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The problem of constructing hazard-free Boolean circuits dates back to the 1940s and is an important problem

in circuit design. Our main lower-bound result unconditionally shows the existence of functions whose circuit

complexity is polynomially bounded while every hazard-free implementation is provably of exponential size.

Previous lower bounds on the hazard-free complexity were only valid for depth 2 circuits. The same proof

method yields that every subcubic implementation of Boolean matrix multiplication must have hazards.

These results follow from a crucial structural insight: Hazard-free complexity is a natural generalization

of monotone complexity to all (not necessarily monotone) Boolean functions. Thus, we can apply known

monotone complexity lower bounds to find lower bounds on the hazard-free complexity. We also lift these

methods from the monotone setting to prove exponential hazard-free complexity lower bounds for non-

monotone functions.

As our main upper-bound result we show how to efficiently convert a Boolean circuit into a bounded-bit

hazard-free circuit with only a polynomially large blow-up in the number of gates. Previously, the best

known method yielded exponentially large circuits in the worst case, so our algorithm gives an exponential

improvement.

As a side result we establish the NP-completeness of several hazard detection problems.
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1 INTRODUCTION
We study the problem of hazards in Boolean circuits. This problem naturally occurs in digital

circuit design, specifically in the implementation of circuits in hardware (e.g. [Huf57, Cal58]), but is

also closely related to questions in logic (e.g. [Kle52, Kör66, Mal14]) and cybersecurity ([TWM
+
09,

HOI
+
12]). Objects are called differently in the different fields; for presentational simplicity, we use

the parlance of hardware circuits throughout the paper.

A Boolean circuit is a circuit that uses and-, or-, and not-gates, in the sense of [Juk12, Section 1.2],
where and and or have fan-in two. The standard approach to studying hardware implementations

of Boolean circuits is to use the digital abstraction, in which voltages on wires and at gates are

interpreted as either logical 0 or 1. More generally, this approach is suitable for any system in

which there is a guarantee that the inputs to the circuit and the outputs of the gates of the circuit

can be reliably interpreted in this way (i.e., be identified as the Boolean value matching the gate’s

truth table).

Kleene Logic and Hazards
Several independent works ([Got48], [YR64] and references therein) observed that Kleene’s

classical three-valued strong logic of indeterminacy K3 [Kle52, §64] captures the issues arising from

non-digital inputs. The idea is simple and intuitive. The two-valued Boolean logic is extended

by a third value u representing any unknown, uncertain, undefined, transitioning, or otherwise

non-binary value. We call both Boolean values stable, while u is called unstable. The behavior of a
Boolean gate is then extended as follows. Let B := {0,1} and T := {0,u,1}. Given a string x ∈ Tk , a
resolution y ∈ Bk of x is defined as a string that is obtained by replacing each occurrence of u in x
by either 0 or 1. If a k-ary gate (with one output) is subjected to inputs x ∈ Tk , it outputs b ∈ B iff

it outputs b for all resolutions y ∈ Bk of x , otherwise it outputs u. In other words, the gate outputs

a Boolean value b, if and only if its output does not actually depend on the unstable inputs. This

results in the following extended specifications of and, or, and not gates:

not 0 u 1

1 u 0

and 0 u 1

0 0 0 0

u 0 u u

1 0 u 1

or 0 u 1

0 0 u 1

u u u 1

1 1 1 1

By induction over the circuit structure, a circuit C with n input gates now computes a function

C : Tn → T.
Unfortunately, in some cases, the circuit might behave in an undesirable way. Consider a

multiplexer circuit (MUX), which for Boolean inputs x ,y,s ∈ B outputs x if s = 0 and y if

s = 1. A straightforward circuit implementation is shown in Figure 1a. Despite the fact that

MUX(1,1,0) = MUX(1,1,1) = 1, one can verify that in Figure 1a, MUX(1,1,u) = u. Such behaviour is

called a hazard:
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x

y

s and

and

not

or

MUX(x ,y,s ) := (x and s ) or (y and not s )

(a) Multiplexer with hazard at (x ,y,s ) = (1,1,u)

x

y

s and

and

not

or

and

or

(x and y) or ((x and s ) or (y and not s ))

(b) Hazard-free multiplexer

Fig. 1. Two circuits that implement the same Boolean multiplexer function. One has a hazard, the other one
is hazard-free.

1.1. Definition (Hazard). We say that a circuitC on n inputs has a hazard at x ∈ Tn iffC (x ) = u
and there is a Boolean value b ∈ B such that for all resolutions y of x we have C (y) = b. If C has no
hazard, it is called hazard-free.

The name hazard-free has different meanings in the literature. Our definition is taken from

[DDT78]. In Figure 1b we see a hazard-free circuit for the multiplexer function. Note that this

circuit uses more gates than the one in Figure 1a. The problem of detecting hazards and constructing

circuits that are hazard-free started a large body of literature, see Section 2. The question whether

hazards can be avoided in principle was settled by Huffman.

1.2. Theorem ([Huf57]). Every Boolean function has a hazard-free circuit computing it.

He immediately noted that avoiding hazards is potentially expensive [Huf57, p. 54]:

“In this example at least, the elimination of hazards required a substantial increase in

the number of contacts.”

Indeed, his result is derived using a clause construction based on the prime implicants of the con-

sidered function, which can be exponentially many, see e.g. [CM78]. There has been no significant

progress on the complexity of hazard-free circuits since Huffmann’s work. Accordingly, the main

question we study in this paper is:

What is the additional cost of making a circuit hazard-free?

Our Contribution
Unconditional lower bounds. Our first main result is that monotone circuit lower bounds directly

yield lower bounds on hazard-free circuits. A circuit is monotone if it only uses and-gates and
or-gates, but does not use any not-gates. For a Boolean function f , denote (i) by L( f ) its Boolean
complexity, i.e., the size of a smallest circuit computing f , (ii) by Lu ( f ) its hazard-free complexity,
i.e., the size of a smallest hazard-free circuit computing f , and (iii), if f is monotone, by L+ ( f ) its
monotone circuit complexity, i.e., the size of a smallest monotone circuit computing f . We show

that Lu properly extends L+ to the domain of all Boolean functions.

1.3. Theorem. If f is monotone, then Lu ( f ) = L+ ( f ).

We consider this connection particularly striking, because hazard-free circuits are highly desirable

in practical applications. Moreover, to our surprise the construction underlying Theorem 1.3 yields

J. ACM, Vol. 1, No. 1, Article . Publication date: March 2019.



4 Ikenmeyer, Komarath, Lenzen, Lysikov, Mokhov, and Sreenivasaiah

a circuit computing a new directional derivative that we call the hazard derivative1 of the function
at x = 0 in direction of y, which equals the function itself if it is monotone (and not constant 1). We

consider this observation to be of independent interest, as it provides additional insight into the

structure of hazard-free circuits.

We get the following (non-exhaustive) list of immediate corollaries that highlight the importance

of Theorem 1.3.

1.4. Corollary (using monotone lower bound from [Raz85]). Define the Boolean permanent
function fn : B

n2

→ B as

f (x11, . . . ,xnn ) =
∨
σ ∈Sn

n∧
i=1

xiσ (i ) .

We have L( fn ) = O (n5) and Lu ( fn ) ≥ 2
Ω(log2 n) .

1.5. Corollary (usingmonotone lower bound from [Tar88]). There exists a family of functions
fn : B

n2

→ B such that L( fn ) = poly(n) and Lu ( fn ) ≥ 2
cn1/3−o (1)

for a constant c > 0.

In particular, there is an exponential separation between L and Lu .
Corollaries 1.4 and 1.5 are immediate applications of Theorem 1.3. Using additional techniques,

we can obtain separation results even for non-monotone functions!

1.6. Corollary. Let detn : Bn
2

→ B be the determinant over the field with 2 elements, that is,

detn (x11, . . . ,xnn ) =
⊕
σ ∈Sn

n∏
i=1

xiσ (i ) .

We have L(detn ) = poly(n) and Lu (detn ) ≥ 2
Ω(log2 n) .

These techniques also allow us to improve the gap between Boolean and hazard-free complexity

relative to Corollary 1.5.

1.7. Corollary (using monotone lower bound from [AB87]). There exists a family of functions
fn : B

N → B such that L( fn ) = O (N ) but Lu ( fn ) ≥ 2
cN 1/4−o (1)

for some c > 0, where the number of
input variables of fn is N = 4

n + ⌊ 2
n/2

4

√
n ⌋

As a final example, we state a weaker, but still substantial separation result for Boolean matrix

multiplication.

1.8. Corollary (using monotone lower bound from [Pat75, MG76], see also the earlier

[Pra74]). Let f : Bn×n × Bn×n → Bn×n be the Boolean matrix multiplication map, i.e., f (X ,Y ) = Z
with zi,j =

∨n
k=1 xi,k ∧yk,j . Every circuit computing f with fewer than 2n3 −n2 gates has a hazard. In

particular, every circuit that implements Strassen’s algorithm [Str69] (or any of its later improvements,
see e.g. [LG14]) in a way that can be used for subcubic Boolean matrix multiplication has a hazard.

Since our methods are based on relabeling circuits only, analogous translations can be performed

for statements about other circuit complexity measures, for example, the separation result for the

circuit depth from [RW92]. The previously best lower bounds on the size of hazard-free circuits

are restricted to depth 2 circuits (with unbounded fan-in and not counting input negations), see

Section 2.

1
Interestingly, this is closely related to, but not identical to, the Boolean directional derivative defined in e.g. [dRSdlVC12,

Def. 3], which has applications in cryptography. To the best of our knowledge, the hazard derivative has not appeared in

the literature so far.
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For our lower bounds we use the strong connection between hazard-free complexity and mono-

tone complexity, but we want to point out a conceptional difference between monotone circuits and

hazard-free circuits: monotone circuits are defined syntactically, via a restriction of the available

gates, whereas being hazard-free is a semantic property, that is, it refers to the properties of the

function computed by a circuit.

Parametrized upper bound. These hardness results imply that we cannot hope for a general

construction of a small hazard-free circuit for f even if L( f ) is small. However, the task becomes

easier when restricting to hazards with a limited number of unstable input bits.

1.9. Definition (k-bit hazard). For a natural number k , a circuitC on n inputs has a k-bit hazard
at x ∈ Tn , iff C has a hazard at x and u appears at most k times in x .

Such a restriction on the number of unstable input bits has been considered in many papers (see

e.g. [YR64, ZKK79, Ung95, HOI
+
12]), but the state-of-the-art in terms of asymptotic complexity

has not improved since Huffman’s initial construction [Huf57], which is of size exponential in

n, see the discussion of [TY12, TYM14] in [Fri17, Sec. “Speculative Computing”]. We present a

construction with blow-up exponential in k , but polynomial in n. In particular, if k is constant and

L( fn ) ∈ poly(n), this is an exponential improvement.

1.10. Corollary. Let C be a circuit with n inputs, |C | gates and depth D. Then there is a circuit

with at most
(
ne
k

)
2k

( |C | + 7) gates and depth D + 2k (⌈logn⌉ + 2) that computes the same function
and has no k-bit hazards.

Further results. We round off the presentation by a number of further results. First, to further

support the claim that the theory of hazards in circuits is natural, we prove that it is independent of

the set of gates (and, or, not), as long as the set of gates is functionally complete and contains a con-

stant function, see Corollary A.4. Second, it appears unlikely that much more than logarithmically

many unstable bits can be handled with only a polynomial circuit size blow-up.

1.11. Theorem. Fix a monotonously weakly increasing sequence of natural numbers kn with logn ≤
kn and set jn := kn/ logn. If Boolean circuits deciding jn-CLIQUE on graphs with n vertices require a
circuit size of at least nΩ(jn ) , then there exists a function fn : Bn

2+kn → B with L( fn ) = poly(n) for
which circuits without kn-bit hazards require 2Ω(kn ) many gates to compute.

In particular, if kn = ω (logn) is only slightly superlogarithmic, then Theorem 1.11 provides a

function where the circuit size blow-up is superpolynomial if we insist on having no kn-bit hazards.
In this case jn is slightly superconstant, which means that “Boolean circuits deciding jn-CLIQUE
require size at least nΩ(jn )

” is a consequence of a nonuniform version of the exponential time

hypothesis (see [LMS11]), i.e., smaller circuits would be a major algorithmic breakthrough.

We remark that, although it has not been done before, deriving conditional lower bounds such

as Theorem 1.11 is rather straightforward. In contrast, Theorem 1.3 yields unconditional lower
bounds.

Finally, determining whether a circuit has a hazard is NP-complete, even for 1-bit hazards

(Theorem 6.5). This matches the fact that the best algorithms for these tasks have exponential

running time [Eic65]. Interestingly, this also means that if NP , coNP, given a circuit there exists

no polynomial-time verifiable certificate of size polynomial in the size of the circuit to prove that

the circuit is hazard-free, or even free of 1-bit hazards.

2 RELATEDWORK
Multi-valued logic is a very old topic and several three-valued logic definitions exist. In 1938

Kleene defined his strong logic of indeterminacy [Kle38, p. 153], see also his later textbook [Kle52,
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§64]. It can be readily defined by setting u = 1

2
, not x := 1 − x , x and y := min(x ,y), and

x or y := max(x ,y), as it is commonly done in fuzzy logic [PCRF79, Roj96]. This happens to

model the behavior of physical Boolean gates and can be used to formally define hazards. This

was first realized by Goto in [Got49, p. 128], which is the first paper that contains a hazard-free

implementation of the multiplexer, see [Got49, Fig. 7·5]. The third truth value in circuits was

mentioned one year earlier in [Got48]. As far as we know, this early Japanese work was unnoticed

in the Western world at first. The first structural results on hazards appeared in a seminal paper

by Huffman [Huf57], who proved that every Boolean function has a hazard-free circuit. This is

also the first paper that observes the apparent circuit size blow-up that occurs when insisting on a

hazard-free implementation of a function. Huffman mainly focused on 1-bit hazards, but notes that

his methods carry over to general hazards. Interestingly, our Corollary 1.10 shows that for 1-bit

hazards the circuit size blow-up is polynomially bounded, while for general hazards we get the

strong separation of Corollary 1.5.

The importance of hazard-free circuits is already highlighted for example in the classical textbook

[Cal58]. Three-valued logic for circuits was introduced by Yoeli and Rinon in [YR64]. In 1965,

Eichelberger published the influential paper [Eic65], which shows how to use three-valued logic to

detect hazards in exponential time. This paper also contains the first lower bound on hazard-free

depth 2 circuits: A hazard-free and-or circuit with negations at the inputs must have at least as

many gates as its function has prime implicants, which can be an exponentially large number,

see e.g. [CM78]. Later work on lower bounds was also only concerned with depth 2 circuits, for

example [ND92].

Mukaidono [Muk72] was the first to formally define a partial order of definedness, see also

[Muk83b, Muk83a], where it is shown that a ternary function is computable by a circuit iff it is

monotone under this partial order. In 1981 Marino [Mar81] used a continuity argument to show (in

a more general context) that specific ternary functions cannot be implemented, for example there

is no circuit that implements the detector function f (u) = 1, f (0) = f (1) = 0.

Nowadays the theory of three-valued logic and hazards can be found for example in the textbook

[BS95]. A fairly recent survey on multi-valued logic and hazards is given in [BEI01].

Recent work models clocked circuits [FFL18]. Applying the standard technique of “unrolling” a

clocked circuit into a combinational circuit, one sees that the computational power of clocked and

unclocked circuits is the same. Moreover, lower and upper bounds translate between the models as

expected; using r rounds of computation changes circuit size by a factor of at most r . However,
[FFL18] also models a special type of registers, masking registers, that have the property that if

they output u when being read in clock cycle r , they output a stable value in all subsequent rounds

(until written to again). With these registers, each round of computation enables computing strictly

more (ternary) functions. Interestingly, adding masking registers also breaks the relation between

hazard-free and monotone complexity: [FFL18] presents a transformation that trades a factor O (k )
blow-up in circuit size for eliminating k-bit hazards. In particular, choosing k = n, a linear blow-up
suffices to construct a hazard-free circuit out of an arbitrary hazardous implementation of a Boolean

function.

Seemingly unrelated, in 2009 a cybersecurity paper [TWM
+
09] was published that studies

information flow on the Boolean gate level. The logic of the information flow happens to be Kleene’s

logic and thus results transfer in both directions. In particular (using different nomenclature) they

design a circuit (see [TWM
+
09, Fig. 2]) that computes the Boolean derivative, very similar to our

construction in Proposition 4.10. In the 2012 follow-up paper [HOI
+
12] the construction of this

circuit is monotone (see [HOI
+
12, Fig. 1]) which is a key property that we use in our main structural

correspondence result Theorem 1.3.

J. ACM, Vol. 1, No. 1, Article . Publication date: March 2019.
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There is an abundance of monotone circuit lower bounds that all translate to hazard-free complex-

ity lower bounds, for example [Raz85, AG87, Yao89, RW92] and references in [GS92] for general

problems, but also [Weg82] and references therein for explicit problems, [Pra74, Pat75, MG76] for

matrix multiplication and [Blu85] for the Boolean convolution map. This last reference also implies

that any implementation of the Fast Fourier Transform to solve Boolean convolution must have

hazards.

3 DEFINITIONS
We study functions F : Tn → T that can be implemented by circuits. The Boolean analogue

is just the set of all Boolean functions. In our setting this is more subtle. First of all, if a circuit

gets a Boolean input, then by the definition of the gates it also outputs a Boolean value. Thus

every function that is computed by circuits preserves stable values, i.e., yields a Boolean value on

a Boolean input. Now we equip T with a partial order ⪯ such that u is the least element and 0

and 1 are incomparable elements greater than u, see [Muk72]. We extend this order to Tn in the

usual way. For tuples x ,y ∈ Tn the statement x ⪯ y means that y is obtained from x by replacing

some unstable values with stable ones. Since the gates and, or, not are monotone with respect to

⪯, every function F computed by a circuit must be monotone with respect to ⪯. It turns out that

these two properties capture precisely what can be computed:

3.1. Proposition ([Muk72, Thm. 3]). A function F : Tn → T can be computed by a circuit iff F
preserves stable values and is monotone with respect to ⪯.

A function F : Tn → T that preserves stable values and is monotone with respect to ⪯ shall

be called a natural function. A function F : Tn → T is called an extension of a Boolean function

f : Bn → B if the restriction F |Bn coincides with f .
Observe that any natural extension F of a Boolean function f must satisfy the following. If y and

y ′ are resolutions of x (in particular x ⪯ y and x ⪯ y ′) such that F (y) , F (y ′), it must hold that

F (y) = 0 and F (y ′) = 1 (or vice versa), due to preservation of stable values. By ⪯-monotonicity,

this necessitates that F (x ) = u, the only value “smaller” than both 0 and 1. Thus, one cannot hope

for a stable output of a circuit if x has two resolutions with different outputs. In contrast, if all

resolutions of x produce the same output, we can require a stable output for x , i.e., that a circuit
computing F is hazard-free.

3.2. Definition. For a Boolean function f : Bn → B, define its hazard-free extension ¯f : Tn → T
as follows:

¯f (x ) =




0, if f (y) = 0 for all resolutions y of x ,
1, if f (y) = 1 for all resolutions y of x ,
u, otherwise.

Hazard-free extensions are natural functions and are exactly those functions that are computed

by hazard-free circuits, as can be seen for example by Theorem 1.2. Equivalently,
¯f is the unique

extension of f that is monotone and maximal with respect to ⪯.

We remark that later on we will also use the usual order ≤ on B and Bn . We stress that the term

monotone Boolean function refers to functions Bn → B monotone with respect to ≤.
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4 LOWER BOUNDS ON THE SIZE OF HAZARD-FREE CIRCUITS
In this section, we present a number of lower bound results. As a warm-up, we first prove the

conditional lower bound Theorem 1.11, which is a direct consequence of the upcoming Proposi-

tion 4.1 and noting that nΩ(kn/ logn) = 2
Ω(kn )

. We then discuss the main result Lu ( f ) = L+ ( f ) for
monotone functions f and how Corollaries 1.4 to 1.8 follow from it.

Conditional lower bound
4.1. Proposition. Fix a monotonously weakly increasing sequence of natural numbers jn with

jn ≤ n. There is a function fn : B(
n
2
)+jn logn → B with L( fn ) = poly(n) and the following property: if

fn can be computed by circuits of size Ln that are free of (jn logn)-bit hazards, then there are Boolean
circuits of size 2Ln that decide jn-CLIQUE.

Proof. The function fn gets as input the adjacency matrix of a graphG on n vertices and a list ℓ
of jn vertex indices, each encoded in binary with logn many bits:

fn (G, ℓ) =



1 if ℓ encodes a list of jn vertices that form a jn-clique in G,

0 otherwise.

Clearly L( fn ) = poly(n). Let C compute fn and have no (jn logn)-hazards. By the definition of

(jn logn)-hazards, it follows thatC (G,u
jn logn ) , 0 iffG contains a jn-clique. FromC we construct a

circuitC ′ that decides jn-CLIQUE as follows. We double each gate and each wire. Additionally, after

each doubled not-gate we twist the two wires so that this not construction sends (0,1) to (0,1)
instead of to (1,0). Stable inputs to C are doubled, whereas the input u is encoded as the Boolean

pair (0,1). It is easy to see that the resulting circuit simulates C . Our circuit C ′ should have

(
n
2

)
inputs and should satisfy C ′(G ) = 1 iff C (G,ujn logn ) , 0, thus we fix the jn logn rightmost input

pairs to constants (0,1) to obtain C ′. From the two output gates, we treat the right output gate as

the output of C ′, while dismissing the left output gate. □

Monotone circuits are hazard-free
Our first step towards Lu ( f ) = L+ ( f ) is to show that Lu ( f ) ≤ L+ ( f ).

4.2. Lemma. Monotone circuits are hazard-free. In particular, for monotone Boolean functions f we
have Lu ( f ) ≤ L+ ( f ).

Proof. We prove the claim by induction over the number of computation gates in the circuit.

Trivially, a monotone circuit without computation gates is hazard-free, as it merely forwards

some input to the output. For the induction step, let C be a monotone circuit computing a natural

function F : Tn → T such that the gate computing the output of C receives as inputs the outputs of

two hazard-free monotone subcircuits C1 and C2. We denote by F1 and F2 the natural functions
computed by C1 and C2, respectively. The gate computing the output of C can be an and- or an
or-gate and we will treat both cases in parallel. Let x ∈ Tn be arbitrary with the property that

F (y) = 1 for all resolutions y of x . Denote by y0 the resolution of x in which all u’s are replaced

by 0. The fact that F (y0) = 1 implies that F1 (y0) = F2 (y0) = 1 (F1 (y0) = 1 or F2 (y0) = 1). Since

the restrictions of F1 and F2 to B
n
are monotone Boolean functions, this extends from y0 to all

resolutions y of x , because y ≥ y0 and thus F (y) ≥ F (y0) = 1. Since C1 and C2 are hazard-free by

the induction hypothesis, we have F1 (x ) = F2 (x ) = 1 (F1 (x ) = 1 or F2 (x ) = 1). As basic gates are

hazard-free, we conclude that F (x ) = 1.

The case that F (y) = 0 for all resolutions y of some x ∈ Tn is analogous, where y0 is replaced by

y1, the resolution of x in which all u’s are replaced by 1. □
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The following sections show a much deeper relationship between monotone and hazard-free

circuits. A key concept is the derivative, which we will discuss next.

Derivatives of natural functions
In this section, we introduce the hazard derivative, a key ingredient for showing Lu ( f ) ≥ L+ ( f ).

Let F : Tn → T be a natural function and x ∈ Bn be a stable input. If x̃ ⪯ x , that is, if x̃ is obtained

from x by replacing stable bits by u, then F (x̃ ) ⪯ F (x ). This means that there are two possibilities

for F (x̃ ) — either F (x̃ ) = F (x ) or F (x̃ ) = u.
We can encode in one Boolean function the information about how the value of F changes from

F (x ) to u when the bits of the input change from stable to unstable. It is reminiscent of the idea of

the derivative in analysis or the Boolean derivative, which also show how the value of the function

changes when the input changes. To make the connection more apparent, we introduce a notation

for replacing stable bits by unstable ones: if x ,y ∈ Bn , then x + uy denotes the tuple that is obtained

from x by changing the values to u in all positions in which y has a 1, and keeping the other values

unchanged. Formally,

x̃ = x + uy ⇔ x̃i =



xi , if yi = 0,

u, if yi = 1.

This notation is consistent with interpreting the addition and multiplication on T as the hazard-free
extensions of the usual addition modulo 2 and multiplication on B (xor and and).
Any tuple x̃ ⪯ x can be presented as x + uy for some y ∈ Bn . As we have seen, F (x + uy) is

either F (x ) or u. This condition can also be written as F (x + uy) = F (x ) + u∆ for some ∆ ∈ B.

4.3. Definition. Let F : Tn → T be a natural function. The hazard derivative (or just derivative
for short) of F is the Boolean function dF : Bn × Bn → B such that

F (x + uy) = F (x ) + u · dF (x ;y). (4.4)

In other words,

dF (x ;y) =



0, if F (x + uy) = F (x ),
1, if F (x + uy) = u.

For a Boolean function f we use the shorthand notation df := df .

Consider for example the disjunction or. The values of (x1 + uy1)or(x2 + uy2) are as follows:

or 0 + u · 0 0 + u · 1 1 + u · 0 1 + u · 1

0 + u · 0 0 u 1 u

0 + u · 1 u u 1 u

1 + u · 0 1 1 1 1

1 + u · 1 u u 1 u

Thus,

dor(x1,x2;y1,y2) = ¬x1y2 ∨ ¬x2y1 ∨ y1y2. (4.5a)

Similarly, we find

dnot(x ;y) = y, (4.5b)

dand(x1,x2;y1,y2) = x1y2 ∨ x2y1 ∨ y1y2, (4.5c)

dxor(x1,x2;y1,y2) = y1 ∨ y2. (4.5d)

Caveat: Since natural functions F are exactly those ternary functions defined by circuits, we can

obtain dF from the ternary evaluations of any circuit computing F . For Boolean functions f it is
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10 Ikenmeyer, Komarath, Lenzen, Lysikov, Mokhov, and Sreenivasaiah

more natural to think of df as a property of the function f , because the correspondence to circuits

is not as close: we can obtain df from the ternary evaluations of any hazard-free circuit computing

f on Boolean inputs.

In general, we can find the derivative of a Boolean function as follows:

4.6. Lemma. For f : Bn → B, we have df (x ;y) =
∨

z≤y [f (x )+ f (x +z)]. In particular, if f (0) = 0,
then df (0;y) =

∨
z≤y f (z).

Proof. Resolutions of x + uy coincide with x at positions where y has a 0 and have arbitrary

stable bits at positions where y has a 1. Therefore, each resolution of x + uy can be presented as

x + z for some z such that zi = 0 whenever yi = 0, that is, z ≤ y. Hence, the set of all resolutions of
x + uy is S (x + uy) := {x + z | z ≤ y}.

The derivative df (x ;y) = 1 if and only if
¯f (x + uy) = u. By definition of hazard-freeness, this

happens when f takes both values 0 and 1 on S (x + uy), in other words, when the f (x + z) , f (x )
for some z ∈ S (x+uy). The disjunction

∨
z≤y [f (z)+ f (x+z)] represents exactly this statement. □

As a corollary, we obtain a surprisingly close relation between monotone Boolean functions and

their derivatives. For a natural function F and any fixed x ∈ Bn , let dF (x ; .) denote the Boolean

function that maps y ∈ Bn to dF (x ;y), and define the shorthand df (x ; .) := df (x ; .) for a Boolean
function f .

4.7. Corollary. Suppose that f : Bn → B is monotone with f (0) = 0. Then df (0, .) = f .

4.8. Lemma. For natural F : Tn → T and fixed x ∈ Bn , dF (x ; .) is a monotone Boolean function.

Proof. Note that the expression x + uy is antimonotone in y: if y1 ≥ y2, i.e., y1 is obtained from

y2 by replacing 0s with 1s, then x + uy1 is obtained from x + uy2 by replacing more stable bits of x
with u, so x + uy1 ⪯ x + uy2. Thus, if y1 ≥ y2, F being natural yields that

F (x ) + u dF (x ;y1) = F (x + uy1) ⪯ F (x + uy2) = F (x ) + u dF (x ;y2),

so dF (x ;y1) ≥ dF (x ;y2). □

We can also define derivatives for vector functions F : Tn → Tm , F (x ) = (F1 (x ), . . . ,Fm (x )) with
natural components F1, . . . ,Fm as dF (x ;y) = (dF1 (x ;y), . . . ,dFm (x ;y)). Note that the equation (4.4)

still holds and uniquely defines the derivative for vector functions.

The following statement is the analogue of the chain rule in analysis.

4.9. Lemma (Chain rule). Let F : Tn → Tm and G : Tm → Tl be natural functions and H (x ) =
G (F (x )). Then

dH (x ;y) = dG (F (x ); dF (x ;y)).

Proof. Use equation (4.4).

H (x + uy) = G (F (x + uy)) = G (F (x ) + u dF (x ;y)) = G (F (x )) + u dG (F (x ); dF (x ;y))

= H (x ) + u dG (F (x ); dF (x ;y)),

and the claim follows with another application of (4.4). □

Using monotone circuits to compute derivatives
In this section we show how to efficiently compute derivatives by transforming circuits to

monotone circuits. Our main tool is the chain rule (Lemma 4.9).

For a circuit C and a gate β of C , let Cβ denote the natural function computed at the gate β .
From a circuit C we now construct a circuit C ′ by independently replacing each gate β on t inputs
α1, . . . ,αt (0 ≤ t ≤ 2) by a subcircuit on 2t inputs α1, . . . ,αt ,α

′
1
, . . . ,α ′t and two output gates β ,β ′
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(the wiring between these subcircuits in C ′ is the same as the wiring between the gates in C ,
but in C ′ we have two parallel wires for each wire in C). The goal is that C ′β (x ,y) = Cβ (x ) and

C ′β ′ (x ,y) = dCβ (x ;y) for Boolean inputs x ,y ∈ Bn , see the upcoming Proposition 4.10.

To construct C ′, we extend C with new gates. For each gate β in C , we add a new gate β ′. If β is

an input gate xi , then β
′
is the input gate yi . If β is a constant gate, then β ′ is the constant-0 gate.

The most interesting case is when β is a gate implementing a function φ ∈ {and,or,not} with
incoming edges from gates α1, . . . ,αt (in our definition of the circuit, the arity t is 1 or 2, but

the construction works without modification in the general case). In this case, we add to β a

subcircuit which takes α1, . . . ,αt and their counterparts α ′
1
, . . . ,α ′t as inputs and β

′
as its output

gate, which computes C ′β ′ (x ,y) = dφ (C ′α1

(x ,y), . . . ,C ′αt (x ,y);C
′
α ′
1

(x ,y), . . . ,C ′α ′t
(x ,y)). For the sake

of concreteness, for the gate types not, and, or according to (4.5) this construction is depicted in

Figure 2.

α βnot ⇒

α β

α ′ β ′

not

α1

α2

βand ⇒

α1

α2

β

α ′
1

α ′
2

β ′

and

and

and

and

or or

α1

α2

βor ⇒

α1

α2

β

α ′
1

α ′
2

β ′

or

not

not
and

and

and

or or

Fig. 2. Gates in C get replaced by subcircuits in the construction of C ′.

4.10. Proposition. C ′β (x ,y) = Cβ (x ) and C ′β ′ (x ,y) = dCβ (x ;y) for Boolean inputs x ,y ∈ Bn .
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12 Ikenmeyer, Komarath, Lenzen, Lysikov, Mokhov, and Sreenivasaiah

Proof. Clearly C ′β (x ,y) = Cβ (x ). By induction on the structure of the circuit, we now prove

that C ′β ′ (x ,y) = dCβ (x ;y). In the base case, if β is an input or constant gate, the claim is obvious. If

β is a gate of type φ ∈ {and,or,not} with incoming edges from α1, . . . ,αt , then

Cβ (x ) = φ (Cα1
(x ), . . . ,Cαt (x )).

By the chain rule,

dCβ (x ;y) = dφ (Cα1
(x ), . . . ,Cαt (x ); dCα1

(x ;y), . . . ,dCαt (x ;y)).

By the induction hypothesis, (α ′
1
, . . . ,α ′t ) = (dCα1

(x ;y), . . . ,dCαt (x ;y)), thus the induction step

succeeds by construction of C ′β ′ . □

Note that this construction can be seen as simulation of the behavior of the circuitC on the input

x + uy: the value computed at the gate β on this input is Cβ (x ) + u dCβ (x ;y), and in C ′ the gates β
and β ′ compute the two parts of this expression separately.

The construction can be seen as an adaptation of the technique of automatic differentiation,

an operator-wise transformation of a program computing a function to a program computing its

derivative. The idea is simple and dates back to the 1950’s [BC06]. A theoretically inclined reader

may be more familiar with the theorem of Baur and Strassen on computing all derivatives of a

multivariate rational function given by an algebraic circuit [BS83], which provides foundations of

an alternative method — reverse mode automatic differentiation.

By fixing the first half of the input bits in C ′ we now establish the link to monotone complexity.

In the following theorem the case x = 0 will be of particular interest.

4.11. Theorem. For f : Bn → B and fixed x ∈ Bn , it holds that L+ (df (x , .)) ≤ Lu ( f ).

Proof. Let C be a hazard-free circuit for f of minimal size and let x ∈ Bn be fixed. We start

by constructing the circuit C ′ from Proposition 4.10 and for each gate in C we remember the

corresponding subcircuit in C ′. For each subcircuit we call the gates αi the primary inputs and
the α ′i the secondary inputs. From C ′ we now construct a monotone circuit Cx

on n inputs that

computes df (x ; .) as follows. We fix the leftmost n input bits x ∈ Bn in C ′. This assigns a Boolean
value C ′α (x ) = Cα (x ) to each primary input α in each constructed subcircuit. Each constructed

subcircuit’s secondary output β ′ now computes some Boolean function in the secondary inputs α ′i .
If the values at the secondary inputs are u1 = C ′α ′

1

(x ,y), . . . ,ut = C ′α ′t
(x ,y), then the value at the

secondary output isψ (u1, . . . ,ut ) = dφ (Cα1
(x ), . . . ,Cαt (x );u1, . . . ,ut ). Lemma 4.8 implies thatψ is

monotone (which can alternatively be seen directly from Figure 2, where fixing all primary inputs

makes all not gates superfluous). However, the only monotone functions on at most two input bits

are the identity (on one input), and, or, and the constants. Thus, we can replace each subcircuit

in C ′ by (at most) one monotone gate, yielding the desired monotone circuit Cx
that has at most

as many gates as C and outputs df (x ; .) = d
¯f (x ; .) = dC (x ; .) = C ′(.), where the second equality

holds because C is hazard-free. □

We now use this construction to prove Theorem 1.3.

Proof of Theorem 1.3. The claim is trivial for the constant 1 function. Note that this is the

only case of a monotone function that has f (0) , 0. Hence assume that f is monotone with

f (0) = 0. By Lemma 4.2, we have that Lu ( f ) ≤ L+ ( f ). The other direction can be seen via

L+ ( f )
Cor. 4.7
= L+ (df (0, .))

Thm. 4.11
≤ Lu ( f ). □

Theorem 1.3 shows that the hazard-free complexity Lu can be seen as an extension of monotone

complexity L+ to general Boolean functions. Thus, known results about the gap between general

and monotone complexity transfer directly to hazard-free complexity.
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Unconditional lower bounds
Corollaries 1.4, 1.5, and 1.8 are immediate applications of Theorem 1.3. Interestingly, however,

we can also derive results on non-monotone functions, which is illustrated by Corollary 1.6.

Proof of Corollary 1.6. The fact that the determinant can be computed efficiently is well

known.

Consider the derivative d detn (0;y) =
∨

z≤y detn (z) (Lemma 4.6). If there exists a permutation

π ∈ Sn such that all yiπ (i ) are 1, then, replacing all the other entries with 0 we get a matrix z ≤ y
with detn (z) = 1, and d detn (0;y) = 1. If there is no such permutation, then all the summands in the

definition of detn (y) are 0, and this is also true for all matrices z ≤ y. In this case, d detn (0;y) = 0.

Combining both cases, we get that d detn (0; .) equals the Boolean permanent function fn from

Corollary 1.4. The lower bound then follows from [Raz85] and Theorem 4.11 (as in Corollary 1.4). □

We can combine this technique with the ideas from the proof of Theorem 1.11 to show even

stronger separation results, exhibiting a family of functions for which the complexity of Boolean

circuits is linear, yet the complexity of hazard-free circuits grows almost as fast as in Corollary 1.5.

4.12. Lemma. Let f : Bn → B be a monotone Boolean function with f (0) = 0 and д : Bn+m → B
be a function such that f (x ) = 1 iff д(x ,y) = 1 for some y ∈ Bm . Then L+ ( f ) ≤ Lu (д).

Proof. Using Lemma 4.6, we obtain

dд(0,0;x ,1) =
∨

(z,t )≤(x,1)

д(z,t ) =
∨
z≤x

∨
t

д(z,t ) =
∨
z≤x

f (z) = f (z),

which means that the circuit for f can be obtained from the circuit for dд(0; .) by substituting 1 for

some inputs. The statement then follows from Theorem 4.11. □

Proof of Corollary 1.7. We use the NP-complete family POLY(q,s ) from the paper of Alon

and Boppana [AB87]. Let GF(q) denote a finite field with q elements. We encode subsets E ⊂ GF(q)2

using q2 Boolean variables in a straightforward way. The function POLY(q,s ) maps E ⊂ GF(q)2 to
1 iff there exists a polynomial p of degree at most s over GF(q) such that (a,p (a)) ∈ E for every

a ∈ GF(q).

Alon and Boppana proved that for s ≤ 1

2

√
q
lnq the monotone complexity of this function is at

least qcs for some constant c . For simplicity, we choose q = 2
n
and s = ⌊ 1

4

√
q

logq ⌋ = ⌊
2
n/2

4

√
n ⌋. In this

case, L+ (POLY(q,s )) ≥ 2
cq1/2
√

logq
.

We define fn as the verifier for this instance of POLY. The function fn takes q2 + sq = O (q2)
variables. The first q2 inputs encode a subset E ⊂ GF(q)2, and the second sn inputs encode coeffi-

cients of the polynomial p of degree at most s over GF(q), each coefficient using n bits. The value

fn (E,p) = 1 iff (a,p (a)) ∈ E for all a ∈ GF(q). To implement the function fn , for each element

a ∈ GF(q) we compute the value p (a) using finite field arithmetic. Each such computation requires

O (sn2) gates. Then we use p (a) as a selector in a multiplexer to compute the value indicating

whether (a,p (a)) is contained in E, choosing it from all the bits of the input E corresponding to

pairs of form (a,b). This multiplexer requires additional O (q) gates for each element a ∈ GF(q).
The result is the conjunction of the computed values for all a ∈ GF(q). The total size of the circuit
O (q2 + qsn2 + q) is linear in the size of the input.

The lower bound on the hazard-free complexity follows from the Alon-Boppana lower bound

and Lemma 4.12. □
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5 CONSTRUCTING k-BIT HAZARD-FREE CIRCUITS
In this section we prove Corollary 1.10. We slightly improve on [IKL

+
18].

For a collectionT of subsets of [n], denote by LT ( f ) the minimum size of a circuit whose outputs

coincide with
¯f whenever the set of input positions with unstable bits is a subset of a set in the

collection T . Thus, ⪯-monotonicity of natural functions implies that L( f ) = L∅ ( f ) ≤ LT ( f ) ≤

L {[n]} ( f ) = Lu ( f ). Excluding k-bit hazards therefore means that we consider T =
(
[n]
k

)
, i.e., T

contains all subsets of [n] with exactly k elements. The minimum circuit depth DT ( f ) is defined
analogously.

As the base case of our construction, we construct circuits handling only fixed positions for the

(up to) k unstable bits, i.e., T = {S } for some S ∈
(
[n]
k

)
. This is straightforward with an approach

very similar to speculative computing [TY12, TYM14].

We take 2
k
copies of a circuit computing f . In the ith copy (0 ≤ i < 2

k ) we fix the inputs in

S to the binary representation of i . Now we use a hazard-free multiplexer to select one of these

2
k
outputs, where the original input bits from S are used as the select bits. A hazard-free k-bit

multiplexer of size O (2k ) can be derived from the 1-bit construction given in Figure 1b.

5.1. Lemma. A k-bit multiplexer MUXk receives inputs x ∈ B2
k
and s ∈ Bk . It interprets s a number

from [2
k
] and outputs xs . There is a hazard-free circuit for MUXk of size 6(2k − 1) and depth 4k .

Proof. A hazard-free MUX1 of size 6 and depth 4 is given in Figure 1b; its correctness is verified by

a simple case analysis. From a hazard-free MUXk and the hazard-free MUX1 we construct a hazard-free
MUXk+1 circuit C as follows:

MUXk+1 (x1, . . . ,x2k+1 ; s1, . . . ,sk+1) = MUX1 ( MUXk (x1, . . . ,x2k ; s1, . . . ,sk ),

MUXk (x2k+1, . . . ,x2k+1 ; s1, . . . ,sk ); sk+1).

One can readily verify that the resulting Boolean function is MUXk , and it has the desired circuit

size and depth by construction. To show that this circuit for MUXk+1 is hazard-free we make a case

distinction.

If sk+1 is stable, w.l.o.g. sk+1 = 0, then C outputs MUXk (x1, . . . ,x2k ; s1, . . . ,sk ), since MUX1 is

hazard-free. Thus if MUXk+1 has a hazard at (x1, . . . ,x2k+1 ; s1, . . . ,sk ,0), then MUXk has a hazard at

(x1, . . . ,x2k ; s1, . . . ,sk ). But by the induction hypothesis, MUXk is hazard-free.

Now we consider the case sk+1 = u. For the sake of contradiction, assume that MUXk+1 has a

hazard at (x1, . . . ,x2k+1 ; s1, . . . ,sk ,u). Then all resolutions (x ′
1
, . . . ,x ′

2
k+1 ; s

′
1
, . . . ,s ′k ,s

′
k+1) ∈ B

2
k+1+k+1

of (x1, . . . ,x2k+1 ; s1, . . . ,sk ,u) yield MUXk+1 (x
′
1
, . . . ,x ′

2
k+1 ; s

′
1
, . . . ,s ′k ,s

′
k+1) = b for the same b ∈ B. By

construction of C this implies that

MUXk (x
′
1
, . . . ,x ′

2
k ; s
′
1
, . . . ,s ′k ) = b = MUXk (x

′

2
k+1
, . . . ,x ′

2
k+1 ; s

′
1
, . . . ,s ′k ) .

By the induction hypothesis, MUXk is hazard-free. Thus we can conclude that

MUXk (x1, . . . ,x2k ; s1, . . . ,sk ) = b = MUXk (x2k+1, . . . ,x2k+1 ; s1, . . . ,sk ) .

This implies MUXk+1 (x1, . . . ,x2k+1 ; s1, . . . ,sk ,u) = b, because MUX1 is hazard-free. This is a contradic-
tion to MUXk+1 having a hazard at (x1, . . . ,x2k+1 ; s1, . . . ,sk ,u).

Putting both cases together we conclude that MUXk+1 is hazard-free. □

5.2. Lemma. Let f : Bn → B and S ⊆ [n] with |S | = k . Then L {S } ( f ) < 2
k (L( f ) + 6) and

D {S } ( f ) ≤ D ( f ) + 4k .

Proof. For every assignment a⃗ ∈ B |S | , compute дa⃗ = f (x |S←a⃗ ), where x |S←a⃗ is the bit string

obtained by replacing in x the bits at the positions S by the bit vector a⃗. We feed the results and the
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actual input bits from indices in S into the hazard-free k-bit MUX from Lemma 5.1 such that for stable

values the correct output is determined. The correctness of the construction is now immediate

from the fact that the MUX is hazard-free.

Concerning the size bound, for each a⃗ ∈ B |S | we have L(дa⃗ ) ≤ L( f ). Using the size bound for

the MUX from Lemma 5.1, the construction thus has size smaller than 2
k (L( f ) + 6). Similarly, we

combine D (дa⃗ ) ≤ D ( f ) with the depth of the MUX to obtain the bound D {S } ( f ) ≤ D ( f ) + 4k . □

Using this construction as the base case, we increase the number of sets (i.e., possible positions

of the k unstable bits) our circuits can handle.

5.3. Theorem. Let T =
(
[n]
k

)
. Then

LT ( f ) ≤
(ne
k

)
2k

(L( f ) + 7) and DT ( f ) ≤ D ( f ) + 2k (⌈logn⌉ + 2) .

Proof. Put an ordering on T and let Ti be the ith element in T , 1 ≤ i ≤ |T |. Denote by Ci j ,

1 ≤ i, j ≤ |T |, a circuit whose outputs coincide with ¯f whenever all unstable bits are from Ti ∪Tj .
Set ai := and(Ci1, . . . ,Ci |T | ) (where a hazard-free and with fan-in |T | is implemented by a binary

tree of fan-in 2 ands of minimum depth). We claim that o := or(a1, . . . ,a |T | ) (again a hazard-free

version implemented by a tree) coincides with
¯f whenever there are at most k unstable bits.

To show the claim, assume that x ∈ Tn is stable except at indices from some Ti ∈
(
[n]
k

)
. Assume

first that
¯f (x ) = 1. Then ai = and(1, . . . ,1) = 1. This implies o = 1, because the |T |-bit or is

hazard-free and one of its inputs is a 1. Next, suppose that
¯f (x ) = 0. Then, for each i ′ ≤ |T |,

Ci′i (x ) = 0. Hence ai′ = 0, because the |T |-bit and is hazard-free and one of its inputs is a 0. It

follows that o = or(0, . . . ,0) = 0. The case that
¯f (x ) = u is trivial; hence the claim holds.

The above circuit contains the circuits Ci j and additionally |T |2 − 1 many gates (a binary tree of

ands and ors). By Lemma 5.2, eachCi j can be implemented with size 2
2k (L( f )+ 6), as |Ti ∪Tj | ≤ 2k .

Moreover, using exactly all subsets of size 2k , we use at most

(
n
2k

)
≤

(
en
2k

)
2k

different such circuits.

This results in a gate complexity of at most(en
k

)
2k

(L( f ) + 6) +

(
n

k

)
2

− 1 <
(en
k

)
2k

(L( f ) + 7).

The depth of the circuit isD ( f )+4k from theCi j plus the depth of the trees, which is ⌈log( |T |−1)⌉ ≤
k ⌈logn⌉. □

Corollary 1.10 simply rephrases the theorem without the terminology introduced in this section.

6 COMPLEXITY OF HAZARD DETECTION
In this section, we show that detecting hazards and detecting 1-bit hazards are both NP-complete

problems, see Theorem 6.5 below. The arguments are a bit subtle and thus we introduce several

auxiliary hazard detection problems.

6.1. Definition. We say that a circuit C with n inputs has a fixed hazard at position i ∈ [n] if C
has a 1-bit hazard at a tuple x ∈ Tn with xi = u.

We fix some reasonable binary encoding of circuits and define the following languages:

• FixedHazard = {⟨C,i⟩ | C has a fixed hazard at position i}
• OneBitHazard = {C | C has a 1-bit hazard}

• Hazard = {C | C has a hazard}
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A circuit C is called satisfiable if there is a Boolean input for which C outputs 1. Otherwise C is

called unsatisfiable. We define a promise problem UnsatFixedHazard: Given an unsatisfiable circuit

C and i ∈ [n], accept if C has a fixed hazard at position i .

6.2. Lemma. UnsatFixedHazard is NP-hard.

Proof. We reduce from circuit satisfiability as follows: To decide if a circuit C on n inputs is

satisfiable, construct a circuitC ′ = C ∧ (xn+1 ∧¬xn+1) where xn+1 is a new variable. Note thatC ′ is
unsatisfiable by construction. We claim that C is satisfiable if and only if C ′ has a fixed hazard at

position n + 1.

“⇒”: Let a be an assignment that satisfies C . Then C ′ evaluates to u on input (a,u) and hence has

a fixed hazard at position n + 1.
“⇐”: If C is unsatisfiable, then C ′(a,y) = 0 for all a ∈ Bn , y ∈ T, and hence does not have a fixed

hazard at position n + 1. □

6.3. Lemma. The languages FixedHazard, OneBitHazard and Hazard are NP-hard.

Proof. Since UnsatFixedHazard is NP-hard, the more general problem FixedHazard is also

NP-hard.

We show that deciding the languages OneBitHazard and Hazard is at least as hard as solv-

ing UnsatFixedHazard. Let C (x1, . . . ,xn ) be an unsatisfiable circuit. Construct the circuit C ′ =
C (x1, . . . ,xn ) ⊕ x2 ⊕ · · · ⊕ xn . We claim that C ′ has a hazard if and only if C has a fixed hazard at

position x1.

“⇒”: Suppose C ′ has a hazard. Note that since C computes the constant 0 function, C ′ computes

x2 ⊕ · · · ⊕ xn . If any of the input variables x2, . . . ,xn has value u, then C ′ correctly outputs u.

Thus, C ′ can have a hazard only on inputs a ∈ Tn that have exactly one u occuring in the

input position 1. In this case C (a) = u because otherwise C ′(a) would be a Boolean value.

Hence C has a fixed hazard at position 1.

“⇐”: If C has a fixed hazard at position 1, then by definition, C outputs u when x1 = u while all
other inputs are stable. In this case, C ′ also outputs u on this input. This is a hazard, since

the Boolean function computed by C ′ does not depend on x1.

Thus, Hazard is NP-hard.

Note that in the first part of this proof we actually proved that for the circuit C ′ all hazards are
1-bit hazards. So, the language OneBitHazard is also NP-hard. □

6.4. Lemma. The languages FixedHazard, OneBitHazard and Hazard are in NP.

Proof. For FixedHazard and OneBitHazard we can take the input on which the circuit has a

hazard as a witness. The verifier then has to check that the circuit actually outputs u on this input

and that the outputs on the two stable inputs obtained by replacing u by 0 and 1 match.

For Hazard, the verifier cannot check the definition directly, since the number of resolutions

can be exponential. However, if a circuit C has a hazard, then there exists an input x ∈ Tn with

C (x ) = u such that on the inputs x (0)
and x (1)

that are obtained from x by replacing the leftmost u
by 0 and 1 respectively the circuit C outputs the same stable value b. This can be seen as follows.

Let HC ⊂ T
n
be the set of all inputs on whichC has a hazard. Any element x that is maximal in HC

with respect to ⪯ satisfies the requirement: since x is a hazard, C (x ) = u and the output of C on all

resolutions of x is the same stable value b. Thus the output ofC on all resolutions of x (0)
and of x (1)

is b. Since x is maximal, both x (0)
and x (1)

do not lie in HC , which implies C (x (0) ) = C (x (1) ) = b.
Such x with C (x ) = u and C (x (0) ) = C (x (1) ) = b can be used as a witness for Hazard. On the other

hand, if there exists an input x ∈ Tn that satisfies the above condition, then the circuit C has a

hazard at x . □
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From Lemma 6.3 and Lemma 6.4, we conclude:

6.5. Theorem. The languages FixedHazard, OneBitHazard and Hazard are NP-complete.

7 FUTURE DIRECTIONS
Hazard-free complexity is an interesting subject that arises in practice when constructing physical

circuits. Theorem 1.3 sends the strong message that hazard-free complexity is of interest even

without its application in mind, because it is a natural generalization of monotone complexity.

Section 5 hints towards the fact that there is a rich intermediate landscape of k-hazard free circuits to
be analyzed for different ranges of k . This can potentially be very illuminating for our understanding

of the nature and limits of efficient computation in general.

Given the lower bound corollaries to Theorem 1.3 and the circuit construction in Corollary 1.10,

one dangling open question is the fixed parameter tractability of k-hazard-free circuits: Does there
exist a function φ such that for all sequences of Boolean functions fn : Bn → B with Boolean

complexity L( fn ) there exist k-hazard-free circuits of size φ (k ) · poly(n,L( fn ))?
A further direction of interest is to understand the power of masking registers [FFL18], both in

terms of computational power and efficiency. It is neither known precisely which functions can be

computed by a clocked circuits within r rounds, and it is not clear whether a factor Ω(k ) overhead
for computing the closure with masking registers is necessary.

A CIRCUITS WITH DIFFERENT BASIC GATES
In the main part of this paper we used circuits with and-, or- and not-gates, because this is

one of the standard models in circuit complexity. But we have also already seen that the circuit

transformations we use for proving lower bounds rely only on the general construction of the

derivative and can be performed on circuits with arbitrary gates, not just and-, or-, and not-gates.
In this appendix we show that any other functionally complete set (in the sense of e.g. [End01])

can be used to give an equivalent theory of hazard-free complexity and natural functions, see

the upcoming Corollary A.4. A priori it is not obvious that every function can be implemented

by a hazard-free circuit over some set of gates, even if the set of gates is functionally complete

in the Boolean sense. We prove that everything works properly if we allow constant input gates.

This subtlety is unavoidable, since any nontrivial natural function outputs u if all inputs are u, so

any circuit without constant gates also has this property. Therefore, the constant function is not

computable by hazard-free circuits without the use of constant gates.

[Brz99, Theorem 2] shows that every natural function can be implemented over the set of

functions Φ = {and,or,not,1}. Using the fact that a hazard-free implementation of or can be

achieved via the standard De Morgan implementation x or y = not((not x ) and (not y)), it follows
that

every natural function can be implemented over the set of functions {and,not,1}. (A.1)

A Boolean function f : Bn → B is called linear if there exist a0, . . . ,an ∈ B with f (x1, . . . ,xn ) =
a0 ⊕ a1x1 ⊕ · · · ⊕ anxn . Otherwise f is called nonlinear. The composition of linear functions is

linear, but not all Boolean functions are linear. Thus every functionally complete set must contain

a nonlinear function.

Variants of the following lemma are often used as a part of proof of Post’s theorem characterizing

functionally complete systems.

A.2. Lemma. Let f : Bn → B be a nonlinear Boolean function. Then n ≥ 2. Moreover, by substituting
constants for some input variables of f , we can obtain a function of 2 variables of the form (x1 ⊕
c1) (x2 ⊕ c2) ⊕ c0.
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Proof. Using the fact that over the field F2 with two elements we have xi and x j = xi · x j and

not xi = xi ⊕ 1, we can represent f as a polynomial over F2. Using that (xi )
k = xi for k ≥ 1, we

can represent f in its algebraic normal form

f (x1, . . . ,xn ) =
⊕
I ⊂[n]

aI
∏
i ∈I

xi ,

where each aI ∈ B. We call I a monomial and call |I | its degree. Since f is nonlinear, there is at

least one monomial of degree at least 2 with nonzero coefficient aI . Thus we proved n ≥ 2. Among

monomials of degree at least 2, choose one monomial of minimal degree and set all the variables

not contained in this monomial to 0. Without loss of generality, the chosen monomial is x1 · · · xt ,
t ≥ 2. The resulting function has the form

x1 . . . xt ⊕ a1x1 ⊕ · · · ⊕ atxt ⊕ a0.

Setting all variables except x1 and x2 to 1, we obtain x1x2 ⊕a1x1 ⊕a2x2 ⊕a
′
0
, or (x1 ⊕c1) (x2 ⊕c2) ⊕c0

where c1 = a2, c2 = a1 and c0 = a′
0
⊕ a1a2. □

A.3. Theorem. LetΦ be a set of natural functions such that their restrictions toB form a functionally
complete set. Suppose Φ contains an extension of a nonlinear Boolean function that is free of 1-bit
hazards. Then every natural function can be computed by a circuit over Φ using the constant 1.

Proof. In the light of (A.1), it is enough to show that hazard-free circuits for not and and can
be implemented over Φ. The statement is trivial for the negation: since not has only one natural

extension, any circuit that computes it is automatically hazard-free. Using not, we can obtain the

constant 0 from the constant 1.

By Lemma A.2, we obtain from the 1-hazard-free nonlinear function contained in Φ a function

of the form (x1 ⊕ c1) (x2 ⊕ c2) ⊕ c0 by substituting constants 0 and 1 into this nonlinear function.

Constant substitution does not introduce hazards. Since not x = x ⊕ 1, we can transform the circuit

C computing (x1 ⊕ c1) (x2 ⊕ c2) ⊕ c0 to a circuit C ′ computing x1x2 by placing not on input xi if
ci = 1 and on the output if c0 = 1. In other words, C ′(x1,x2) = C (x1 ⊕ c1,x2 ⊕ c2) ⊕ c0.

Let us check that C ′ is hazard-free. The circuit C ′ is computing the conjunction and thus can

have hazards only on two inputs: (0,u) and (u,0). If C ′(0,u) = u, then C (c1,u) = u. This is a 1-bit
hazard, since (c1 ⊕ c1) (x ⊕ c2) ⊕ c0 = c0 for all x ∈ B. The other case is analogous. □

A.4. Corollary. Given a functionally complete set of Boolean functions, let Φ be the set of their
hazard-free extensions. Every natural function can be computed by a circuit over Φ using the constant 1.

Proof. Since a functionally complete set cannot only consist of linear functions, at least one

function must be nonlinear. A hazard-free function in particular does not have a 1-hazard. Thus

Theorem A.3 applies. □
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