2. T. Zaslavsky: Voltage-graphic geometry and the forest lattice (chaired by N. Robertson)

1. We begin with a theorem that provides a focal point for the general theory. Let $\Gamma=(N,E)$ be a graph, n=|N|, f_k = the number of k-tree spanning forests in Γ , and $t(\Delta)$ = the number of tree components of the graph Δ . Let $\mathcal{F}=$ the set of forests of Γ , including the null graph, ordered in the following way: $F\leq F'$ if F' consists of some (or no) trees of F plus (optionally) additional edges linking some of these trees.

Forest Theorem. 3 is a geometric lattice of rank n. Its rank function is $rk \ F = n - t(F)$. Its characteristic polynomial (when Γ is finite) is

$$p_{\mathfrak{F}}(\lambda) = (-1)^n \sum_{k=0}^n (1 - \lambda)^k f_k.$$

Some other facts about \mathfrak{F} : its O element is (\mathbb{N},\emptyset) , its 1 is (\emptyset,\emptyset) , its atoms are (\mathbb{N},\mathbb{C}) for each link e and $(\mathbb{N}\setminus\{\mathbb{V}\},\emptyset)$ for each vertex \mathbb{V} .

The Forest Theorem can be proved directly, e.g. by deletioncontraction, but it is more interesting to derive it from the theory of voltage-graphic matroids.

2. A voltage graph is a pair (Γ, ϕ) consisting of a graph $\Gamma = (N,E)$ and a voltage, a mapping ϕ : $E \rightarrow \emptyset$ where \emptyset is a group called the voltage group. The voltage on an edge depends on the sense in which the edge is traversed: if for e in one direction the voltage is $\phi(e)$, then in the opposite direction it is $\phi(e)^{-1}$. The voltage on a circle is the product of the edge voltages taken in order with consistent direction; if the product equals 1 the circle is called (While in general the starting point and orientation of C balanced.

$$e_{6}$$
 e_{6}
 e_{6}
 e_{7}
 e_{9}
 e_{1}
 e_{7}
 e_{9}
 e_{1}
 e_{1}
 e_{1}
 e_{2}
 e_{3}
 e_{6}
 e_{6}
 e_{7}
 e_{1}
 e_{9}
 e_{1}
 e_{1}
 e_{1}
 e_{2}
 e_{3}
 e_{6}
 e_{6}
 e_{6}
 e_{6}
 e_{6}
 e_{6}

influence its voltage, they have no effect on whether it is balanced.) A subgraph is balanced if every circle in it is balanced. For $S \subseteq E$, let b(S) = the number of balanced components of (N,S).

Matroid Theorem. The function rk S = n - b(S) is the rank function of a matroid $\text{G}(\Gamma,\phi)$ on the set E. A set $\text{A}\subseteq \text{E}$ is closed iff every edge $e \notin A$ has an endpoint in a balanced component of (N,A)but does not combine with edges in A to form a balanced circle. A set is a circuit iff it is a balanced circle or a bicircular graph containing no balanced circle.

Bicircular graphs

Handcuffs

We call $G(\Gamma, \phi)$ a <u>voltage-graphic matroid</u>. In case it is a simple matroid it is a subgeometry of the Dowling lattice $Q_n(G)$ (see [1]).

- Example 1. $\phi \equiv 1$. Then $G(\Gamma, \phi) = G(\Gamma)$, the usual graphic matroid.
- Example 2. $\mathfrak{G} = \{\pm 1\}$. Then (Γ, φ) is a signed graph.
- Example 2a. Same, with $\phi \equiv -1$. Then $G(\Gamma, \phi)$ is the even-circle matroid of Γ (see [2] for references).
- Example 3. No balanced circles. Then $G(\Gamma,\phi)=B(\Gamma)$, the bicircular matroid of Γ (see [4] for references). The balanced sets are the spanning forests. The closed sets correspond to the forests F=(X,E(F)) such that the subgraph of Γ induced on X^C has no trees. The circuits are the bicircular graphs (whence the name). The rank function is rk S=n-t(S).

The first parts of the Forest Theorem follow from these observations, the Matroid Theorem, and :

- Lemma. $\mathfrak{F}\cong$ the lattice of flats of $B(\Gamma^{\circ})$, where Γ° denotes Γ with a loop at every node.
- 3. Now let Γ be finite and let Θ have finite order g . A proper $\mu\text{-coloring}$ of (Γ,ϕ) is a mapping

$$K: \mathbb{N} \longrightarrow \{0\} \cup (\{1, \ldots, \mu\} \times \mathfrak{G})$$

such that, for any edge e from v to w (including loops), we have $\mathbf{K}(\mathbf{v}) \neq \mathbf{0}$ or $\mathbf{K}(\mathbf{w}) \neq \mathbf{0}$ and also

$$\kappa_1(v) \neq \kappa_1(w)$$
 or $\kappa_2(w) \neq \kappa_2(v)\phi(e)$ if $\kappa(v)$, $\kappa(w) \neq 0$,

where $^{\kappa}$ and $^{\kappa}$ are the numerical and group parts of $^{\kappa}$. Let $\chi(\mu g + 1)$ = the number of proper μ -colorings of (Γ, ϕ) and let $\chi^b(\mu g)$ = the number which do not take the value 0.

 $\frac{\text{Chromatic Polynomial Theorem.}}{\chi(\lambda) = \lambda^{b(E)} p(\lambda), \text{ where } p(\lambda) \text{ is the characteristic polynomial of } G(\Gamma, \phi).$

 $\frac{\text{Balanced Chromatic Polynomial Theorem.}}{\chi^b(\lambda) = \Sigma_S \lambda^{b(S)}(-1)^{\left|S\right|}, \text{ summed over balanced } S \subseteq E.}$

Fundamental Theorem. Let $\chi_X^b(\lambda)$ denote the balanced chromatic polynomial of the induced voltage graph on $X\subseteq N$. Then

$$\chi(\lambda) = \sum_{X \text{ stable}} \chi_X^b(\lambda - 1)$$
.

In particular for the forest lattice we look at $B(\Gamma^O)$. The necessary finite voltage group may be, for instance, the power set P(E) with symetric difference, with voltage $\phi(e) = \{e\}$. Then the latter two theorems quickly yield the characteristic polynomial of \Im .

- [1] T. A. Dowling, "A class of geometric lattices based on finite groups," J. Combinatorial Theory Ser. B, 14 (1973), 61-86.
 MR 46 #7066. Erratum, ibid. 15 (1973), 211. MR 47 #8369.
- [2] T. Zaslavsky, "Signed graphs", submitted. Contains indications of proof of the Matroid Theorem.
- [3] T. Zaslavsky, "Signed graph coloring" and "Chromatic invariants of signed graphs", submitted. Contain proofs of the coloring results.
- [4] T. Zaslavsky, "Bicircular geometry and the lattice of forests of a graph", submitted. Has more detail, references, and applications to geometry.