TUTTE FUNCTIONS OF MATROIDS

Joanna Ellis-Monaghan Thomas Zaslavsky

AMS Special Session on Matroids University of Kentucky

 $27\ {\rm March}\ 2010$

$F(M) = \delta_e F(M \backslash e) + \gamma_e F(M/e)$

... and then, what?

TUTTE INVARIANTS

Tutte/Brylawski Theorems (graphs/matroids):

Given a "Tutte–Grothendieck invariant"

 $F : \{\text{matroids}\} \to \text{commutative, unital ring } A, \text{ s.t.}$

- (1) Universal Domain: F(M) is defined for every finite matroid.
- (2) Invariance: F(M) = F(N) if $M \cong N$.
- (3) Multiplicativity: $F(M \oplus N) = F(M) \cdot F(N)$.
- (4) Unitarity: $F(\emptyset) = 1$.
- (5) Deletion-Contraction Law:

$$F(M) = F(M \backslash e) + F(M/e)$$

if e neither a loop nor a coloop is.

Conclusion:

Each matroid M has a polynomial T_M (not depending on F) s.t.

$$F(M) = T_M(x, y) = \sum_{i,j \ge 0} t_{ij} x^i y^j,$$

where $x = F(\text{coloop}), \ y = F(\text{loop}).$ That is: $M \mapsto T_M \in \mathbb{Z}[x, y].$ $\mathbb{Z}[x, y]$: the **universal ring** for Tutte–Grothendieck invariants.

Given a *"Tutte invariant"* $F : \{\text{matroids}\} \rightarrow \text{module, that satisfies } (1, 2, 4, 5).$

Conclusion:

$$F(M) = \sum_{i,j\geq 0} t_{ij} a_{ij},$$

where $a_{ij} = F(i \text{ coloops}, j \text{ loops})$. That is, $M \mapsto \tilde{T}_M \in \mathbb{Z}\{x_{ij} : i, j \ge 0\} \cong \mathbb{Z}[x, y]^+$. $\mathbb{Z}[x, y]^+$ is the **universal module** for Tutte invariants.

STRONG TUTTE FUNCTIONS

Can we weaken any of the hypotheses?

- (1) Restrict F to graphic matroids (Tutte). Or even further?
- (2) ?
- (3) Multiplicativity: Keep.
- (4) ?
- (5) $F(M) = \delta F(M \setminus e) + \gamma F(M/e)$: same T_M with renormalized x, y. Weaken further?

The approach of

Thomas Zaslavsky, Strong Tutte functions of matroids and graphs. *Trans. Amer. Math. Soc.* **334** (1992), 317–347.

A strong Tutte function, $F : \mathcal{M} \to \text{field } K$, s.t.

- (1) Domain: any minor-closed class \mathcal{M} that contains all 3-point matroids.
- (3) Multiplicativity: $F(M \oplus N) = F(M) \cdot F(N)$.
- (4) Unitarity: $F(\emptyset) = 1$.
- (5) Parametrized Deletion-Contraction:

 $F(M) = \delta_e F(M \backslash e) + \gamma_e F(M/e)$

if e neither a loop nor a coloop is. $(\delta_e, \gamma_e \in K \text{ depend on } e.)$

Theorem 1 (Zaslavsky). There are 6 types of nontrivial strong Tutte function, each having its own universal polynomial. One type ("normal") exists for all possible parameters.

ALGEBRAS

The approach of

Bela Bollobás and Oliver Riordan,A Tutte polynomial for coloured graphs.Combin. Probab. Comput. 8 (1999), 45–93.

Given: $F : \{\text{graphic matroids}\} \to \text{commutative ring } A, \text{ s.t.}$

- (1) *Domain*: F is defined on all graphic matroids, or on any minor-closed class \mathcal{M} that contains all 3-point matroids.
- (3) Multiplicativity: $F(M \oplus N) = F(M) \cdot F(N)$.
- (4) Unitarity: $F(\emptyset) = 1$.
- (5) Parametrized Deletion-Contraction. ($\delta_e, \gamma_e \in A$ depend on e.)

Conclusion: Universal scalars and algebra:

$$\tilde{A} := \mathbb{Z}[d_e, c_e : \forall e],$$

and the *Tutte algebra*,

$$\mathbf{W}(\mathcal{M}) := \tilde{A}[x_e, y_e : \forall \ e] / \hat{\Delta},$$

where

$$\hat{\Delta} := \left\langle\!\!\left\langle c_f x_e - c_e x_f - d_e y_f + d_f y_e, \left(d_e y_f - d_f y_e - d_e c_f + c_e d_f \right) y_g, \right. \\ \left. \left(c_e x_f - c_f x_e - d_e c_f + c_e d_f \right) x_g : \forall \ e, f, g \right\rangle\!\!\right\rangle \subseteq \tilde{A}\mathcal{M}.$$

Theorem 2 (Bollobás and Riordan). Every function that factors through $T : \mathcal{M} \to \mathbf{W}(\mathcal{M})$ is a strong Tutte function. Conversely, every strong Tutte function factors through T.

What are the functions? What is $\hat{\Delta}$? What is the structure of $\mathbf{W}(\mathcal{M})$? We extend it not quite slightly.

A multiplicative Tutte function, $F : \mathcal{M} \to \text{commutative ring } A \text{ s.t.}$

- (1) *Domain*: any minor-closed class \mathcal{M} .
- (3) Multiplicativity: $F(M \oplus N) = F(M) \cdot F(N)$.
- (4) Unitarity: Give it up.
- (5) Parametrized Deletion-Contraction.

Conclusion:

Universal scalars and algebra:

$$\tilde{A} := \mathbb{Z}[d_e, c_e : \forall e],$$

and the *Tutte algebra*,

$$\mathbf{W}(\mathcal{M}) := \tilde{A}[x_e, y_e : \forall e] / \hat{\Delta},$$

where

$$\hat{\Delta} := \left\langle\!\!\left\langle \begin{array}{cc} \left| \begin{array}{c} c_{e} & c_{f} \\ x_{e} & x_{f} \end{array} \right| + \left| \begin{array}{c} d_{e} & d_{f} \\ y_{e} & y_{f} \end{array} \right| & \text{for } (ef)_{1} \in \mathcal{M}, \\ \left(\left| \begin{array}{c} d_{e} & d_{f} \\ y_{e} & y_{f} \end{array} \right| - \left| \begin{array}{c} d_{e} & d_{f} \\ c_{e} & c_{f} \end{array} \right| \right) y_{g} & \text{for } (efg)_{1} \in \mathcal{M}, \\ \left(\left| \begin{array}{c} c_{e} & c_{f} \\ x_{e} & x_{f} \end{array} \right| - \left| \begin{array}{c} d_{e} & d_{f} \\ c_{e} & c_{f} \end{array} \right| \right) x_{g} & \text{for } (efg)_{2} \in \mathcal{M}, \end{array} \right\rangle \right\rangle \subset \tilde{\mathcal{A}}\mathcal{M}.$$

Theorem 3 (Bollobás and Riordan, extended by us). Every function that factors through $T : \mathcal{M} \to \mathbf{W}(\mathcal{M})$ is a multiplicative Tutte function. Conversely, every strong Tutte function factors through T.

What are the functions? What is $\hat{\Delta}$? The structure of $\mathbf{W}(\mathcal{M})$?

TUTTE FUNCTIONS

Can we weaken the hypotheses more drastically?

(1) *Domain*: any minor-closed class \mathcal{M} .

(3) Multiplicativity: Give it up.

(5) Parametrized Deletion-Contraction.

A Tutte function:

 $F: \mathcal{M} \to$ any module over any commutative, unital ring A, s.t.

- *Domain*: any minor-closed class \mathcal{M} .
- Parametrized Deletion-Contraction:

$$F(M) = \delta_e F(M \backslash e) + \gamma_e F(M/e)$$

if e neither a loop nor a coloop is. $(\delta_e, \gamma_e \in A \text{ depend on } e.)$

Universal ring and module:

$$\tilde{A} := \mathbb{Z}[d_e, c_e : e],$$

and the *Tutte module*,

$$\mathbf{w}(\mathcal{M}) := \tilde{A}\mathcal{M}/\Gamma,$$

where

$$\Gamma := \left\langle M - d_e(M \setminus e) - c_e(M/e) : M, e \right\rangle \subseteq \tilde{A}\mathcal{M}.$$

Theorem 4. Every function that factors through $t : \mathcal{M} \to \mathbf{w}(\mathcal{M})$ is a strong Tutte function. Conversely, every strong Tutte function factors through t.

Classify all Tutte functions! What is the structure of $\mathbf{w}(\mathcal{M})$? What is Γ ?

SIMPLIFICATION

A discrete matroid is all loops and coloops.

 $\mathcal{D} := \text{ set of discrete matroids in } \mathcal{M},$ $\Delta := \Gamma \cap \tilde{A}\mathcal{D}.$

Theorem 5. $\mathbf{w}(\mathcal{M}) := \tilde{A}\mathcal{M}/\Gamma = \tilde{A}\mathcal{D}/\Delta.$

 \therefore What is Δ ? Use it to get the structure of the Tutte module.

Define

 $\tau_e(M) := \begin{cases} d_e(M \setminus e) + c_e(M/e), & e \in E(M) \text{ not a loop or coloop,} \\ M, & \text{otherwise;} \end{cases}$ $\tau_{e_1 \cdots e_k}(M) := \tau_{e_k} \cdots \tau_{e_1}(M).$

Proposition 6. $\Delta = \{\tau_{\sigma}(M) - \tau_{\sigma'}(M) : \sigma, \sigma' \in \operatorname{Perm}(E(M))\}.$

How does Δ interact with AD? How does **w** compare with **W**?

COMPARISON

Tutte module $\mathbf{w}(\mathcal{M})$ vs. Tutte algebra $\mathbf{W}(\mathcal{M})$:

An \tilde{A} -module homomorphism

 $\mathbf{w}(\mathcal{M}) \to \mathbf{W}(\mathcal{M})$ extending $\mathcal{M} \to \mathbf{W}(\mathcal{M})$.

(Proof 1. Obvious since \mathbf{W} has more properties.)

(Proof 2. The extension exists by Theorem 4 because $\mathcal{M} \to \mathbf{W}$ is a Tutte function.)

Is $\mathbf{w}(\mathcal{M})$ a submodule of $\mathbf{W}(\mathcal{M})^+$? I.e., is the mapping injective?

Generally: No. (Counterexamples, based on a general property that prevents injectivity.)

Particularly: Sometimes. (Examples, e.g., ${\mathcal M}$ consisting of all 2-point matroids.)

Often? Interesting minor-closed classes? We don't know yet. Esp., \mathcal{M} closed under direct summation? (We guess "yes".)

Other Work

(1) Classification of types of multiplicativity of a Tutte function. (Done.)

- Unitary.
- Separator strong (Joanna A. Ellis-Monaghan and Lorenzo Traldi, Parametrized Tutte polynomials of graphs and matroids. *Combin. Prob. Comput.* **15** (2006), no. 6, 835–854.)
- Strict multiplicativity (excluding \emptyset as a factor).

(2) Example minor-closed classes. (Partly done.)

- Small example: minors of a 3-point matroid.
- Closed under direct summation. (Important!)
- All minors of a fixed master matroid M_0 . (Significant.)

(3) Use the structure of $\mathbf{w}(\mathcal{M})$ to classify all types of Tutte function, with **Recipes!**

(Like the parametrized corank-nullity polynomial from Traldi 1989, a bit more generally in Zaslavsky 1992.)

Lorenzo Traldi,

A dichromatic polynomial for weighted graphs and link polynomials. *Proc. Amer. Math. Soc.* **106** (1989), 279–286.

(4) What is the effect of choosing particular parameter values? (Slightly done.)