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1. A voltage graph [now called a gain graph2] is a pair Φ = (Γ, ϕ) consisting of a graph
Γ = (N,E) and a voltage [now gain function], a mapping ϕ : E → G where G is a group
called the voltage group [now gain group]. The voltage [gain] on an edge depends on the
sense in which the edge is traversed: if for e in one direction the voltage is ϕ(e), then in
the opposite direction it is ϕ(e)−1. The voltage [gain] on a circle is the product of the edge
voltages taken in order with consistent direction; if the product equals 1 the circle is called
balanced. (While in general the starting point and orientation of C influence its voltage,
they have no effect on whether it is balanced.) A subgraph is balanced if every circle in it
is balanced. Assuming N is finite, let n = |N | and, for S ⊆ E, let b(S) = the number of
balanced components of (N,S).
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Matroid Theorem. The function rk S = n − b(S) is the rank function of a matroid G(Φ)
on the set E. A set A ⊆ E is closed iff every edge e 6∈ A has an endpoint in a balanced
component of (N,A) but does not combine with edges in A to form a balanced circle. A set
is a circuit iff it is a balanced circle or a bicircular graph containing no balanced circle.
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1This is the original article, reset in LaTeX, with updated terminology and references in square brackets,
June, 2006.

2[The name was changed to avoid confusion with Kirchhoff’s voltage laws.]
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We call G(Φ) a voltage-graphic matroid. [Now, a frame matroid or gain-graphic bias
matroid.] When it is a simple matroid, it is a subgeometry of the Dowling geometry Qn(G).

EXAMPLES

1) G(Γ), the graphic (polygon) matroid: G = {1}, ϕ ≡ 1.

2) Matroids of signed graphs Σ: G = {+1,−1}.

3) EC(Γ), the even-cycle matroid (M. Doob, Tutte): G = {+1,−1}, ϕ ≡ −1.

4) B(Γ), the bicircular matroid (Simões-Pereira, Klee): G = Z
E
2 , ϕ(e) = e; or G = the free

abelian group on E, ϕ(e) = e.

5) B(Γ◦), Γ◦ = Γ with a loop at every node. The lattice of flats is the set of spanning forests
of Γ.

6) ED(~Γ), the equidirected circle matroid of a digraph ~Γ (Matthews): G = Z, ϕ(e) =

+1 when e is taken in the direction assigned by ~Γ. (Similarly one has EDn(~Γ), the
equidirected circle matroid modulo n, when GZn.)

7) A(~Γ), the anticoherent cycle matroid of ~Γ (Matthews): G = the free group on N , ϕ(e) =
vw if e is directed v → w.

8) Φ = G · ∆, ∆ = a graph on n nodes; Φ is ∆ with each edge replaced by every possible
G-labeled edge.

9) Qn(G), the Dowling geometry of rank n of G, is G(G · K◦

n).

2. Now let G have finite order g. A proper µ-coloring of Φ is a mapping

κ : N → {0} ∪ ({1, . . . , µ) × G)

such that, for any edge e from v to w (including loops), we have κ(v) 6= 0 or κ(w) 6= 0 and
also

κ1(v) 6= κ1(w) or κ2(w) 6= κ2(v)ϕ(e) if κ(v), κ(w) 6= 0,

where κ1 and κ2 are the numerical and group parts of κ. Let χΦ(µg + 1) = the number of
proper µ-colorings of Φ and let χb

Φ(µg) = the number which do not take the value 0.

Chromatic Polynomial Theorem. χΦ(µg + 1) is a polynomial in µ. Indeed χΦ(λ) =
λb(E)p(λ), where p(λ) is the characteristic polynomial of G(Φ).

Balanced Chromatic Polynomial Theorem. χb
Φ(µg) is a polynomial in µ. Indeed

χb
Φ(λ) =

∑
A µ(∅, A)λb(A), summed over balanced flats A ⊆ E.

Fundamental Theorem. Let χb
X(λ) denote the balanced chromatic polynomial of the in-

duced voltage graph on X ⊆ N . Then

χΦ(λ) =
∑

X stable

χb
X(λ − 1).
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This theorem reduces calculation of χΦ(λ), or of p(λ), to that of χb
Φ(λ), which is often

easy.

EXAMPLES (continued)

1) χb
Φ(λ) = χΓ(λ).

4) χb
Φ(λ) =

∑
k(−1)n−kfkλ

k, where fk = the number of k-tree spanning forests in Γ.

3) χb
Φ(λ) =

∑
A 2n−rkAχΓ/A(λ/2), summed over flats A of G(Γ).

8) χb
Φ(λ) = gnχ∆(λ/g).

9) p(Qn(G);λ) = gn((λ − 1)/g)n, where (x)n is the falling factorial.

3. There is a geometric realization when G ⊆ R
X . Let H[Φ] be the set of all hyperplanes

xj = ϕ(e)xi in R
n where e ∈ E is an edge from vi to vj.

Representation Theorem. The lattice of all intersections of subsets of H[Φ], ordered by
reverse inclusion, is isomorphic to the lattice of flats of G(Φ).

Corollary. H[Φ] cuts R
n into |χΦ(−1)| regions (n-dimensional cells).

4. Each Φ has a covering graph Φ̃ = (G×N,G×E), an unlabelled graph. If e goes from
v to w, the covering edge (g, e) extends from (g, v) to (gϕ(e), w). Let p : G×E → E be the
covering projection.

Covering Theorem. A set S ⊆ E is closed in G(Φ) iff p−1(S) is closed in G(Φ̃).

5. The Matroid Theorem does not essentially require a voltage. All we need is a specified
class of “balanced” circles in Γ, such that if two circles in a theta graph are balanced, then
the third is also. The pair (Γ,B) is a biased graph. Although a biased graph cannot be
colored in the usual sense, it has algebraically defined “chromatic polynomials” that satisfy
the Fundamental Theorem.
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