax := logσ

2G
κ ∈ N. This observation is helpful in that it simplifies the

subsequent proofs.
A crucial quantity in the analysis of the local skew is the amount by which a node increases its

logical clock value beyond the minimum rate (once it has been initialized). For this purpose, we
introduce the following definition.

Definition 5.4 ∀t1 ≤ t2 : Iv(t1, t2) := Lv(t2)− Lv(t1)− (1− ε)(t2 − t1).

Apparently, it holds that Iv(t, t) = 0 for all t. Note that Iv(t1, t2) is the amount by which the
increase of node v’s clock exceeds (1−ε)(t2− t1) in the interval (t1, t2] as by definition Lv(t1) is the
logical clock value after v increased its logical clock. Since clock values are only increased at tick
events, the value Iv decreases between ticks. However, as the time between ticks is upper bounded
by 1

1−ε , Iv is always greater than −1, i.e.,

∀t1 ≤ t2 : Iv(t1, t2) > −1. (5)

Two lemmas are required in order to prove the main theorem. The first lemma basically states
that the larger the clock skew is between two nodes v and w, the faster w can reduce it by increasing
its clock value quickly.

9

Lemma 5.5 Given ξ ∈ R, s ∈ N, and any path v, w ∈ V , suppose at time t0 the equality

Lv(t0)− Lw(t0) = d(v, w)
(
s− 1

2

)
κ+ ξ (6)

holds. Define t̄ := t0 + κCs−1

(1−ε)µ + T + 1
1−ε . If the network is in a legal state at time t0, it follows that

Iw(t0, t) ≥ ξ (7)

for all tick events t ≥ t̄ at w.

Proof. See Appendix A.3. �
The second lemma shows that the clock skew can only increase slowly once it reaches a certain

level. More precisely, we consider the path with the largest average clock skew of length at least
bCs+1c.9 Let w be the node with the largest and let v be the nodes with the smallest clock value
among all nodes on this path. If the average clock skew on this path exceeds roughly sκ, then w’s
logical clock runs at the hardware clock rate, i.e., the clock skew between w and v can only grow
further at a rate of at most 2ε. Moreover, the clock skew decreases if v increases its clock value
quickly. In order to abbreviate the notation, the following definition is introduced.

Definition 5.6 Given s ∈ N and v ∈ V , define for any time t

Ψs
v(t) := max

w∈V
{Lw(t)− Lv(t)− sκd(v, w)} .

Lemma 5.7 Assume that Ψs
v(t) > 0 for all t ∈ (t0, t1). Then it holds for any time t ∈ [t0, t1] that

Ψs
v(t) < Ψs

v(t0) + 2ε(t− t0)− Iv(t0, t) +
κ

4
− 2− µ. (8)

Proof. See Appendix A.4. �
The main theorem states that the local skew grows logarithmically with the diameter D of the

graph.

Theorem 5.8 Any execution of Algorithm Aopt remains always in a legal state, i.e., the skew
between any two nodes v, w ∈ V is bounded by

O
(
κ logµ/ε

T D
κd(v, w)

)
.

In particular, the local skew of Algorithm Aopt is bounded by

κ

(⌈
logσ

2G
κ

⌉
+

1
2

)
,

where σ =
⌊
µ(1−ε)

8ε

⌋
− 1 and G is the bound on the global skew from Theorem 5.1.

9Recall that Cs ∈ N for s ≤ smax. Thus rounding only occurs if s = smax.

10

Proof. The exact lower bound on µ that we require in the proof is that

µ ≥ 8ε(σ + 1)
1− ε (9)

for an arbitrary integer σ ≥ 2. For a fixed parameter µ, this condition implies that the base of the
logarithm in the bound is exactly σ =

⌊
µ(1−ε)

8ε

⌋
− 1.

As argued before, w.l.o.g. we have that Cs is integer for s ≤ smax. By definition, a skew of
more than d(v, w)

(
smax + 1

2

)
κ between Lv and Lw may not occur if d(v, w) ≥ Csmax , as long as

the network is in a legal state. Since Csmax = 1, this means that the second statement immediately
follows from the first one. Hence, for the sake of contradiction, we assume that tmax <∞ is the first
time where the network is not in a legal state. The legal state cannot be violated for s = 0, as this
would imply that the clock skew between two nodes exceeded G, a contradiction to Theorem 5.1.
Thus, nodes v, w ∈ V at distance d(v, w) ≥ Cs exist, for some s ∈ {1, . . . , smax}, such that

Lv(tmax)− Lw(tmax) > d(v, w)
(
s+

1
2

)
κ. (10)

Define t0 := tmax − κCs−1

(1−ε)µ − T − 2
1−ε > tmax − σ+1

(1−ε)µκCs. If Ψs
w(t′) < 0 for some t′ ∈ [t0, tmax],

choose the smallest t ∈ [t0, tmax] such that Ψs
w(t′) ≥ 0 for all t′ ∈ [t, tmax]. Such a time must exist

because
1
2
κCs

(10)
< Lv(tmax)− Lw(tmax)− sκd(v, w) ≤ Ψs

w(tmax). (11)

Note that Ψs
w(t) < 1 + µ since no node increases its clock by more than 1 + µ at any tick event.

We apply Lemma 5.7 to obtain

1
2
κCs

(11)

≤ Ψs
w(tmax)

(8)
< 2ε(tmax − t)− Iw(t, tmax) +

κ

4
− 2− µ+ Ψs

w(t)

(5)
< 2ε(tmax − t) +

1
4
κCs.

This leads to
σ + 1

(1− ε)µκCs > tmax − t0 > tmax − t > 1
8ε
κCs,

and thus
µ <

8ε(σ + 1)
1− ε ,

a contradiction to Condition (9).
Hence, we have Ψs

w(t) ≥ 0 for all t ∈ [t0, tmax]. Another application of Lemma 5.7 yields

1
2
κCs −Ψs

w(t0)
(11)

≤ Ψs
w(tmax)−Ψs

w(t0)

(8)
< 2ε(tmax − t0)− Iw(t0, tmax) +

κ

4
− 1

< 2ε
σ + 1

(1− ε)µκCs − Iw(t0, tmax) +
κ

4
− 1.

11

By rearranging the terms, we get that

Ψs
w(t0) >

1
2
κCs − 2ε

σ + 1
(1− ε)µκCs + Iw(t0, tmax)− κ

4
+ 1

≥ 1
4
κCs − 2ε

σ + 1
(1− ε)µκCs + Iw(t0, tmax) + 1. (12)

Let t ∈
[
tmax − 1

1−ε , tmax

]
denote the latest tick until tmax at w. We simultaneously use Lemma

5.5 on all nodes v ∈ V to estimate

Iw(t0, tmax) + 1
(5)

≥ Iw(t0, t)
(6)

≥ max
v∈V

{
Lv(t0)− Lw(t0)−

(
s− 1

2

)
κd(v, w)

}
≥ Ψs

w(t0)
(12)
>

1
4
κCs − 2ε

σ + 1
(1− ε)µκCs + Iw(t0, tmax) + 1.

This implies that 2ε σ+1
(1−ε)µκCs >

1
4κCs, which again leads to the contradiction that µ < 8ε(σ+1)

(1−ε) .
Thus, indeed the network can never leave a legal state. �

Recall that we can choose κ ∈ Θ(T). If µ ∈ Θ(ε) and ∂H ∈ O(T /µ) = O(T /ε), Theorem 5.8
states that the local skew is upper bounded by O(T logD). Note that choosing µ ∈ Θ(ε) entails
that the maximum logical clock rate β is upper bounded by 1 + O(ε). If α = 1 − O(ε) and
β = 1 + O(ε), the logical clock rates are strongly restricted. In this case, the lower bound states
that no algorithm can avoid a local skew of Ω(T logD) [4], which implies that the algorithm
is asymptotically optimal. Moreover, if the logical clock rate is allowed to be larger than the
hardware clock rate by a constant factor, i.e., µ ∈ Θ(1), and we choose ∂H ∈ O(T), the bound
on the local skew reduces to O

(
T log1/εD

)
. In this case, the lower bound is Ω

(
T log1/εD

)
[4],

which again matches the upper bound. In both cases, we see that Aopt is asymptotically optimal.
More generally, we get the following even stronger result.

Corollary 5.9 It is possible to choose the parameters µ, ∂H, and κ such that the local skew of
Aopt is at most a factor of O

(
T̂
T
)

worse than the local skew of any synchronization algorithm.

Moreover, appropriate choices exist such that this ratio tends to 2T̂ +O(1)
T for D → ∞ and ε̂ → 0.

Thus, if also T̂ = T and T → ∞, Aopt provides an asymptotic approximation ratio of 2.

6 Complexity

In this section, we discuss the costs of Algorithm Aopt with regard to several measures. For the
sake of simplicity, we assume that ε̂ is upper bounded away from 1, hence factors of 1 + ε, 1 − ε,
etc. merely introduce constant factors in the bounds.

6.1 Message Complexity

An essential optimization criterion is the frequency of communication required to sustain a given
quality of synchronization. If energy consumption due to communication is critical, the average
of this value over time, i.e., the amortized message frequency, is highly relevant. Corollary A.2

12

immediately yields that Aopt exhibits an amortized message frequency of Θ(∂H−1) at each node.
The bound from Theorem 5.8 suggests to choose ∂H ∈ Θ

(
T̂
µ

)
, which for a minimal µ ∈ Θ(ε̂),

entails that the amortized message frequency is only Θ
(
ε̂
T̂

)
.

However, at up to O (G∂H) consecutive ticks a node v might receive values Lmax, each larger
by ∂H than the previous one, which causes v to send at each such tick. Thus, the algorithm
in its current form does not guarantee a non-trivial lower bound on the message frequency. The
message frequency could be bounded by adding another term in the order of Θ(∂H) to κ and
forcing nodes to wait at least Θ(∂H) time between two send events. The price of this modification
is that the bound on the global skew increases by Θ(εD ∂H), since the time it takes to propagate
information through the whole network increases by O(D∂H) while nodes increase the estimate
on L̂max locally at their hardware clock rate. This results in a tunable trade-off between minimum
message frequency and global skew, as increasing the former inversely affects the latter. This is,
up to constant factors, obviously the best possible trade-off, since in the Θ(D∂H) time a pair of
nodes at distance D may have to act without updates about each other’s state, Θ(εD ∂H) skew
can be built up by manipulating the hardware clock rates. Apparently, with this modification the
algorithm can be implemented using piggybacking.

6.2 Bit Complexity

Another important property is the bit complexity, i.e., the maximum number of bits that must be
sent at a send event. Since the same update information is sent to all neighbors at the same send
event, we define that the bit complexity in our model is simply the maximum size of this message.
Note that the parameter µ can be encoded as a constant times 1/n, for a number n ∈ N. The other
parameters, κ and ∂H, can then be encoded as a multiple of µ, which can easily be accomplished
by rounding up. Thus, any constantly bounded value can be encoded using O(logµ−1) bits. We
will use this simple observation in the following.

In order to bound the bit complexity, we cannot send the unbounded clock values. Instead,
nodes can simply communicate the progress their clocks made since they last sent a message, which
requires log ∂H bits. However, since we have that κ ∈ Ω(µ∂H), we might as well add another ∂H
to κ and discretize the sent value in steps of µ∂H. Thus, for the clock value Lv only O(logµ−1) bits
are necessary. The estimate Lmax

v + Λmax
v exceeds a multiple of ∂H by less than 1. This fraction in

the range [0, 1) can be encoded using O(logµ−1) bits. The increase of Lmax
v +Λmax

v , however, might
be Θ(G), which requires O(log T D) bits. This can be avoided by limiting the maximum increase
of Lmax

v + Λmax
v a node informs its neighbors about in a single message to d(1 + µ)e∂H ∈ O(∂H),

which can again be encoded using O(1) bits. If the actual value is larger, v stores the difference
and informs its neighbors about the remaining increase in its subsequent messages. The intuition
behind this is that if v receives an estimate of L̂max much larger than its own, this can only be
because it has been propagated by messages with small delays. In the scenario where all messages
are as slow as possible, this would not happen. Thus, the estimates of L̂max that slow nodes
receive are still sufficiently large for Theorem 5.1 to hold. Since v sends an update of more than
(1 + µ)∂H, the corresponding estimate of Lv + Λmax

v is still larger than Lv. Hence, the statement
Λmax
w (t) ≥ Λvw(t) of Lemma A.1 remains true, ensuring that the proof of Lemma 5.5 and thus

also Theorem 5.8 stay correct. We conclude that Algorithm Aopt can be implemented with a bit
complexity of O(logµ−1) ⊆ O(log ε̂−1). Note that if all messages must contain globally unique
node identifiers, O(log |V |) additional bits are required.

13

6.3 Space Complexity

The space complexity of an algorithm is the maximum amount of memory it requires to run. Since
the logical clock value Lv grows indefinitely, we disregard it in our analysis of the space complexity
of Aopt. Furthermore, we will consider the amount of memory an implementation of Aopt with a
bit complexity of O(logµ−1) would need.10

Each node v must store the estimated clock skew Λwv to each node w ∈ Nv and the estimated
difference Λmax

v to the maximum clock value. The value of Λwv is bounded by O(κ logµ/εD) for
all neighbors. If we round to fractions of κ again, the maximum memory requirement for these
values is thus bounded by O(∆ log logµ/εD), where ∆ denotes the maximum node degree. As Λmax

v

is bounded by O(T D), it can be encoded using O(log(T D) + logµ−1) bits. Furthermore, each
node must store the number of ticks since the last message from w was received when adapting
Λwv , since in abscence of better information v assumes that the neighbors’ clocks run at the same
rate as its own hardware clock. This requires at most O(T + ∂H) ⊆ O(κ) for each w ∈ Nv. In
total, these integer values require O(∆ log κ) bits. The last variable that needs to be stored is H̃v,
where H̃v −Lv ∈ O(T D), which costs O(log(T D) + logµ−1) bits. Overall, the space complexity is
O(logµ−1 + logD + ∆ log κ+ ∆ log logµ/εD).

References

[1] S. Biaz and J. Lundelius Welch. Closed Form Bounds for Clock Synchronization Under Simple
Uncertainty Assumptions. Information Processing Letters, 80(3):151–157, 2001.

[2] R. Fan and N. Lynch. Gradient Clock Synchronization. In Proc. 23rd Annual ACM Symposium
on Principles of Distributed Computing (PODC), pages 320–327, 2004.

[3] C. Lenzen, T. Locher, and R. Wattenhofer. Clock Synchronization with Bounded Global and
Local Skew. In Proc. 49th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 500–510, 2008.

[4] C. Lenzen, T. Locher, and R. Wattenhofer. Tight Lower Bounds for Clock Synchronization.
Technical Report 299, Computer Engineering and Networks Laboratory (TIK), ETH Zurich,
2008. ftp.tik.ee.ethz.ch/pub/publications/TIK-Report-299.pdf.

[5] T. Locher. Foundations of Aggregation and Synchronization in Distributed Systems. PhD
thesis, ETH Zurich, 2009.

[6] T. Locher and R. Wattenhofer. Oblivious Gradient Clock Synchronization. In Proc. 20th
International Symposium on Distributed Computing (DISC), pages 520–533, 2006.

[7] J. Lundelius Welch and N. Lynch. An Upper and Lower Bound for Clock Synchronization.
Information and Control, 62(2/3):190–204, 1984.

[8] L. Meier and L. Thiele. Brief Announcement: Gradient Clock Synchronization in Sensor
Networks. In Proc. 24th Annual ACM Symposium on Principles of Distributed Computing
(PODC), page 238, 2005.

10Note that by putting more information into the messages, the space complexity can be reduced.

14

[9] R. Ostrovsky and B. Patt-Shamir. Optimal and Efficient Clock Synchronization under Drift-
ing Clocks. In Proc. 18th Annual ACM Symposium on Principles of Distributed Computing
(PODC), pages 400–414, 1999.

[10] B. Patt-Shamir and S. Rajsbaum. A Theory of Clock Synchronization. In Proc. 26th Annual
ACM Symposium on Theory of Computing (STOC), pages 810–819, 1994.

[11] T. K. Srikanth and S. Toueg. Optimal Clock Synchronization. Journal of the ACM, 34(3):626–
645, 1987.

15

A Proofs

A.1 General Statements

We require a few additional statements about Iv: Since Iv(t1, t2) is the amount by which the
increase of node v exceeds (1 − ε)(t2 − t1) in the interval (t1, t2], it follows that Iv is interval
additive:

∀t1 ≤ t2 ≤ t3 : Iv(t1, t2) + Iv(t2, t3) = Iv(t1, t3). (13)

Since clock values are only increased at tick events, the value Iv decreases between ticks. However,
once the next tick occurs, the clock is increased by at least 1, implying that Iv(·, t) is at least 0 at
any tick t, i.e.,

∀t1 ≤ tick t2 : Iv(t1, t2) ≥ 0. (14)

The clock value Lv is increased by 1+Rv(t) at each tick t, where Rv(t) ∈ [0, µ]. Iv(t1, t2) is positive
at a tick event t2 if either the nodes’ hardware clock rate was greater than 1−ε in the time interval
(t1, t2] or v raised its clock. Naturally, as any raise also increases the value of Iv, the sum of all clock
raises in the interval (t1, t2] is a lower bound on Iv(t1, t2). However, Iv(t1, t2) can only be larger
than the sum of clock raises if the hardware clock rate was greater than 1− ε. Since the hardware
clock rate is upper bounded by 1 + ε, Iv can increase by at most 2ε(t2 − t1) due to the hardware
clock. This implies that Iv(t1, t2)−2ε(t2− t1) is at most the sum of clock raises. Formally, it holds
that

∀ tick t1 ≤ tick t2 :
∑

tick t∈(t1,t2]

Rv(t) ≤ Iv(t1, t2) ≤
∑

tick t∈(t1,t2]

Rv(t) + 2ε(t2 − t1). (15)

Inequality 9 provides the lower bound on µ that we use in our proofs. As far as the parameter
κ is concerned, it must hold that

κ ≥ 2
(

(1 + ε)(1 + µ)
(
T +

1
1− ε

)
+ 4 + µ+ ∂H

)
, (16)

where
∂H := (2ε+ µ)∂H (17)

The parameter ∂H is introduced to abbreviate the notation. The intuition behind this lower
bound is that κ must be large enough to compensate the inaccuracy of the known clock values of
the neighboring nodes due to the maximum delay T . Apparently, the inaccuracy is bounded by
the maximum progress (1 + ε)(1 + µ)T of the clocks. The problem that nodes have to wait for
clock pulses is compensated by adding the constant terms 1

1−ε and 4. Moreover, in order to give
the algorithm a chance to react to clock skews (by means of clock raises), the term µ is added.
Obviously, the accuracy of the information about neighboring clocks deteriorates if ∂H is set to
a large value. Since clock skew can be built up at a rate of at most O(µ), the additional skew is
bounded by O(µ∂H). Therefore, κ must further include the term ∂H as defined above. Finally,
as nodes err not only with respect to their fastest, but also with respect to their slowest neighbor’s
clock, the bound is multiplied by 2. Throughout this paper, it is implicitly assumed that not only
Condition (9) but also Condition (16) is satisfied, and all lemmas and theorems make use of this
assumption.

We start by proving a few general facts about algorithm Aopt, which will be useful in the
following.

16

Lemma A.1 For any execution of algorithm Aopt the following statements hold:

i. The function Lv(t) + Λmax
v (t) increases by at least 1 at each tick at v.

ii. If v ∈ V sends a message at tick t, it holds that Lv(t) + Λmax
v (t) ∈ ∂HN0 + [0, 1).

iii. Λmax
v (t) ≥ −Λwv (t) for all v and w ∈ Nv at all tick events t at v.

iv. Define L̂max(t) := maxv∈V {Lv(t) + Λmax
v (t)}. For any times t1 < t2 it holds that

L̂max(t2)− L̂max(t1) ≤ d(1 + ε)(t2 − t1)e. (18)

Proof. Statement (i): Let t′ < t denote two consecutive ticks at v. First, assume that Lmax <
Lv(t′) + 1 + Λmax

v (t′) in Line 2 of Algorithm 2 at tick t, implying that Λmax
v remains unchanged

in Algorithm 2. In this case, the clock value Lv is increased by 1 + Rv according to Line 3 of
Algorithm 3, andRv is subtracted from Λmax

v in Line 4. Hence Lv+Λmax
v increases by 1+Rv−Rv = 1.

If Lmax ≥ Lv(t′) + 1 + Λmax
v (t′) in Line 2 of Algorithm 2 at time t, then the algorithm computes

Lv(t) = Lv(t′) + 1 +Rv(t) and Λmax
v (t) = Lmax − (Lv(t′) + 1)−Rv(t), and thus

Lv(t) + Λmax
v (t) = Lmax (19)

≥ Lv(t′) + Λmax
v (t′) + 1.

Statement (ii): Assume for the sake of contradiction that t is the first time where the claim is
violated by a node v. Apparently, t cannot be the initialization time tv of v, since v just forwards
the largest received value when it is initialized. Likewise, the condition in Line 2 of Algorithm 2
must be false, since otherwise Equality (19) shows that the sent value is exactly the received value
Lmax.

Hence, if t′ denotes the latest tick at v prior to t, the previous observations yield that Lv(t) +
Λmax
v (t) = Lv(t′) + 1 + Λmax

v (t′). Moreover, since v sends a message, the condition in Line 1 of
Algorithm 4 must be satisfied. H̃v can be manipulated in two ways: Either H̃v is set to bLmaxc
in Algorithm 2 when receiving a value Lmax or H̃v is increased by ∂H in Line 3 of Algorithm 4,
which implies that H̃v(t′) ∈ ∂HN0. Furthermore, it holds that Lv(t′) + Λmax

v (t′) < H̃v(t′) +∂H: As
∂H ≥ 1, this is certainly true if t′ is the initialization time tv of v. Due to Equality (19) the same
holds if the condition in Line 2 of Algorithm 2 was true at t′. If neither t′ = tv nor the condition was
true at t′, Lv + Λmax

v increased by exactly 1. In this case, Lines 1 and 3 of Algorithm 4 ensure that
H̃v has been increased by ∂H, if necessary. We conclude that at the tick t in Line 6 of Algorithm
4 we have that

H̃v(t′) + ∂H ≤ Lv(t) + Λmax
v (t) < H̃v(t′) + ∂H + 1,

implying that Lv(t) + Λmax
v (t) ∈ ∂HN0 + [0, 1), contradicting the assumption that this is not the

case.
Statement (iii): Let t′ again denote the latest tick before the tick t at v. If the condition in

Line 2 of Algorithm 2 is true at t, Equality (19) shows that Lmax = Lv(t) + Λmax
v (t). Otherwise,

we have that Lmax < Lv(t′) + Λmax
v (t′) + 1 = Lv(t) + Λmax

v (t) due to the proof of Statement (i). In
both cases we obtain

Lmax ≤ Lv(t) + Λmax
v (t).

Note that Λmax
v ≥ 0, because Line 2 of Algorithm 2 ensures that the value assigned to Λmax

v in
Line 4 is not negative, while Rv is upper bounded by Λmax

v in Line 4 of Algorithm 3. Let ts be the

17

time when a neighbor w ∈ Nv sends the message 〈Lw(ts), Lw(ts) + Λmax
w (ts)〉 containing the largest

clock value Lw(ts) that v received at time tr ≤ t.11 Line 8 from Algorithm 2 and Lines 3 and 4 of
Algorithm 3 show that at time tr it holds that Λwv (tr) = Lv(tr)− Lw(ts). We estimate

Λmax
v (tr) ≥ Lmax − Lv(tr) ≥ Lw(ts) + Λmax

w (ts)− Lv(tr) ≥ Lw(ts)− Lv(tr) = −Λwv (tr).

Due to Statement (i), Lv + Λmax
v increases by at least 1 at each tick t, hence Λmax

v decreases by at
most Rv(t). Since Λwv is increased by exactly Rv(t) at each tick t according to Line 6 of Algorithm 3,
it follows that

Λmax
v (t) ≥ Λmax

v (tr)−
∑

tick t′∈(tr,t]

Rv(t′) ≥ −Λwv (tr)−
∑

tick t′∈(tr,t]

Rv(t′) = −Λwv (t).

Statement (iv): Obviously, no node can receive a value Lmax that is larger than the largest
estimate of the maximum clock value at any time t. Thus, due to Equality (19), L̂max can only be
increased by v ∈ V at tick t if the condition in Line 2 of Algorithm 2 is false. We already observed
that in this case Lv+Λmax

v increases by exactly 1. Since any node can have at most d(1+ε)(t2−t1)e
tick events in the time interval [t1, t2], the claim follows. �

Corollary A.2 1) Any node sends at least one message to each of its neighbors after its hardware

clock advanced by ∂H since the last send event. 2) No node sends more than 1+ L̂max(t)
∂H ≤ 1+ d(1+ε)te

∂H
messages up to time t.

The following lemma bounds the inaccuracy of the estimates Λwv on the clock skew between v
and w from v’s perspective.

Lemma A.3 Assume that t is a tick event at node v ∈ V and that v has received at least one
message from a neighbor w ∈ Nv until time t. Consider the first tick event t′ ≥ t− T − 1

1−ε at w.
It holds that

Λwv (t) < Lv(t)− Lw(t′) + ∂H. (20)

Proof. Let ts denote the time when w sent the largest clock value that v received at the latest
at time t, and let tr ≤ t be the time when v received this clock value. Due to Corollary A.2, if
ts < t′, we have that Hw(t′)−Hw(ts) < ∂H, as otherwise w would send a message that arrives at
v at the latest at time t and contains a larger clock value than the one sent at ts. Furthermore,
Lw(t′)− Lw(ts) is upper bounded by (1 + µ)(Hw(t′)−Hw(ts)). Consequently, it holds that

Iw(ts, t′) ≤ (1 + µ)(Hw(t′)−Hw(ts))− (1− ε)(t′ − ts)
=

(
1 + µ− 1− ε

1 + ε

)
(Hw(t′)−Hw(ts))

< (µ+ 2ε)∂H
(17)
= ∂H. (21)

Recall that at time tr it holds that Λwv (tr) = Lv(tr)−Lw(ts). Since t′ is the first tick event at time
at least t− T − 1

1−ε , we have that t′ < t− T . The value of Λwv is increased exactly by Rv at each

11If no such time exists, it holds that Λw
v (t) ≥ 0, as Λw

v is initialized to zero and it increases monotonically as long
as no messages from w arrive.

18

tick in the time interval (tr, t] according to Line 6 of Algorithm 3. Hence, if ts < t′, we get

Λwv (t) = Λwv (tr) +
∑

tick τ∈(tr,t]

Rv(τ)

(15)

≤ Lv(tr) + Iv(tr, t)− Lw(ts)
= Lv(t)− (1− ε)(t− tr)− (Lw(t′)− Iw(ts, t′)− (1− ε)(t′ − ts))

(21)
< Lv(t)− Lw(t′) + ∂H − (1− ε)(t− t′) + (1− ε)(tr − ts)
< Lv(t)− Lw(t′) + ∂H.

In the last step, we simply used that t− t′ > T and tr − ts ≤ T .
In case ts > t′ we have that Lw(ts) > Lw(t′). If ts = t′, then it holds that Lw(ts) = Lw(t′) and

also that tr < t because ts = t′ < t− T . Thus, if ts ≥ t′, we get that

Λwv (t)
(15)

≤ Lv(tr) + Iv(tr, t)− Lw(ts) = Lv(t)− (1− ε)(t− tr)− Lw(ts) < Lv(t)− Lw(t′).

�

A.2 Proof of Theorem 5.1

Define L̂max(t) := maxu∈V {Lu(t) + Λmax
u (t)} as in Lemma A.1. Instead of proving the bound on

the clock skew directly, we show that L̂max(t) − minu∈V {Lu(t)} ≤ G holds at any time t. Since
Λmax
u (t) ≥ 0, the claim follows immediately from this statement.

Assume for the sake of contradiction that the claimed bound does not hold at time tmax, where
w.l.o.g. we may choose tmax to be the first violation. In this case, two nodes v, w ∈ V exist such
that

Lv(tmax) + Λmax
v (tmax)− Lw(tmax) > G, (22)

where v has the largest estimate of the maximum clock value and w has the smallest clock value in
the system at time tmax. Let t̄ := tmax − 1

(1−ε)ε . Assume there is an uninitialized node w at time t̄,
i.e., tmax − 1

(1−ε)ε = t̄ < tw ≤ T D. The assumption that tmax < tw leads to the contradiction that

L̂max(tmax)− Lw(tmax)
(18)
< (1 + ε)T D + 1 < G,

hence tmax ≥ tw. Since it holds that Lw(tmax) = (1− ε)(tmax − tw) + Iw(tw, tmax) by definition, we
get that

L̂max(tmax)− Lw(tmax)
(18)
< (1 + ε)tw + 2ε(tmax − tw) + 1− Iw(tw, t)

< (1 + ε)T D +
2ε

(1− ε)ε + 1− Iw(tw, t)

(5)
< (1 + ε)T D +

2
1− ε + 2 < G.

Hence, at time t̄ all nodes are initialized.
Let tr denote the time when w receives the largest estimate for L̂max until time t̄. Consider the

largest estimate Lmax sent not later than at time tr−T D for the first time by any node. If ts denotes

19

this time, it holds that Lmax = L̂max(ts). At the latest at time ts + T D ≤ tr, w receives this (or a
larger) estimate unless the estimate for L̂max of another node u on a path to w reaches the same
multiple of ∂H with a smaller additive term in the range [0, 1) and sends this value (Statement (ii)
of Lemma A.1). In this case, u will refrain from forwarding Lmax as it has already sent its message
for this particular multiple of ∂H. However, w receives at least bLmaxc by time ts + T D. If w does
not adopt this estimate, then the condition in Line 2 of Algorithm 2 must be false at time ts+T D,
i.e., bLmaxc < Lv + 1 + Λmax

v . Thus, we conclude that Lw(ts + T D) + Λmax
w (ts + T D) ≥ bL̂max(ts)c.

Morover, according to Lemma A.1, Lv + Λmax
v increases by at least 1 at each tick. This implies

Lw(t̄)+Λmax
w (t̄) ≥ Lw(tr)+Λmax

w (tr)+b(1− ε)(t̄− tr)c ≥ bL̂max(ts)c+b(1−ε)(t̄−(ts+T D))c. (23)

Corollary A.2 states that vs sends at least after ∂H
1−ε real time has passed since the last send event.

It follows that
t̄− (ts + T D) <

∂H

1− ε.
Let t′ be the last tick at w until tmax. We first consider the case that Iw(t̄, t′) ≥ Λmax

w (t̄). We
estimate

Lv(tmax) + Λmax
v (tmax)− Lw(tmax)

(18)
< L̂max(ts) + d(1 + ε)(tmax − ts)e

−Lw(t̄)− (1− ε)(tmax − t̄)− Iw(t̄, t′)− Iw(t′, tmax)
(5,23)
< 4 + 2ε((tmax − t̄)− (t̄− (ts + T D))) + (1 + ε)T D
≤ 4 +

2
1− ε +

2ε
1− ε∂H + (1 + ε)T D < G,

a contradiction to Inequality (22).
The second case is that Iw(t̄, t′) < Λmax

w (t̄) and Λuw(t) < κ for all u ∈ Nw and all ticks t ∈ (t̄, tmax]
of w. Thus we both have

Λ↓w(t) +Rw(t) = max
u∈Nw

{Λuw(t)} < κ

and

Λmax
w (t) ≥ Λmax

w (t̄)−
∑

tick t′∈(t̄,t]

Rw(t′)

(15)

≥ Λmax
w (t̄)− Iw(t̄, t) > 0.

This means that node w is free to raise its clock by µ at each tick t ∈ (t̄, tmax], as can be seen from
Line 2 of Algorithm 3. Since there are at least b(1− ε)(tmax− t̄)c > (1− ε)(tmax− t̄)− 1 tick events
in the interval [t̄, tmax], we conclude that Iw(t̄, tmax) > µ(1− ε)(tmax − t)− (1 + µ) and bound

Lv(tmax) + Λmax
v (tmax)− Lw(tmax)

(18)
< L̂max(t̄) + d(1 + ε)(tmax − t̄)e
−Lw(t̄)− Iw(t̄, tmax)

< L̂max(t̄) + (1 + ε)(tmax − t̄) + 1
−Lw(t̄)− (1 + µ)(1− ε)(tmax − t) + 1 + µ

≤ G − µ((1− ε)(tmax − t̄)− 1) + 2ε(tmax − t̄) + 2

= G − µ1− ε
ε

+
2

1− ε + 2
(9)
< G,

20

again contradicting Inequality (22).
The third and final case is that Iw(t̄, t′) < Λmax

w (t̄) and a tick t ∈ (t̄, tmax] and a node u ∈ Nw
exist such that Λuw(t) ≥ κ. Let t be the latest such tick and u be any neighbor for which Λuw(t) ≥ κ.
Moreover, let t′s be the time when u sent the message containing the largest clock value Lu(t′s)
received by w at the latest at t, and let t′r ≤ t be the time when w received it. Such a time exists,
since in the 2T time it takes at most from tw ≤ t̄ until w receives a message from u we have
Λuw ≤ Lw which again is bounded by 2(1 + ε)(1 + µ)T < κ. According to Lemma A.3, we have for
the earliest tick t′ ≥ t− T − 1

1−ε at u that

κ ≤ Λuw(t)
(20)
< Lw(t)− Lu(t′) + ∂H

< Lw(t)−
(
Lu(t)− (1 + ε)(1 + µ)

(
T − 1

1− ε
))

+ ∂H

(1,16)
< Lw(t)− Lu(t) + κ− (2 + µ).

This implies that
Lw(t)− Lu(t) > 2 + µ. (24)

Since u has a smaller clock value than w at time t, it follows that t < tmax as otherwise Lv(tmax)−
Lw(tmax) would not violate the claimed bound on the global skew the most. By the definition
of t, it holds that Λuw(t′) < κ for all u ∈ Nw at any tick t′ ∈ (t, tmax]. Thus, the observations
made for the second case yield that w raises its clock by µ at any such t′, i.e., Iw(t, tmax) >
µ(1− ε)(tmax− t)− (1 +µ). Since at time t < tmax the bound on the global skew was not violated,
we get that

Lv(tmax) + Λmax
v (tmax)− Lw(tmax)

(18)
< L̂max(t) + 2ε(tmax − t) + 1− Lw(t)− Iw(t, tmax)
< Lu(t) + G + 2ε(tmax − t) + 1
−Lw(t)− µ(1− ε)(tmax − t) + (1 + µ)

(24)
< G + (2ε− (1− ε)µ)(tmax − t)
(9)
< G.

Thus, all cases lead to a contradiction to Inequality (22). Hence, the bound must indeed hold,
which completes the proof.

A.3 Proof of Lemma 5.5

First, we assume that all nodes in the network are initialized at time t0. The case where some
nodes are not initialized at time t0 will be treated later. Define

Ξ(t) := max
{tick t′≥t at u∈V }

{
Lv(t0)− Lu(t0)− d(v, u)

(
s− 1

2

)
κ− Iu(t0, t′)

}
.

Observe that if Ξ(t) ≤ 0 holds at any time t ≥ t0, we have that

Iw(t0, t′) ≥ Lv(t0)− Lw(t0)− d(v, w)
(
s− 1

2

)
κ ≥ ξ

21

for all tick events t′ ≥ t at w. Furthermore, Ξ(·) is monotonically decreasing, hence showing that
Ξ(t) ≤ 0 for any t ≤ t̄ proves the lemma. We proceed by bounding Ξ(t0) and afterwards showing
that Ξ(·) decreases at a rate of at least µ per 1

1−ε real time units as long as it remains positive.
Consider any u ∈ V . There is an integer n, such that d(v, u) ∈ [Cn, Cn−1), where C−1 is

interpreted as D + 1. The legal state conditions for Cn at time t0 allow us to bound

Lv(t0)− Lu(t0)− d(v, u)
(
s− 1

2

)
κ ≤ d(v, u)(n− s+ 1)κ. (25)

For n < s the r.h.s. of this inequality is at most 0. For n ≥ s we can further estimate

d(v, u)(n− s+ 1)κ < Cn−1(n− s+ 1)κ
= σs−nCs−1(n− s+ 1)κ
≤ κCs−1,

since σ ≥ 2. Hence, we conclude that Ξ(t0) ≤ κCs−1.
Define tn := t0 + n

1−ε for n ∈ N and T̄ := d(1−ε)T e
1−ε , i.e., T̄ is the smallest integer multiple of 1

1−ε
larger than T . We will now prove by induction that Ξ(tn) ≤ max{Ξ(t0)−(n−(1−ε)T̄)µ, 0}. Observe
that the claim holds for all n ≤ (1 − ε)T̄ because in this case we only require that Ξ(tn) ≤ Ξ(t0),
which follows from the fact that Ξ(·) is monotonically decreasing. Hence, it remains to show that
if n+ 1 > (1− ε)T̄ and 0 < Ξ(tn′) ≤ Ξ(t0)− (n′− (1− ε)T̄)µ for all n′ ≤ n, then we also have that
Ξ(tn+1) ≤ Ξ(t0) − (n + 1 − (1 − ε)T̄)µ. Assume for the sake of contradiction that there is a node
u ∈ V such that

Lv(t0)− Lu(t0)− d(v, u)
(
s− 1

2

)
κ− Iu(t0, t) > Ξ(t0)− (n+ 1− (1− ε)T̄)µ > 0 (26)

for some tick event t ≥ tn+1 at node u. Since the r.h.s. of Inequality (26) is positive and t is a tick
at u, Inequality (14) shows that u 6= v. Hence, a node u′ ∈ Nu with d(v, u′) = d(v, u) − 1 exists.
Let t′ denote the earliest tick after t−T − 1

1−ε ≥ tn+1 − T̄ − 1
1−ε = tn−(1−ε)T̄ this node. We apply

the induction hypothesis for tn−(1−ε)T̄ to get the inequality

Lv(t0)− Lu′(t0)− d(v, u′)
(
s− 1

2

)
κ− Iu′(t0, t′) ≤ Ξ(t0)− (n− 2(1− ε)T̄)µ. (27)

By subtracting Inequality (27) from Inequality (26), we get that

Lu′(t0) + Iu′(t0, t′)− Lu(t0)− Iu(t0, t) >
(
s− 1

2

)
κ− µ((1− ε)T̄ + 1). (28)

Since t′ is the earliest tick after t− T − 1
1−ε , we can now use Lemma A.3 to lower bound the term

−Λu
′
u (t) in order to get a bound on Λ↑u(t):

−Λu
′
u (t)

(20)
> Lu′(t′)− Lu(t)− ∂H
= Lu′(t0) + Iu′(t0, t′)− Lu(t0)− Iu(t0, t)− (1− ε)(t− t′)− ∂H

(28)
>

(
s− 1

2

)
κ− µ((1− ε)T̄ + 1)− ∂H − (1− ε)T̄

(16)
> (s− 1)κ.

22

Note that a clock raise at time t does not change the value of Λ↑u, thus −Λu
′
u (t) > (s− 1)κ implies

that
Λ↑u(t)−Ru(t) > (s− 1)κ ≥ 0. (29)

Moreover, due to Statement (iii) of Lemma A.1, this implies that Λmax
u (t) > 0.

For an arbitrary neighbor u′′ ∈ Nu, similarly to Inequality (27) it holds that

Lu(t0) + Iu(t0, t)− Lu′′(t0)− Iu′′(t0, t′) <
(
s− 1

2

)
κ+ µ((1− ε)T̄ + 1) (30)

where t′ is defined analogously. The only term that does not switch its sign compared to Inequal-
ity (28) is

(
s− 1

2

)
κ, since now d(v, u′′) might be d(v, u) + 1. We estimate Λu

′′
u (t) to obtain a bound

on Λ↓u(t):

Λu
′′
u (t) < Lu(t0) + Iu(t0, t)− Lu′′(t0)− Iu′′(t0, t′) + (1− ε)(t− t′) + ∂H

(30)
<

(
s− 1

2

)
κ+ µ((1− ε)T̄ + 1) + (1− ε)T̄ + ∂H

(16)
< sκ.

Thus, since this estimate holds for any neighbor of vi, we conclude that

Λ↓u(t) +Ru(t) < sκ. (31)

Putting things together, we can follow from the fact that the value of Λmax
u is reduced by Ru(t)

after the computation of Ru(t) in Line 2 of Algorithm 3, that Ru(t) must attain either µ or the
result of the previous Line 1. The latter, however, cannot be the case, as Inequalities (29) and (31)
together imply that ⌊

Λ↑u −R
κ

⌋
≥
⌊

Λ↓u +R

κ

⌋
for some R > Ru(t). Hence, u computes Ru(t) = µ at time t.

Finally, we use the assumption Ξ(tn) ≥ Ξ(t0)− (n− (1− ε)T̄)µ, which yields for the latest tick
event t′ ∈ [tn, t) at u prior to t that

Lv(t0)− Lu(t0)− d(v, u)
(
s− 1

2

)
κ− Iu(t0, t′) ≤ Ξ(t0)− (n− (1− ε)T̄)µ

and thus Iu(t′, t) < µ due to Inequality (26). This contradicts the observation that u raises its clock
by µ at time t. Hence, as long as Ξ(tn+1) > 0, we have that Ξ(tn+1) ≤ Ξ(t0)− (n+ 1− (1− ε)T̄)µ.
This implies that Ξ(t̄) ≤ max{0,Ξ(t0)−(1−ε)µ(t̄−t0−T − 1

1−ε)} = 0 as desired, since T + 1
1−ε > T̄ .

In order to complete the proof, we have to cope with the case of uninitialized nodes. However,
we will show that we only need to consider node u ∈ V within distance d(v, u) < Cs−1 from v. We
already observed for d(v, u) ≥ Cs−1 that

Lv(t0)− Lu(t0)− d(v, u)
(
s− 1

2

)
κ

(25)

≤ 0. (32)

Suppose at time t0 all nodes u ∈ V at distance d(v, u) ≤ dCs−1e = Cs−1 from v are initialized. In
this case, for any such node u′ at distance exactly Cs−1 from v it holds that Lv(t0) − Lu′(t0) −

23

d(v, u′)
(
s− 1

2

)
κ−Iu′(t0, t′) ≤ 0 for all tick events t′ ≥ t0 at node u′ due to Inequality (32). Thus,

replacing Inequality (27) by this estimate when bounding Λu
′
u for a neighbor u ∈ Nu′ at distance

d(v, u) < Cs−1 from v, we see that messages from u′ will not prevent u from raising its clock far
enough. Moreover, u is not required to raise its clock until t0 + T̄ > t0 + T to satisfy the bound;
at this time u will have received at least one message from u′. Thus, this case is already covered
by the preceding arguments.

Hence, we assume that at time t0 an uninitialized node v0 ∈ V at distance d(v, v0) ≤ Cs−1

exists. Consequently, v has been initialized at a time tv ≥ t0 − d(v, v0)T . Thus, at time t′0 :=
tv +Cs−1T ∈ (t0, t0 +Cs−1T] all nodes u ∈ V at distance d(v, u) ≤ Cs−1 are initialized. We define

Ξ′(t) := max
{tick t′≥t at u∈V |d(v,u)<Cs−1)}

{
Lv(t0)− Lu(t0)− d(v, u)

(
s− 1

2

)
κ− Iu(t0, t′)

}
analogously to Ξ. The trivial estimates Lu(t′0) ≥ (1−ε)(t′0− tu)−1 > (1−ε)(t′0− t0−d(v, u)T)−1
and Lv(t0) ≤ (1 + µ)(1 + ε)(t′0 − tv) allow us to estimate

Ξ′(t′0) ≤ max
{u∈V | d(v,u)<Cs−1}

{
Lv(t0)− Lu(t0)− d(v, u)

(
s− 1

2

)
κ− Iu(t0, t′0)

}
≤ max

{u∈V | d(v,u)<Cs−1}

{
Lv(t0)− Lu(t′0) + (1− ε)(t′0 − t0)− d(v, u)

κ

2

}
< max

{u∈V | d(v,u)<Cs−1}

{
(1 + ε)(1 + µ)(t0 − tv) + 1− d(v0, v)

(κ
2
− (1− ε)T

)}
(16)
< (1 + ε)(1 + µ)((t′0 − tv)− (t′0 − t0))
< (1 + ε)(1 + µ)T Cs−1 − µ(1− ε)(t′0 − t0)

(16)
< κCs−1 − µ(1− ε)(t′0 − t0).

At time t′0 + T , any node at distance d(v, u) < Cs−1 will have received at least one message
from each of its neighbors. Hence we can repeat the induction used on Ξ for Ξ′, however, starting
at time t′0 instead of t0, as nodes are not required to raise their clocks until t′0 + T to achieve the
bound Ξ′(t̄) ≤ 0. Since we must have d(v, w) < Cs−1 due to Inequality (32), again it follows that
at all ticks t ≥ t̄ > t′0 at w we have Iw(t0, t) ≥ ξ, which completes the proof.

A.4 Proof of Lemma 5.7

Note that if v is not initialized at time t0, then Lw(t0) ≤ (1 + ε)(1 + µ)T d(v, w) < κd(v, w),
implying that Ψs

v(t0) < 0. We can thus assume that v is initialized at time t0.
Suppose for the sake of contradiction that the statement is false for a node w ∈ V and a time

t > t0, i.e.,

Lw(t)− Lv(t)− sκd(v, w)− 3
2
κCs+1 ≥ Ψs

v(t0) + 2ε(t− t0)− Iv(t0, t) +
κ

4
− 2− µ. (33)

Certainly we have that w 6= v, since the right hand side of the inequality is positive. Note that the
inequality can only start to hold when a clock value changes, as 2ε(t−t0)−Iv(t0, t) is monotonically
increasing between ticks at v. Thus, w.l.o.g. we may assume that t is the first point in time when
a violation occurs. Moreover, any change in the clock value of v also appears on the l.h.s. of the
inequality, as Lv(t) is subtracted. Hence, t is a tick event at w.

24

We show that w will not raise its clock at time t, i.e., Rw(t) = 0. Since v 6= w, a neighbor
u ∈ Nw at distance d(v, u) = d(v, w)− 1 from v exists. If w has not yet received a message from u,
w has been initialized less than 2T time ago. In this case, it cannot have a clock value larger than
2(1 + ε)(1 + µ)T < κ ≤ sκ and will certainly not violate the bound. Hence, we can assume that w
already received at least one message from u in the following, and t is not the initialization time of
w.

Let ts < t denote the time when u sent the largest clock value w received at a time tr ≤ t. We
need to distinguish between the following two cases.

If ts ≥ t0, Inequality (8) held at ts, which allows us to bound

Λuw(t)
(15)

≥ Lw(tr)− Lu(ts) + Iw(tr, t)− 2ε(t− tr)
= Lw(t)− Lv(t)− (Lu(ts)− Lv(ts)) + Iv(ts, t) + (1− ε)(tr − ts)− 2ε(t− tr) (34)
> sκ(d(v, w)− d(v, u))− Iv(t0, t) + Iv(t0, ts) + Iv(ts, t)
= sκ. (35)

If ts < t0, the time difference t0− ts is bounded as nodes send messages at least every ∂H ticks,
i.e., after at most ∂H

1−ε time, which may be delayed by T .

t0 − ts ≤ t− ts < ∂H

1− ε + T . (36)

Furthermore,

Lu(ts)− Lv(ts) < Ψs
v(t0) + sκd(v, u)− Iu(ts, t0) + Iv(ts, t0)

(5)
< Ψs

v(t0) + sκd(v, u) + 1 + Iv(ts, t0).

Inserting this bound and Inequality (33) into Inequality (34) yields that

Λuw(t) > sκ(d(v, w)− d(v, u)) +
κ

4
− 3− µ− 2ε(t0 − ts)

(36)
> sκ+

κ

4
−
(

3 + µ+ 2ε
(
∂H

1− ε + T
))

(1,9)
> sκ+

κ

4
− T + 5 + µ+ µ∂H + µT

2
(16,17)
> sκ.

Thus, Inequality (35) holds independently of whether ts ≥ t0 or not, which implies that⌊
Λ↓w(t) +Rw(t)

κ

⌋
≥
⌊

Λuw(t)
κ

⌋
≥ s. (37)

In addition, any neighbor u ∈ Nw of w is within distance d(v, u) ≤ d(v, w) + 1 from v. In case
w received a message from u until t, analogously we get that

−Λuw(t) < sκ,

25

as all terms but sκ in the previous estimates switch signs, because d(v, w)−d(v, u) may also become
−1 now.

If w did not receive a message from u until t, we have that −Λuw(t) ≤ 0 < sκ. Thus, as the
bound is independent of the choice of the neighbor u, we get that⌊

Λ↑w(t)−Rw(t)
κ

⌋
=
⌊

maxu∈Nw{−Λuw(t)}
κ

⌋
≤ s− 1.

Note that this estimate and Inequality (37) also hold for some value R < Rw(t), as Λuw satisfies strict
inequalities in both cases. Consequently, it must hold that Rw evaluates to a smaller value than
Rw(t) in Line 1 of Algorithm 3 at time t. Inequality (35) further entails that κ−Λ↓w(t) < (1−s)κ ≤ 0,
thus it follows from Line 2 of Algorithm 3 that Rw(t) = 0. Hence, w increases its clock only by 1
at time t as claimed.

Let t′ ≥ t − 1
1+ε denote the latest tick event before t at node w. If t′ ≥ t0, Inequality (8) held

for node w, implying that

Lw(t)− Lv(t) = Lw(t′)− Lv(t′) + Iw(t′, t)− Iv(t′, t)
(15)
< Lw(t′)− Lv(t′) + 2ε(t− t′)− Iv(t′, t)
(8)

≤ Ψs
v(t0) + sκd(v, w) + 2ε(t− t0)− Iv(t0, t) +

κ

4
− 2− µ,

contradicting the assumption that the bound is violated at time t. However, if t′ < t0, we can use
the trivial estimate Lw(t)−Lw(t0) = Lw(t)−Lw(t′) ≤ 1 +µ to show that in case of t′ < t0 it must
hold that

Ψs
v(t0) = Ψs

v(t) + Iv(t0, t)− Iw(t0, t)
(33)
> Ψs

v(t0) + 2ε(t− t0) +
κ

4
− 3− 2µ > Ψs

v(t0),

as κ
2

(16)
> (1 + µ)(T + 1) + 4 + µ + ∂H

(1,17)
> 6 + 4µ. Since all cases lead to a contradiction, indeed

Inequality (8) can never be violated.

26

Tight Lower Bounds for Clock Synchronization

Christoph Lenzen, Thomas Locher, Roger Wattenhofer
{lenzen, lochert, wattenhofer}@tik.ee.ethz.ch

Computer Engineering and Networks Laboratory (TIK)
ETH Zurich, 8092 Zurich, Switzerland

TIK Report number 299

May 15, 2009

Abstract

Clock synchronization is a fundamental and well-studied problem in distributed computing.
In 2004, however, Fan and Lynch opened an intriguing and challenging chapter of this topic by
raising the question what bounds can be achieved on the skew between clocks of nodes that are
close to each other in a large network. Surprisingly, they proved that the skew between neighbors
must grow as Ω (logD/ log logD), where D is the diameter of the network. We improve this
result in several ways: First, we remove the log logD factor and thereby close the gap between
the upper bound of O(logD) and the lower bound. Second, we prove that the base of the
logarithm depends inversely on the relative clock drift. Third, we show that the base of the
logarithm becomes a constant if we severely restrict the clock rates in order to ensure that the
clocks run smoothly at all times. These results are accompanied by a stronger lower bound on
the clock skew between distant nodes if the nodes are required to keep their clock values as close
to real time as possible. The respective upper bounds reveal that all our presented results are
optimal up to small constants.

1 Introduction & Related Work

Lower bounds are the bee’s knees of distributed computing. While lower bounds for the non-
distributed random access machine (RAM) often need to constrain potential algorithms in unnat-
ural ways,1 researchers in distributed computing can argue about lower bounds quite generally by
exploiting the limitations imposed by local knowledge [8]. Such indistinguishability arguments come
in different flavors, but they essentially all boil down to the same concepts. Hence they are well
understood, and often not overly surprising to experts in the field.

Five years ago, in a seminal paper, Fan and Lynch [3] did surprise the experts by present-
ing a non-trivial and unexpected lower bound in clock synchronization. They proved that direct
neighbors cannot synchronize their clocks arbitrarily well, instead the quality of synchronization
depends on the diameter of the network! Their result holds in a seemingly practical setting,
where nodes have quite accurate hardware clocks, and nodes are able to communicate with their
neighbors by exchanging messages. These messages are sometimes a bit faster, sometimes a bit

1For example, lower bound arguments for sorting are often restricted to algorithms that can only compare and
exchange elements.

1

slower, but the message exchange is reliable, i.e., messages are never lost, and the message delay is
bounded.2 More specifically, Fan and Lynch showed that the clock skew between two neighbors can
be Ω(logD/ log logD), where D denotes the diameter of the network, if all the other parameters
(clock drift, message jitter) are constant. This result is astonishing because it seems reasonable at
first glance that the accuracy of information on other clock values should determine the quality of
synchronization.

It was later shown that a large class of natural algorithms exhibits an exponentially worse clock
skew between neighboring nodes in the worst case [6],3 and only last year a rather intricate algorithm
was proposed that almost matches the lower bound discovered by Fan and Lynch, guaranteeing an
upper bound of O(logD) on the clock skew between neighbors [4].

Since clock synchronization is arguably an important cornerstone in distributed computing (see,
e.g., [1, 2, 7, 10, 11, 12] and references therein), one wants to close the remaining doubly logarithmic
gap. This is exactly the first result of this paper. By improving the Fan/Lynch lower bound to
Ω(logD), we get a tight bound on the worst-case clock skew between neighboring nodes. In addition,
we try to get an understanding of how other parameters, in particular the maximum possible clock
drift, affect the lower bound. As we will show, the base of the logarithm depends inversely on the
relative clock drift. Since in real-world systems the inverse of the clock drift is generally larger
than the diameter of the network, the lower bound becomes rather tame. Additionally, we show
that the base of the logarithm gradually shifts to a constant if the clocks are required to run more
and more smoothly, i.e., if the clock rates must not change abruptly in a short time. As proved
in [5], these bounds are optimal up to a factor of two. As one might expect, imposing such tight,
but quite natural restrictions on the behavior of the clocks also leads to a larger worst-case clock
skew between any two nodes in the network. We prove that no algorithm can avoid a clock skew
of approximately D under these conditions; this lower bound is roughly a factor of 2 stronger than
the bound of D/2 if the behavior of the clocks is not restricted [2]. The algorithm given in [5]
matches our stronger bound up to a small additive term.

2 Model

We model a distributed system as an arbitrary connected graph G = (V,E) of diameter D, where
nodes represent computational devices and edges represent communication links. The message
message delays are bounded, but they may vary: The time that passes until a recipient can act
upon the sent information may be any value in the range [0, T]. Our bounds neither rely on the
size or frequency of messages, nor on the amount of local computations that can be performed.

Each node v is equipped with a hardware clock Hv whose value at real time t is denoted by
Hv(t), i.e., Hv : R+

0 → R+
0 is a strictly monotonically increasing function. For simplicity, all

nodes start their clocks synchronously at time t = 0. The value of the hardware clock of v is
Hv(t) :=

∫ t
0 hv(τ) dτ afterwards, where hv(τ) is the hardware clock rate of v at time τ . The clock

rates can vary over time, but there is a constant 0 < ε < 1 such that the following condition holds.

∀v ∈ V ∀t ≥ tv : 1− ε ≤ hv(t) ≤ 1 + ε.

2We will elaborate on the exact model later, in Section 2. Indeed, the same techniques also work in slightly
different models: As shown in [9] the lower bound also holds if all messages arrive instantaneously, but an adversary
can determine when synchronization messages may be sent.

3Indeed, the worst-case clock skew between neighboring nodes of all previously known algorithms was exponentially
worse than the lower bound as originally the only goal was to minimize the clock skew between any two nodes.

2

Based on its hardware clock and the received information, each node v computes a logical clock Lv,
which is also a function Lv : R+

0 → R+
0 . Since Lv is expected to emulate a clock, we require that

it guarantees a constant minimum progress rate of α ∈ Ω(1). Moreover, it might be desirable that
clocks run smoothly, i.e., the clock rates are upper bounded by some value β > α. Formally, there
are constants α, β > 0 such that

∀v ∈ V ∀t < t′ : α(t′ − t) ≤ Lv(t′)− Lv(t) ≤ β(t′ − t). (1)

We allow that β =∞, which simply means that an algorithm may not guarantee any upper bound
on the clock rate.

Since a computational device typically synchronizes its operations internally based on a clock
pulse, we will mostly assume that a node v ∈ V performs computations and sends and receives mes-
sages only at such clock pulses. Each node v has a clock pulse at time t if Hv(t) is an integer value.
We call such a time a tick event at node v or simply a tick at v. Naturally, in this case Condition
(1) is relaxed in the sense that it only needs to hold at ticks t and t′ (and not necessarily between
tick events). We will refer to such an algorithm as a discrete clock synchronization algorithm, as
opposed to a continuous clock synchronization algorithm which may act at any time. Note that if
message delays are (slightly) adjusted such that messages are received only at ticks, the requirement
that nodes act only at discrete times is no restriction because no additional information becomes
available in between. Thus, the obtained lower bounds are indeed stronger and drectly carry over
to the continuous model.

Given an algorithm A, an execution specifies the delays of all messages and also the hardware
clock rates of all nodes at each point in time when A is executed on a given graph G. The global
and the local skew are defined as follows:

Definition 2.1 (Global Skew) Given a connected graph G = (V,E) and a clock synchronization
algorithm A, the global skew is defined as the value

supE,v∈V,w∈V, t {Lv(t)− Lw(t)} ,

where E is any execution of A on G.

Definition 2.2 (Local Skew) Given a connected graph G = (V,E) and a clock synchronization
algorithm A, the local skew is defined as the value

supE,v∈V,w∈Nv , t {Lv(t)− Lw(t)} ,

where E is any execution of A on G.

All our bounds are proved using indistinguishability type of arguments. Concretely, we construct
different executions for any given synchronization algorithm A and any graph G so that at least
one of the executions causes large clock skews. Given two executions E and Ē of an algorithm A
on a graph G, let HEv (t) and H Ēv (t) denote the hardware clock values of v at time t in E and Ē ,
respectively. The corresponding logical clock values are denoted by LEv (t) and LĒv (t). The following
definition formalizes the notion of indistinguishable executions.

Definition 2.3 (Indistinguishability of Executions) We call E and Ē indistinguishable at
node v until hardware clock time H, if v observes the same message pattern with respect to its

3

local time Hv in both E and Ē until its hardware clock reaches H. More precisely, if v receives a
message at a time tr when HEv (tr) ≤ H in E, it receives an identical message in Ē at the time t̄r
where H Ēv (t̄r) = HEv (tr), and vice versa. Note that in this situation v acts the same in E and Ē
until local time H, i.e., if HEv (t) = H Ēv (t̄) ≤ H, it follows that LEv (t) = LĒv (t) and v sends the same
set of messages at times t and t̄ in E and Ē, respectively.

If it is clear from the context, we may omit the specification of the execution in the notation and
write, e.g., Hv(t) instead of HEv (t).

The proofs of the bounds on the local skew use incrementally constructed executions that enforce
large clock skews. This concept is captured by the following definition.

Definition 2.4 (Extended Executions) Given an execution E running until time t, we can ex-
tend it by specifying hardware clock rates and message delays in a time interval [t, t′]. We will refer
to this extension as an execution E ′ running from time t until time t′. Note that E ′ inherits the
state of the system at time t, i.e., the state of all nodes and any “pending” messages sent in E
which did not reach their destination until time t.

3 Lower Bounds

In order to establish our bounds on the local skew, we need some technical statements. The common
theme of all arguments is that it is possible to indistinguishably introduce up to O(d(v, w)T)
hardware clock skew between two nodes v and w in O (ε−1d(v, w)T) time. Since clocks are required
to run at least at the rate α, this observation enables us to gradually build up skew on paths of
decreasing length.

3.1 Helper Statements

The first stated lemma illustrates the reason why it must take a certain time to reduce clock
skews even if nodes are aware of a certain skew. It shows that one can modify any member of the
following (quite general) class of executions such that the hardware clock value of a specific node
is imperceptibly changed by Θ(T).

Definition 3.1 (Framed Executions) Given ϕ ∈ [0, 1
2

]
, a ϕ -framed execution is any execution

such that the hardware clock rates always lie in the interval [1, 1 + ε] and all message delays are in
the range [ϕT , (1− ϕ)T].

Lemma 3.2 Fix any clock synchronization algorithm and any graph. Let a ϕ-framed execution
E, a time t ≥ ϕT /ε, and a node v ∈ V be given, and define that t′ := t − ϕT /(1 + ε). We
can indistinguishably modify E into an execution Ē for which it holds that LĒv (t) = LEv (t′) and
LĒw(t) = LEw(t) for any node w ∈ V \ {v}.

Proof. We change E to Ē by reducing the hardware clock rate of node v by ε in the time
interval

[
0,
(
HEv (t)−HEv (t′)

)
/ε
]

and by modifying all delays in such a way that indistinguishability
is maintained. Certainly, we have that HEv (t) − HEv (t′) ≤ (1 + ε)(t′ − t) = ϕT , implying that
t ≥ (HEv (t)−HEv (t′)

)
/ε. Therefore it holds that H Ēv (t) = HEv (t′). Apparently, we also have that

H Ēw(t) = HEw(t) for any other node w 6= v. The indistinguishability of E and Ē then implies the
corresponding statement on the logical clock values.

4

It remains to show that Ē is a valid execution. By construction we have that

HEv (t′′ − ϕT) ≤ HEv (t′′)− ϕT ≤ H Ēv (t′′) ≤ HEv (t′′)

at any time t′′, implying that delays change by at most ϕT . Since E is a ϕ-framed execution, all
delays in Ē thus lie within the legitimate range of [0, T]. Similarly, all hardware clock rates in E
are at least 1, meaning that in Ē all clock rates are in the interval [1− ε, 1 + ε] as required. �

The lower bound of Fan and Lynch exploits that if any node increases its clock at an (average)
rate of at least b over Ω(T) time in a framed execution, this lemma can be used to construct an
execution resulting in a clock skew of Ω(T b) between two neighbors. Furthermore, an extended
execution can be constructed where the clock skew between two neighbors becomes Ω(T logbD). If
these two results are combined, we get a lower bound of Ω(T b+T logbD) ⊂ Ω(T (logD/ log logD)).
In order to get rid of the log logD term, we need more sophisticated techniques.

Next, we extend the scope to nodes at arbitrary distances, but in return confine the considered
executions.

Lemma 3.3 Fix any clock synchronization algorithm, any graph, an arbitrary pair of nodes v, w ∈
V and some ϕ ∈ [0, 1/(2(1 + ε))]. Given a ϕ-framed execution E0 that ends at a time tE0, this
execution can be extended by a ϕ-framed execution E = E(E0, v, w, ϕ) with the following property.
For any pair of nodes v′, w′ ∈ V on a shortest path from v to w such that d(v, v′) < d(v, w′) and for
any time tE ≥ tE0 +(1+ε)(1−2(1+ε)ϕ)d(v′, w′)T /ε, E can be modified into the ϕ-framed execution
Ē = Ē(E , v′, w′) such that at time tĒ := tE− (1−2(1+ε)ϕ)d(v′, w′)T we have that LĒv′(tĒ) = LEv′(tE)
and LĒw′(tĒ) = LEw′(tĒ).

Proof. Define Φw
v (u) := d(w, u) − d(v, u). In execution E , there are no clock drifts, i.e., all

hardware clock rates are always 1, and message delays from node us ∈ V to ur ∈ Nus are (1+ε)ϕT
if Φw

v (us) ≥ Φw
v (ur) and (1− (1 + ε)ϕ)T otherwise. If possible, the delays of any messages sent in

E0 that have not yet arrived are the same, whereas messages already delayed by more are received
immediately at time tE0 .

Set t′ := tĒ − (1− 2(1 + ε)ϕ)d(v′, w′)T /ε ≥ tE0 . Execution Ē is defined as follows: In execution
Ē , the hardware clock rate of any node u ∈ V is

hu(t) :=

{
max

{
min

{
1 + ε− Φw

v (v′)−Φw
v (u)

2d(v′,w′) ε, 1 + ε
}
, 1
}

if t ∈ [t′, tĒ]

1 else

Due to the prerequisites that d(v, v′) < d(v, w′) and v′ and w′ lie on a shortest path from v to w,
we have that Φw

v (v′) − Φw
v (w′) = 2d(v′, w′). Therefore, w′ has a clock rate of 1 at any time, i.e.,

H Ēw′(tĒ) = HEw′(tĒ). As v′ has clock rate 1 + ε for exactly tĒ − t′ = (1− 2(1 + ε)ϕ)d(v′, w′)T /ε time
in Ē , we have that H Ēv′(tĒ) = HEv′(tE). The message delays are adjusted in such a way that E and Ē
are indistinguishable at any node u ∈ V . Hence, as both executions inherit the same state of the
network from the preceding execution E0, the statements LĒv′(tĒ) = LEv′(tE) and LĒw′(tĒ) = LEw′(tĒ)
are a direct consequence of the indistinguishability of E and Ē .

In order to finish the proof it remains to show that Ē is indeed a ϕ-framed execution, i.e., all
hardware clock rates are in the range [1, 1 + ε] and message delays are in the range [ϕT , (1−ϕ)T].
The hardware clock rate of each node at any point in time is between 1 and 1 + ε and thus always
in the legal range. Hence, we have to show that all messages received by some node u ∈ V arrive
after at least ϕT and at most (1−ϕ)T time. Any message arriving immediately at time tE0 cannot

5

violate these bounds because E0 is a ϕ-framed execution. Given a message sent from a node us ∈ V
to a node ur ∈ Nus that arrives later than tE0 in E , let ts and tr denote the times when the message
is sent and received, respectively, in execution E (or E0), and let t̄s and t̄r be the corresponding
times in execution Ē (or, again, E0).

Starting at time t′, the differences between the hardware clock values of neighbors gradually
shift in Ē compared to E , until these shifts become maximal at time tĒ . Inserting the definitions,
we see that at this time we have that

H Ēur
(tĒ)−HEur

(tĒ)−
(
H Ēus

(tĒ)−HEus
(tĒ)

)
=

{
Φw

v (ur)−Φw
v (us)

2 (1− 2(1 + ε)ϕ)T if Φw
v (us),Φw

v (ur) ∈ [0, 2d(v′, w′)]
0 else.

Since before t′ and after tE all clock rates are 1 in both executions, this means that at any time t
it holds that

H Ēur
(t)−HEur

(t)−
(
H Ēus

(t)−HEus
(t)
)
∈
{

[−(1− 2(1 + ε)ϕ)T , 0] if Φw
v (us) ≥ Φw

v (ur)
[0, (1− 2(1 + ε)ϕ)T] else.

Thus, we see that the message delays tr − ts are defined in a way ensuring that

tr − ts −
(
H Ēur

(t)−HEur
(t)−

(
H Ēus

(t)−HEus
(t)
))
∈ [(1 + ε)ϕT , (1− (1 + ε)ϕ)T] . (2)

Moreover, as all clock rates are always in the interval [1, 1 + ε], we have that

H Ēur
(t̄r)−HEur

(t̄r)−
(
H Ēur

(t̄s)−HEur
(t̄s)
)
∈ [0, ε(t̄r − t̄s)]. (3)

Given these relations, we can bound t̄r − t̄s. We compute

t̄r − t̄s = t̄r − tr − (t̄s − ts) + (tr − ts)
= HEur

(t̄r)−HEur
(tr)−

(
HEus

(t̄s)−HEus
(ts)
)

+ (tr − ts)
= HEur

(t̄r)−H Ēur
(t̄r)−

(
HEus

(t̄s)−H Ēus
(t̄s)
)

+ (tr − ts)
= −

(
H Ēur

(t̄r)−HEur
(t̄r)−

(
H Ēur

(t̄s)−HEur
(t̄s)
))

+ (tr − ts)−
(
H Ēur

(t̄s)−HEur
(t̄s)−

(
H Ēus

(t̄s)−HEus
(t̄s)
))

.

Inserting Bound (2) and Bound (3) into this equation, we obtain

ϕT ≤ t̄r − t̄s ≤ (1− (1 + ε)ϕ)T ≤ (1− ϕ)T ,
which completes the proof. �

Basically, this lemma shows that in d(v, w)T time we can add εd(v, w)T hardware clock skew
between any two nodes at distance εd(v, w) that lie on a shortest path from v to w. This is the
core argument in the proof of both Theorem 3.5 and Theorem 3.6.

This lemma paves the way for the key lemma that is required to prove Theorem 3.5. It trades
a quicker decrease of path lengths for a larger increase of the average clock skew on certain paths
if the nodes increase their clock values quickly.

6

Lemma 3.4 Fix any clock synchronization algorithm and any graph of diameter D ≥ 1/ε. Assume
that 1/ε is an integer (in particular, ε ≤ 1/2), and let X := d12 log(8/ε)e. Set ϕε := ε/(2(1 + ε))
and ζ := 1− ε−12/X ≥ 1/4. Let a ϕε-framed execution E0 ending at time tE0 ≥ T /2 be given such
that a shortest path p := v0, . . . , vk with Lv0(tE0)− Lvk

(tE0) ≥ λαT k for some λ ∈ R exists, where
X/εn divides d(v0, vk) = k for some integer n ≥ 2 + log1/ε log1/εD.

In this case, either E0 can be extended by a ϕε-framed execution Ē running from tE0 until some
time tĒ , such that two nodes v, w ∈ V exist for which

Lv(tĒ)− Lw(tĒ) ≥ (λ+mζ)αT d(v, w)

and d(v, w) = εmk/X for some m ∈ {1, . . . , n}, or two neighbors v, w ∈ V , an execution, and some
time t exist such that Lv(t)− Lw(t) ≥ αT log1/εD.

Proof. We extend E0 by the execution E = E(E0, v0, vk, ϕε) from Lemma 3.3. Define for m ∈
{1, . . . , n} that tm := tE0 + εm−1(1− ε)T k/X. We make a case differentiation. First, assume that
we have LEv0(t1) − LEvi

(t1) ≥ (λ− 12/X)αT i for some i ≥ εk/X. Hence, there must be two nodes
v, w ∈ p at distance d(v, w) = εk/X such that

LEv (t1)− LEw(t1) ≥
(
λ− 12

X

)
αT d(v, w) (4)

and d(v0, v) < d(v0, w). Define tE := t1 + (1 − ε)d(v, w)T = tE0 + (1 + ε)(1 − ε)d(v, w)T /ε as the
time when E ends. Observe that 1− ε = 1− 2(1 + ε)ϕε. Thus, due to Lemma 3.3, we can modify
E into the ϕε-framed execution Ē = Ē(E , v, w, ϕε) such that LĒv (t1) = LEv (tE) and LĒw(t1) = LEw(t1).
It follows that

LĒv (t1)− LĒw(t1) = LEv (tE)− LEv (t1) + (LEv (t1)− LEw(t1))
(1,4)

≥ α(tE − t1) +
(
λ− 12

X

)
αT d(v, w)

= (λ+ ζ)αT d(v, w).

Second, assume that a pair of nodes v, w ∈ p at distance d(v, w) = εmk/X, where m ∈
{2, . . . , n}, and a time tE ≥ tm + (1− ε)d(v, w)T exist such that the inequality

LEv (tE)− LEw(tĒ) ≥ (λ+mζ)αT d(v, w) (5)

holds, where tĒ := tE − εm(1 − ε)T k/X = tE − (1 − ε)d(v, w)T . Since tE is sufficiently large,
Lemma 3.3 states that if E ends at time tE , it can be changed into the ϕε-framed execution
Ē = Ē(E , v, w, ϕε) where

LĒv (tĒ)− LĒw(tĒ) = LEv (tE)− LEw(tĒ) ≥ (λ+mζ)αT d(v, w).

Third and last, assume that none of the former is true. Consider the following set of pairs
of times and nodes

{(
tj , vj

) | j ∈ {0, . . . , jmax := (1− ε)(n− 1)/ε2}}. Define v0 := vi(0), where
i(0) := k−(1− εn−1

)
k/X. Let mj := 2+bε2j/(1−ε)c and imj := i(0)+(1−ε)k/ (ε2X

)∑mj−1
m=2 εm.

Set

tj := tmj−1 −
(
j − (1− ε)(mj − 2)

ε2

)
εmj (1− ε)T k

X

≥ tmjmax−1 = tn > tE0

7

and vj := vi(j), where i(j) := imj−1 +
(
j − (1− ε)(mj − 2)/

(
ε2X

))
εmjk ≤ i(jmax) = in+1 = k.

These cumbersome choices of tj and vj ensure that, as the second case does not apply, we have

LEvj

(
tj
)− LEvj+1

(
tj+1

) (5)
< (λ+mjζ)αT d(vj , vj+1

)
for all j ∈ {0, . . . , jmax − 1}, because d

(
vj , vj+1

)
= i(j + 1) − i(j) = εmjk/X, tj+1 ≥ tmj , and

tj − tj+1 = (1 − ε)d
(
vj , vj+1

) T . Observe that vjmax = vk, t0 = t1 and tjmax = tn, and also
that the vj are well-defined because mj ≤ n for all but jmax, i.e., εmjk/X is an integer for all
j ∈ {0, . . . , jmax − 1}.

Summing up over all j < jmax, we get the bound

LEv0(t1)− LEk(tn) =
jmax−1∑
j=0

(
LEvj

(
tj
)− LEvj+1

(
tj+1

))
(5)
<

n∑
m=2

∑
{j |mj=m}

(λ+mjζ)αT d(vj , vj+1
)

= λαT d(v0, vk
)

+
ζαT k
X

n∑
m=2

(1−ε)/ε2∑
l=1

mεm

< λαT d(v0, vk
)

+ (1− ε)ζαT k
X

∞∑
m=0

(m+ 2)εm

< λαT d(v0, vk
)

+ (1− ε)2αT k
X

2
(1− ε)2

= λαT d(v0, vk
)

+
2αT k
X

. (6)

As the first case does not apply and d
(
v0, v

0
)
> (1 − 1/X)k > εk/X, we have that LEv0(t1) −

LEv0(t1) < (λ− 12/X)αT k. We obtain

LEvk
(tn)− LEvk

(tE0) = LEvk
(tn)− LEv0(t1) +

(
LEv0(t1)− LEv0(tE0)

)
+
(
LEv0(tE0)− LEv0(tE0)

)
+
(
LEv0(tE0)− LEvk

(tE0)
)

(6)
>

(
−λd(v0, vk

)− 2k
X
−
(
λ− 12

X

)
d
(
v0, v

0
)

+ λd
(
v0, v

jmax
))

αT

>

(
12
(

1− 1
X

)
− 2
)
αT k
X

X>12
>

9αT k
X

≥ 9α(tn − tE0)
ε

log1/εD,

where we used that tn − tE0 = εn−1(1 − ε)T k/X ≤ εT /(X log1/εD) since n ≥ 2 + log1/ε log1/εD.
Thus, as we also have tn− tE0 > (1− ε)T /ε ≥ T > ϕεT because X/εn divides k and ε ≤ 1/2, there
must be times t ∈ [tE0 + ϕεT /(1 + ε), tn] and t′ := t− ϕεT such that

LEvk
(t)− LEvk

(t′) ≥ 9αϕεT
(1 + ε)ε

log1/εD
ε≤1/2

≥ 2αT log1/εD.

8

As E0 extended by E meets the prerequisites of Lemma 3.2 for t > tE0 ≥ T /2 = (1 + ε)ϕεT /ε, an
execution Ē exists such that for any u ∈ Nvjmax the relation

LĒvk
(t)− LĒu(t) = LEvk

(t′)− LEu(t) = LEvk
(t′)− LEvk

(t) + LEvk
(t)− LEu(t)

holds. Thus, in one of the two executions, a skew of αT log1/εD can be observed between vjmax

and u, which concludes the case differentiation and also the proof. �

3.2 Main results

Our first result states that no continuous clock synchronization algorithm, regardless of the upper
bound on the clock rates β, is able to avoid a clock skew of Ω

(
αT log1/εD

)
between neighboring

nodes. This result differs from the result in [3] in that the log logD denominator is removed and
the dependence on α, T , and in particular ε is made explicit.

Theorem 3.5 No clock synchronization algorithm can achieve a better bound on the local skew
than

Ω
(
αT

(
1 + log1/εD

))
on any graph of diameter D. Furthermore, for any δ > 0 and some specific diameters D and
maximum drift rates ε, the local skew exceeds

(1− δ)αT log1/εD.

Proof. If D ≤ (1/ε)c for any constant c, the claimed bound reduces to Ω(αT). Such a clock skew
can easily be enforced between two neighbors as shown in the proof of Theorem 3.6.

Define ε′ := 1/d1/εe > ε/2, i.e., 1/ε′ is an integer. Throughout this proof, we will use the
notation of Lemma 3.4, however, with ε replaced by ε′. Set b := d12 log(8/ε′)e/ε′ = X/ε′. As noted
above, we may assume that D is sufficiently large such that log1/ε′ log1/ε′ D is defined and we have
that blogbDc

2
≥ 1 + dlog1/ε′ log1/ε′ De ∈ o(logbD).

Therefore, when setting D0 := (1/ε′)1+dlog1/ε′ log1/ε′ De we have that D0 ≤ (1/ε′)blogb Dc/2 ≤ √D,
implying

` := blogbD/D0c ≥ blogbDc
2

.

We state the following induction hypothesis. Assume that for i ∈ {0, . . . , ` − 1} a ϕε′-framed
execution Ei ending at a time ti ≥ T /2 and two nodes vi, wi ∈ V at distance d(vi, wi) ≥ b`−iD0

exist, such that
LEivi

(ti)− LEiwi
(ti) ≥ iζαT d(vi, wi). (7)

We claim that in this case either the same is true for i + m, where m ∈ N, or an execution exists
where the clock skew between two neighbors becomes αT log1/ε′ D at some time.

To start the induction, we define E0 to be the 1/2-framed execution ending at time t0 := T /2
where all delays are T /2. Apparently, at time t0 we have two nodes v0, w0 ∈ V within distance
d(v0, w0) = blD0 ≤ D from each other such that LE0v0 (t0)− LE0w0

(t0) ≥ 0.
Now assume that Inequality (7) holds for some i ∈ {0, . . . , `− 1}. Because bl−iD0 is an integer

multiple of X/εn for n = 2 + dlog1/ε′ log1/ε′ De, the nodes vi, wi and the execution Ei ending at

9

time ti ≥ T /2 meet the requirements of Lemma 3.4. Hence, either we immediately get some
execution and two neighbors exhibiting a skew of αT log1/ε′ D at some time, or for some m ∈ N a
ϕε′-framed execution Ei+m, two nodes v, w ∈ V at distance d(v, w) = (ε′)md(vi, wi)/X and a time
ti+m ≥ ti ≥ T /2 exist when

L
Ei+m
v (ti)− LEi+m

w (ti+m) ≥ (i+m)ζαT d(v, w).

Thus, there must also be two nodes vi+m, wi+m ∈ V at distance d(v, w)/Xm−1 = d(vi, wi)/bm =
bl−i−mD0 satisfying Inequality (7) for i+m, i.e., the induction step succeeds.

We conclude that either an execution exists in which a skew of αT log1/εD occurs, or Inequal-
ity (7) holds for an i ≥ ` ∈ Ω(log1/εD) in some execution. In the latter case, however, the same
inequality is also true for a pair of neighboring nodes, implying that there is a clock skew of at
least `ζαT ∈ Ω(αT log1/εD) between two neighbors. Finally, for ε → 0 we have 1/ε′ − 1/ε → 0
and ζ → 1, and for D → ∞ we get ((log1/εD) − `)/` → 1. Therefore, for any δ > 0, appropriate
choices of ε and D imply a local skew of at least (1− δ)αT log1/εD. �

This theorem implies that there is no benefit if a continuous algorithm does not constrain the
maximum increase of the clock values.4 Therefore, we proceed by giving a lower bound on the
local skew depending on β <∞. This lower bound becomes stronger than the previous bound for
β − α ∈ O(1).

Theorem 3.6 For any discrete clock synchronization algorithm and any graph of diameter D the
local skew is lower bounded by

α

((
1
2

+
(

1− 1
2 log(2/ε)

)
blogbDc

)
T − 5

)
∈ Ω

(
αT

(
1 + log (β−α)/(αε)D

))
,

where b :=
⌈

2(β−α)(1+ε) log(2/ε)
αε

⌉
.

Proof. Observe that any node must increase its logical clock by at least α and at most β at each
of its tick events, since it does not know its own hardware clock rate, yet must obey Condition (1).
Thus we have that (1− ε)β ≥ (1 + ε)α, as otherwise infinite skew between neighbors could be built
up by just manipulating the hardware clock rates. This observation implies that

b >
2(1 + ε)(β − α)

αε
≥ 4. (8)

We will apply Lemma 3.3 repeatedly to produce the claimed skew between two nodes by concate-
nating executions whose durations decrease by the factor b. The distance between the considered
pairs of nodes will also decrease by the same factor, which limits the number of steps to blogbDc.

To this end, we fix v0, w0 ∈ V to be two nodes at distance d(v0, w0) = bblogb Dc. Using the
notation of Lemma 3.3, we define E0 := E(∅, v0, w0, 0), where ∅ means that no execution precedes
E0. If E0 ends at the time tE0 := (1 + ε)d(v0, w0)T /ε, due to the lemma it can be modified into
the indistinguishable execution Ē0 := Ē(E0, v0, w0), such that LĒ0v0 (tĒ0) = LE0v0 (tE0) and LĒ0w0

(tĒ0) =
LE0w0

(tĒ0). Since the minimum clock rate is α due to Condition (1), we further have that LE0v0 (tE0)−
4The next theorem and its proof give a strong intuition that discrete algorithms are not superior to continuous

ones, i.e., the same statement applies to them.

10

LE0v0 (tĒ0) > α(tE0 − tĒ0 − 1) = α(d(v0, w0)T − 1). Note that we have to substract α because the
condition is only applicable at ticks at node w0. Thus, we have that

LĒ0v0 (tĒ0)− LĒ0w0
(tĒ0) = LE0v0 (tE0)− LE0w0

(tĒ0)

> LE0v0 (tĒ0)− LE0w0
(tĒ0) + α(d(v0, w0)T − 1),

which implies that in one of the executions the skew must exceed α
2 (d(v0, w0)T −1). Assume w.l.o.g.

that the case
LĒ0v0 (tĒ0)− LĒ0w0

(tĒ0) >
α

2
(d(v0, w0)T − 1)

applies.
We proceed with an induction. Define imax := blogbDc and η := T

2 log(2/ε) . Assume that after
the ith step, where i ∈ {0, . . . , imax − 1}, the following holds: We have a pair of nodes vi, wi ∈ V
at distance d(vi, wi) = bimax−i and an execution Ēi ending at time tĒi such that

LĒivi
(tĒi)− LĒiwi

(tĒi) > αd(vi, wi)

T
2

+ i(T − η)− 3
i∑

j=1

b−imax+j

− α. (9)

Then, we can extend Ēi by an execution Ēi+1 ending at time tĒi+1
such that there is a pair of nodes

vi+1, wi+1 ∈ V at distance d(vi+1, wi+1) = bimax−(i+1) that satisfies Inequality (9) with i replaced
by i+ 1.

We already proved that for i = 0 an execution satisfying Inequality (9) exists, thus it remains
to conduct the induction step. Again, we apply Lemma 3.3, this time to extend Ēi, truncated at
time tĒi , by the execution Ei+1 := E(tĒi , vi, wi, 0). Define tEi+1 := tĒi + (1 + ε)d(vi, wi)T /(εb) and
tĒi+1

:= tĒi + d(vi, wi)T /(εb). Due to Condition (1), which bounds the minimum and maximum
clock rates, it holds that

L
Ei+1
vi (tĒi+1

)− LEi+1
wi (tĒi+1

) > LEivi
(tĒi) + α(tĒi+1

− tĒi − 1)− LEiwi
(tĒi)− β(tĒi+1

− tĒi − 1)

≥ LEivi
(tĒi)− LEiwi

(tĒi)− (β − α)
(

1
εb
d(vi, wi)T + 1

)
− 2α

> LEivi
(tĒi)− LEiwi

(tĒi)− (β − α)
1 + ε

εb
d(vi, wi)T − 2α

≥ LEivi
(tĒi)− LEiwi

(tĒi)−
α

2 log(2/ε)
d(vi, wi)T − 2α

(9)
> αd(vi, wi)

T
2

+ i(T − η)− η − 3
i∑

j=1

b−imax+j

− 3α.

Thus, by the pidgeon hole principle, there is a pair of nodes vi+1, wi+1 ∈ V on a shortest path
from vi to wi at distance d(vi+1, wi+1) = b−1d(vi, wi) = bimax−(i+1) such that d(vi, vi+1) < d(vi, wi+1)
and

L
Ei+1
vi+1 (tĒi+1

)− LEi+1
wi+1(tĒi+1

) > αd(vi+1, wi+1)

T
2

+ i(T − η)− η − 3
i+1∑
j=1

b−imax+j

 . (10)

11

According to Lemma 3.3, there is an indistinguishable execution Ēi+1 := Ē(Ei+1, vi+1, wi+1) for
which it holds that LĒi+1

vi+1 (tĒi+1
) = L

Ei+1
vi+1 (tEi+1) and L

Ēi+1
wi+1(tĒi+1

) = L
Ei+1
wi+1(tĒi+1

). We conclude that

L
Ēi+1
vi+1 (tĒi+1

)− LĒi+1
wi+1(tĒi+1

) = L
Ei+1
vi+1 (tEi+1)− LEi+1

vi+1 (tĒi+1
) +

(
L
Ei+1
vi+1 (tĒi+1

)− LEi+1
wi+1(tĒi+1

)
)

(1,10)
> αd(vi+1, wi+1)

T
2

+ i(T − η)− η − 3
i+1∑
j=1

b−imax+j


+α

(
tĒi+1

− tĒi+1
− 1
)

= αd(vi+1, wi+1)

T
2

+ (i+ 1)(T − η)− 3
i+1∑
j=1

b−imax+j

− α.
Hence, the induction steps succeeds. We obtain the claimed bound of

L
Ēimax
vimax

(tĒimax
)− LĒimax

wimax
(tĒimax

)
(9)
> α

T
2

+ imax(T − η)− 3
imax∑
j=1

b−imax+j

− α
> α

(T
2

+ imax(T − η)− 3
1− 1/b

)
− α

(8)
> α

((
1
2

+ imax

(
1− 1

2 log(2/ε)

))
T − 5

)
on the skew between the neighbors vimax and wimax in the execution Ēimax at time tĒimax

. �
If we demand that the logical clocks run roughly at the same rates as the hardware clocks, e.g.,

α = 1 − O(ε) and β = 1 + O(ε), we get that b ∈ O(1) and thus a lower bound of Ω(T logD). if
we allow a logical clock rate that is a constant times larger than real time, i.e., β − α ∈ Θ(1), the
lower bound reduces to Ω

(
T log1/εD

)
. The constants in this bound and Theorem 3.5 are almost

optimal, as the algorithm given in [5] yields the asymptotic approximation ratio of 2 for ε→ 0 and
T → ∞ if T and ε are known.

We remark that both proofs reveal that large skews occur for a significant period of time, i.e.,
for any s ∈ [0, 1] we have that for Θ

(T D1−s) time Lv −Lw ≥ Θ (sαT logbDd(v, w)) between some
nodes v, w at distance d(v, w) = Θ (Ds). For s = 1 we also obtain a lower bound on the global
skew comparable to the T D/2 bound shown in [2].

This bound of T D/2 on the global skew can be improved to roughly T D if one takes into
account that it is natural to demand that all clock values are as close to real time as possible. More
precisely, we may require that

∀v ∈ V ∀ ticks t at v : (1− ε)t ≤ Lv(t) ≤ (1 + ε)t. (11)

It is not hard to see that this condition can easily be satisfied, while a better better approximation to
real time is impossible unless external timing information is available. Interestingly, this seemingly
trivial condition strengthens the lower bound on the global skew by roughly a factor of 2, regardless
of the permitted minimum and maximum clock rates α and β.

12

Theorem 3.7 Assume a clock synchronization algorithm A is equipped with initial parameters
c1, c2 ∈ (0, 1], ε̂ ∈ (0, 1), and T̂ ∈ R+ such that c1T̂ ≤ T ≤ T̂ and c2ε̂ ≤ ε ≤ ε̂. Define
% := min {ε, (1− c2ε̂− c1)/c1} ∈ [−ε, ε]. Any such algorithm A obeying Condition (11) cannot
avoid a global skew of at least

(1 + %)T D
on any graph G of diameter D.

Proof. For the sake of simplicity, we formally allow relative clock drifts of ε + δε, where δε is
infinitesimally small.5

Let v0, vD ∈ V be any two nodes at distance D. Furthermore, define that T := c1T̂ , ε′ := c2ε̂,
and T ′ := 1+%

1−ε′T . Since % ≥ −ε′, we have that

c1T̂ = T ≤ T ′ ≤ T̂
c2ε̂ = ε′ ≤ ε ≤ ε̂.

Thus, it is possible that T ′ is the real maximum delay and ε′ is the real maximum clock drift
because both values lie in the legal range according to the definition of c1 and c2. Assume that
the maximum delay is in fact T ′ and the maximum clock drift is ε′. Consider the following two
executions:

E1 : The hardware clock rates of all clocks are 1− ε′ at all times. The message delays are always
T ′ from any node v ∈ V to any node w ∈ Nv if d(v0, w) = d(v0, v)− 1, and 0 otherwise.

E2 : The hardware clock rates of all clocks are 1 + ε′ at all times. The message delays are (1−ε′)
1+ε′ T ′

from node v ∈ V to node w ∈ Nv if d(v0, w) = d(v0, v)− 1, and 0 otherwise.

Execution E1 and E2 are obviously legal executions as both the message delays and the clock
drifts are within the legal bounds. Furthermore, E1 and E2 are indistinguishable: In execution
E1, if a node v sends a message to w at local time Hv, w receives this message at a time t when
Hw(t) = Hv + (1− ε′)T ′ if d(v0, w) = d(v0, v)− 1 and Hw(t) = Hv otherwise. Since the clock rates
are faster by a factor of (1+ε′)/(1−ε′) and the message delay of any message that is sent to a node
that is closer to v0 is reduced by the same factor, the nodes receive and send the same messages at
the same hardware clock times in execution E2.

Thus, in both executions nodes cannot increase their logical clock at a rate lower than their
hardware clock rate, as otherwise Condition (11) would be violated in execution E1. Likewise, they
cannot increase logical clocks faster than hardware clocks because Condition (11) would be violated
in execution E2. Hence, in both executions it must hold that Lv(t) = Hv(t) at all ticks t at v.

Assume now that T and ε are the correct upper bounds on the maximum delay and the maxi-
mum clock drift, respectively. Consider the following execution:

E3 : The hardware clock rate of v ∈ V is 1 + %+ D−d(v0,v)
D δε, where 0 < δε� |%| is infinitesimally

small. At time t0 := (1+%)TD
δε all hardware clock rates are switched to 1 +%. If a node v sends

a message at hardware clock time Hv, the message delay is adjusted in such a way that it is
received at time t when Hw(t) = Hv + (1 − ε′)T ′ if d(v0, w) = d(v0, v) − 1 and Hw(t) = Hv

otherwise.
5The same result could be obtained, e.g., by replacing ε by ε− δε and proving a bound of (1 + %−O(δε))T D.

13

Note that execution E1 and E3, and hence also E2 and E3, are indistinguishable at each node
v ∈ V by construction. It remains to verify that E3 is a legal execution. Since % ∈ [−ε, ε] and
a clock drift of ε + δε is allowed, the clock drifts of all clocks are in the legal range. As far
as the message delays are concerned, we have at all times t ≤ t0 that Hw(t) − Hv(t) = δε

D t ∈
[0, (1 + %)T] = [0, (1− ε′)T ′] if d(v0, w) = d(v0, v)− 1. First, consider a message sent from v to w.
If Hw(t) −Hv(t) = (1 − ε′)T ′, then the message delay is set to zero, which ensures that w “sees”
exactly a difference of (1 − ε′)T ′. If Hw(t) − Hv(t) = 0, the message must be delayed. However,
since the hardware clock rate of each node is at least 1 + %, it takes at most (1−ε′)T ′

1+% = T time for
w to reach the hardware clock value Hv + (1 − ε′)T ′. Thus in case of d(v0, w) = d(v0, v) − 1 the
message delays are always in the range [0, T]. If w sends a message to v, the same arguments apply,
but in this case we need that the message delay is set to zero if Hw(t) − Hv(t) = 0 and at most
(1−ε′)T ′

1+% = T if Hw(t) −Hv(t) = (1 − ε′)T ′. Note that if d(v0, w) = d(v0, v), then Hv(t) = Hw(t)
as in the other two executions, and the message delay remains zero. Finally, the message delays
remain in the range [0, T] at any time t > t0, because all clocks run at the same rate, i.e., the
differences between the hardware clock values do not change.

Since the nodes cannot distinguish between any of the three executions, it follows that Lv(t) =
Hv(t) for all nodes v ∈ V and all ticks t also in E3. The skew between the hardware clocks Hv0 and
HvD in execution E3 at any time t ≥ t0 is

t0
d(v0, vD)− d(vD, vD)

D
δε = (1 + %)T D.

Hence, at any tick t ≥ t0 at v0 we have that LE3v0 (t) − LE3vD
(t) = (1 + %)T D, which proves the

stated lower bound on the global skew of A. �
The obtained result slightly depends on how accurate the estimates of the maximum delay and

the maximum drift rate are. We believe that this is not an artifact of the proof, but rather an
algorithm aware of ε and T might deliberately choose to keep its logical clock values as close as
possible to (1 − ε)t to avoid large skews. The estimates of T and ε must be extremely accurate,
however, if a better bound than (1+ε)T D ought to be guaranteed, and a global skew of (1−ε)T D
cannot be prevented in any situation.

Corollary 3.8 No clock synchronization algorithm without knowledge of a lower bound on ε can
avoid a global skew of T D. No clock synchronization algorithm without knowledge of bounds on T
stronger than T ∈

[
1−ε
1+ε T̂ , T̂

]
can achieve a better bound on the global skew than (1 + ε)T D.

In [5] it is shown that (1 + ε)T D is indeed tight up to a negligible additive term.

References

[1] H. Attiya, A. Herzberg, and S. Rajsbaum. Optimal Clock Synchronization under Different
Delay Assumptions. SIAM Journal on Computing, 25(2):369–389, 1996.

[2] S. Biaz and J. Lundelius Welch. Closed Form Bounds for Clock Synchronization Under Simple
Uncertainty Assumptions. Information Processing Letters, 80(3):151–157, 2001.

[3] R. Fan and N. Lynch. Gradient Clock Synchronization. In Proc. 23rd Annual ACM Symposium
on Principles of Distributed Computing (PODC), pages 320–327, 2004.

14

[4] C. Lenzen, T. Locher, and R. Wattenhofer. Clock Synchronization with Bounded Global and
Local Skew. In Proc. 49th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 500–510, 2008.

[5] C. Lenzen, T. Locher, and R. Wattenhofer. Optimal Clock Synchronization with Bounded
Clock Rates. Technical Report 301, Computer Engineering and Networks Laboratory (TIK),
ETH Zurich, 2008.

[6] T. Locher and R. Wattenhofer. Oblivious Gradient Clock Synchronization. In Proc. 20th
International Symposium on Distributed Computing (DISC), pages 520–533, 2006.

[7] J. Lundelius Welch and N. Lynch. An Upper and Lower Bound for Clock Synchronization.
Information and Control, 62(2/3):190–204, 1984.

[8] N. Lynch. A Hundred Impossibility Proofs for Distributed Computing. In Proc. 8th Annual
ACM Symposium on Principles of Distributed Computing (PODC), pages 1–28, 1989.

[9] L. Meier and L. Thiele. Brief Announcement: Gradient Clock Synchronization in Sensor
Networks. In Proc. 24th Annual ACM Symposium on Principles of Distributed Computing
(PODC), page 238, 2005.

[10] R. Ostrovsky and B. Patt-Shamir. Optimal and Efficient Clock Synchronization under Drift-
ing Clocks. In Proc. 18th Annual ACM Symposium on Principles of Distributed Computing
(PODC), pages 400–414, 1999.

[11] B. Patt-Shamir and S. Rajsbaum. A Theory of Clock Synchronization. In Proc. 26th Annual
ACM Symposium on Theory of Computing (STOC), pages 810–819, 1994.

[12] T. K. Srikanth and S. Toueg. Optimal Clock Synchronization. Journal of the ACM, 34(3):626–
645, 1987.

15

