Voltage-Graphic Matroids

Thomas Zaslavsky

1. A voltage graph [now called a gain graph²] is a pair $\Phi = (\Gamma, \varphi)$ consisting of a graph $\Gamma = (N, E)$ and a voltage [now gain function], a mapping $\varphi : E \to \mathfrak{G}$ where \mathfrak{G} is a group called the voltage group [now gain group]. The voltage [gain] on an edge depends on the sense in which the edge is traversed: if for e in one direction the voltage is $\varphi(e)$, then in the opposite direction it is $\varphi(e)^{-1}$. The voltage [gain] on a circle is the product of the edge voltages taken in order with consistent direction; if the product equals 1 the circle is called balanced. (While in general the starting point and orientation of C influence its voltage, they have no effect on whether it is balanced.) A subgraph is balanced if every circle in it is balanced. Assuming N is finite, let n = |N| and, for $S \subseteq E$, let b(S) = the number of balanced components of (N, S).

Matroid Theorem. The function $\operatorname{rk} S = n - b(S)$ is the rank function of a matroid $G(\Phi)$ on the set E. A set $A \subseteq E$ is closed iff every edge $e \notin A$ has an endpoint in a balanced component of (N, A) but does not combine with edges in A to form a balanced circle. A set is a circuit iff it is a balanced circle or a bicircular graph containing no balanced circle.

¹This is the original article, reset in LaTeX, with updated terminology and references in square brackets, June, 2006.

²[The name was changed to avoid confusion with Kirchhoff's voltage laws.]

We call $G(\Phi)$ a voltage-graphic matroid. [Now, a frame matroid or gain-graphic bias matroid.] When it is a simple matroid, it is a subgeometry of the Dowling geometry $Q_n(\mathfrak{G})$.

EXAMPLES

- 1) $G(\Gamma)$, the graphic (polygon) matroid: $\mathfrak{G} = \{1\}, \varphi \equiv 1$.
- 2) Matroids of signed graphs Σ : $\mathfrak{G} = \{+1, -1\}$.
- 3) $EC(\Gamma)$, the even-cycle matroid (M. Doob, Tutte): $\mathfrak{G} = \{+1, -1\}, \varphi \equiv -1$.
- 4) $B(\Gamma)$, the *bicircular matroid* (Simões-Pereira, Klee): $\mathfrak{G} = \mathbb{Z}_2^E$, $\varphi(e) = e$; or $\mathfrak{G} =$ the free abelian group on E, $\varphi(e) = e$.
- 5) $B(\Gamma^{\circ}), \Gamma^{\circ} = \Gamma$ with a loop at every node. The lattice of flats is the set of spanning forests of Γ .
- 6) $ED(\vec{\Gamma})$, the equidirected circle matroid of a digraph $\vec{\Gamma}$ (Matthews): $\mathfrak{G} = \mathbb{Z}$, $\varphi(e) = +1$ when e is taken in the direction assigned by $\vec{\Gamma}$. (Similarly one has $ED_n(\vec{\Gamma})$, the equidirected circle matroid modulo n, when \mathfrak{GZ}_n .)
- 7) $A(\vec{\Gamma})$, the anticoherent cycle matroid of $\vec{\Gamma}$ (Matthews): \mathfrak{G} = the free group on N, $\varphi(e) = vw$ if e is directed $v \to w$.
- 8) $\Phi = \mathfrak{G} \cdot \Delta$, $\Delta =$ a graph on *n* nodes; Φ is Δ with each edge replaced by every possible \mathfrak{G} -labeled edge.
- 9) $Q_n(\mathfrak{G})$, the Dowling geometry of rank *n* of \mathfrak{G} , is $G(\mathfrak{G} \cdot K_n^\circ)$.
 - 2. Now let \mathfrak{G} have finite order g. A proper μ -coloring of Φ is a mapping

$$\kappa: N \to \{0\} \cup (\{1, \dots, \mu\} \times \mathfrak{G})$$

such that, for any edge e from v to w (including loops), we have $\kappa(v) \neq 0$ or $\kappa(w) \neq 0$ and also

 $\kappa_1(v) \neq \kappa_1(w)$ or $\kappa_2(w) \neq \kappa_2(v)\varphi(e)$ if $\kappa(v), \kappa(w) \neq 0$,

where κ_1 and κ_2 are the numerical and group parts of κ . Let $\chi_{\Phi}(\mu g + 1) =$ the number of proper μ -colorings of Φ and let $\chi_{\Phi}^{\rm b}(\mu g) =$ the number which do not take the value 0.

Chromatic Polynomial Theorem. $\chi_{\Phi}(\mu g + 1)$ is a polynomial in μ . Indeed $\chi_{\Phi}(\lambda) = \lambda^{b(E)}p(\lambda)$, where $p(\lambda)$ is the characteristic polynomial of $G(\Phi)$.

Balanced Chromatic Polynomial Theorem. $\chi_{\Phi}^{b}(\mu g)$ is a polynomial in μ . Indeed $\chi_{\Phi}^{b}(\lambda) = \sum_{A} \mu(\emptyset, A) \lambda^{b(A)}$, summed over balanced flats $A \subseteq E$.

Fundamental Theorem. Let $\chi_X^{\rm b}(\lambda)$ denote the balanced chromatic polynomial of the induced voltage graph on $X \subseteq N$. Then

$$\chi_{\Phi}(\lambda) = \sum_{X \text{ stable}} \chi_X^{\mathrm{b}}(\lambda - 1).$$

This theorem reduces calculation of $\chi_{\Phi}(\lambda)$, or of $p(\lambda)$, to that of $\chi_{\Phi}^{\rm b}(\lambda)$, which is often easy.

EXAMPLES (continued)

1) χ^b_Φ(λ) = χ_Γ(λ).
 4) χ^b_Φ(λ) = Σ_k(-1)^{n-k}f_kλ^k, where f_k = the number of k-tree spanning forests in Γ.
 3) χ^b_Φ(λ) = Σ_A 2^{n-rk A}χ_{Γ/A}(λ/2), summed over flats A of G(Γ).
 8) χ^b_Φ(λ) = gⁿχ_Δ(λ/g).
 9) p(Q_n(𝔅); λ) = gⁿ((λ - 1)/g)_n, where (x)_n is the falling factorial.

3. There is a geometric realization when $\mathfrak{G} \subseteq \mathbb{R}^X$. Let $\mathcal{H}[\Phi]$ be the set of all hyperplanes $x_j = \varphi(e)x_i$ in \mathbb{R}^n where $e \in E$ is an edge from v_i to v_j .

Representation Theorem. The lattice of all intersections of subsets of $\mathcal{H}[\Phi]$, ordered by reverse inclusion, is isomorphic to the lattice of flats of $G(\Phi)$.

Corollary. $\mathcal{H}[\Phi]$ cuts \mathbb{R}^n into $|\chi_{\Phi}(-1)|$ regions (n-dimensional cells).

4. Each Φ has a covering graph $\tilde{\Phi} = (\mathfrak{G} \times N, \mathfrak{G} \times E)$, an unlabelled graph. If e goes from v to w, the covering edge (g, e) extends from (g, v) to $(g\varphi(e), w)$. Let $p : \mathfrak{G} \times E \to E$ be the covering projection.

Covering Theorem. A set $S \subseteq E$ is closed in $G(\Phi)$ iff $p^{-1}(S)$ is closed in $G(\tilde{\Phi})$.

5. The Matroid Theorem does not essentially require a voltage. All we need is a specified class of "balanced" circles in Γ , such that if two circles in a theta graph are balanced, then the third is also. The pair (Γ , \mathcal{B}) is a *biased graph*. Although a biased graph cannot be colored in the usual sense, it has algebraically defined "chromatic polynomials" that satisfy the Fundamental Theorem.

References

T. A. Dowling, "A class of geometric lattices based on finite groups", J. Combinatorial Theory Ser. B, 14 (1973), 61–86. MR 46 #7066. Erratum, ibid. 15 (1973), 211. MR 47 #8369.

L. R. Matthews, "Matroids from directed graphs", Discrete Math. 24 (1978), 47–61.

T. Zaslavsky, "Biased graphs", manuscript, 1977. [Biased graphs. I. Bias, balance, and gains. II. The three matroids. III. Chromatic and dichromatic invariants. IV. Geometrical realizations. J. Combin. Theory Ser. B 47 (1989), 32–52; 51 (1991), 46–72; 64 (1995), 17–88; 89 (2003), 231–297. Complete development of the basic theory of frame and lift matroids with many examples.]

T. Zaslavsky, "Signed graphs", submitted. Proofs of the Matroid, Covering, and Representation Theorems for signed graphs, and examples. [Discrete Appl. Math., 4 (1982), 47–74. Erratum, *ibid.*, 5 (1983), 248.]

T. Zaslavsky, "Signed graph coloring" and "Chromatic invariants of signed graphs", submitted. Proofs of coloring and enumeration results. [Discrete Math., **39** (1982), 214–228, and Discrete Math., **42** (1982), 287–312.]

T. Zaslavsky, "Bicircular geometry and the lattice of forests of a graph", submitted. Details on the bicircular and forest examples and their geometric realizations. [*Quart. J. Math. Oxford* (2), **33** (1982), 493–511.]
[T. Zaslavsky, "Frame matroids and biased graphs," *European J. Combin.* **15** (1994), 303–307.]

Department of Mathematics The Ohio State University 231 West 18th Avenue Columbus, Ohio 43210 U.S.A.