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STRONG TUTTE FUNCTIONS OF MATROIDS AND GRAPHS 


THOMAS ZASLAVSKY 

ABSTRACT.A strong Tutte function of matroids is a function of finite ma- 
troids which satisfies F ( M 1$M2)  = F ( M 1 ) F ( M 2 )and F ( M )  = aeF(M\e) + 
b e F ( M / e ) for e not a loop or coloop of M ,where ae , be are scalar param- 
eters depending only on e . We classify strong Tutte functions of all matroids 
into seven types, generalizing Brylawski's classification of Tutte-Grothendieck 
invariants. One type is, like Tutte-Grothendieck invariants, an evaluation of a 
rank polynomial; all types are given by a Tutte polynomial. The classification 
remains valid if the domain is any minor-closed class of matroids containing all 
three-point matroids. Similar classifications hold for strong Tutte functions of 
colored matroids, where the parameters depend on the color of e ,and for strong 
Tutte functions of graphs and edge-colored graphs whose values do not depend 
on the attachments of loops. The latter classification implies new characteriza- 
tions of Kauffman's bracket polynomials of signed graphs and link diagrams. 

A Tutte-Grothendieck invariant of matroids is a function F from (finite) 
matroids to a domain of scalars, which satisfies the multiplicative, additive, 
and invariance laws: 

(A) F( M )  = F(M\e)  + F(M/e)  

if e is a nonseparating point of M (that is, neither a loop nor coloop), and 

Brylawski in [ l ]  proved all such functions to be the evaluations of a certain 
two-variable polynomial function of matroids known as the Tutte polynomial, 
tM(x ,y )  , or equivalently (as Crapo had shown in [2]) of the rank polynomial 
(or "rank-generating polynomial") RM(u ,  v) ,whose definition is very different 
but which equals tM(u + 1 , v + 1 ) .  These results were extensions to matroids 
of seminal ideas introduced originally for graphs by Tutte [ l  1, 121. 

Research into polynomial invariants of knots by Thistlethwaite (especially 
[9]) and Kauffman led the latter to define a version of the Tutte polynomial for 
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graphs with edges labeled +1 and -1 (announced in [4] with details in [ 5 ,  61). 
Kauffman's "Tutte 'polynomial of a signed graph" obeys laws slightly different 
from (M, A, I); for instance, additivity is replaced by a parametrized law 

F(T) = aF(T\e)  + b F(Tie) , 

where ( a ,  b) = (B , A) or ( A , B) depending on the label of edge e . (Here A 
and B are indeterminates.) I was inspired by Kauffman's polynomial to look 
for a generalization of Brylawski's classification theorem to functions of colored 
matroids and even more generally to functions of matroids which need satisfy 
only (M) and the linearity property 

(L) F ( M )  = a,F(M\e) + b,F(M/e) 

if e is a nonseparating point of M ,  where a, and be are arbitrary scalar 
parameters depending only on the element e . I call these strong Tutte functions 
of matroids. The main results of this paper are a classification of strong Tutte 
functions of all matroids and of analogous functions of colored matroids, where 
the parameters depend on the color of e and the function is invariant under 
color-preserving isomorphisms. (Colored matroids are the proper generalization 
of Kauffman's f1-labelled or "signed" graphs.) 

The main theorems are stated in $2. Their most notable aspect is that there 
are not one universal strong Tutte function, as with Tutte-Grothendieck invari- 
ants, but seven. One type, called normal, is a parametrized analog of Tutte- 
Grothendieck invariants, being given both by a two-variable parametrized rank 
polynomial R M ( ~ ,b ;u , v )  (Example 2.1) and a parametrized Tutte polyno- 
mial ($7). This type exists for all choices of parameters, as do the nil Tutte 
functions, which are zero on all nonempty matroids (and which are not in 
general normal). Other abnormal types exist only for special choices of param- 
eters. Every type has an expression by a parametrized Tutte polynomial, which 
expands it as a sum, over all bases, of certain monomials; but only the normal 
type has a rank polynomial and only that type depends substantially on the 
structure of the matroid, as one can see from the detailed descriptions in $2. 

The remarkable feature of the proof is that it depends only on connected 
matroids of three points and their minors (contractions of their submatroids). 
Therefore the classification holds good for functions defined on any minor- 
closed class of matroids, with points in a universe U ,which contains all three- 
point circuits and cocircuits: for instance, the class of planar-graphic matroids 
or that of transversal matroids. It is even possible to omit some of the circuits 
and cocircuits without getting new strong Tutte functions, but to prove this 
will usually require a more difficult analysis. (I plan to treat elsewhere Tutte 
functions whose domain is principal, that is, the class of all minors of a single 
fixed matroid.) 

A synopsis of this article is as follows: We begin with precise definitions, 
some facts about domains of Tutte functions, and the statements of the main 
theorems. The proofs occupy 553 to 6. We examine the parametrized Tutte 
polynomial in 37, scaling operations in 58, and duality and permutation in $9, 
including the important concept of self-conjugacy, or being invariant under the 
combination of duality and a permutation. We conclude with the application 
to graphs, which is surprisingly not quite automatic, and to Kauffman's Tutte 
polynomial, which turns out (not surprisingly) to depend only on the graphic 
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matroid. Our theory yields new axioms for Kauffman's polynomial which seem 
slightly more natural than the original ones. 

In a future work I plan to characterize weak Tutte functions, which need 
satisfy only (L), by finding the parametrized Tutte algebra of matroids, the 
analog of the Tutte-Grothendieck algebra developed by Brylawski in [ I ]  (again 
based on the fundamental idea of Tutte in [ l  11). 

We follow the matroid notation and terminology of [13] with a few variations. 
All our matroids are finite. The point set of a matroid M is E ( M )  , but we 
often write e E M as shorthand for e E E ( M )  and S & M for S & E ( M )  . 
The rank, nullity, and corank of S & M are rk(S) , nul(S) = IS1 - r k S ,  and 
cork(S) = rk M - rk S ; its complement is SC= E( M ) \ S. We write Eo(M)  
for the set of loops and E l ( M )  for that of coloops of M .  The elements of 
Eo(M)U El(M)  are called separating points of M , and those of E, (M)  = 
[Eo(M)uEl(M)IC are nonseparating elements. By (A), we mean the uniform 
matroid on A of rank r ; for example, (e)l is a coloop. The null or pointless 
matroid, on point set 0 , is written 0 . The dual matroid of M is M I  . A 
matroid is discrete if every point is a separator, that is, a loop or coloop. An n-
point circuit matroid is C,, ;a digon is a C2, a triangle is a C3, and a triad is a 
Cf . For e , f E M , e 1 1  f means e and f are a parallel pair and e 1 l L  f means 
they are a series pair. We say M is a matroid on a class U if E ( M )  = U , and 
in U if E ( M )  & U .  

The script letter A' will always denote a class of matroids. A' is in U if 
E(M)  U for every M E A' and point-covering if it is in U and (e)O , (e) E 
A' for all e E U . It is minor-closed if every minor of a member of A' is again 
in A'. By 4 2 )  we mean the class of matroids in A' which are digons or have 
at most one point. By 4 3 )  we mean 4 2 )  together with the connected 3-point 
matroids (that is, the triangles and triads) in A' and those of their minors 
which lie in A'. 

We make heavy use of vectors in K2 (where K is a field), which we re- 
gard as column vectors although often writing them horizontally in text for 
convenience's sake. Two such vectors are parallel or (homogeneously) collinear, 
pllq , if one is a scalar multiple of the other; this permits p or q = 0 ,which 
is slightly nonstandard. Vectors are afinely collinear if they lie on an affine 
line. If p ,p' , ... E K~ , we write (p ,p' ,p") (for instance) for the matrix 
whose columns are p ,p' , and p" , and Jp ,p'l for the determinant of (p ,p') . 
Thus pllq H Ip , ql = 0 .  We write p .q for the standard inner product; thus 
p l q H p . q = O .  

A function of matroids is a function F from some class A' of matroids in a 
class U (the point universe of F ) into a field K .  For instance A' may be the 
class A' (U)  of all (finite) matroids in U ; then F is called global (over U) .  
Or it may be the class A'(M) of all (finite) minors of a fixed matroid M ;  then 
F is principal. For a function F we always write 

the former are the point values of F and the latter are its point-value vectors. 
(Some of them may be undefined, if the corresponding matroids are not in A' .) 
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We call x = (x,: e E U) and y = (ye : e E U) respectively the coloop and loop 
value sequences of F and q = (q, : e E U) = (;) the point value sequence. A 
function F is nil if F ( M )  = 0 for every nonnull matroid M in its domain. 
We call F degenerate if F ( M )  is determined by E ( M ), Eo(M), E 1 ( M ) ,and 
rk M .  

A strong Tutte function F of matroids is a function F on a minor-closed 
point-covering class L in a class U ,together with a pair of parameters a, , be E 
K for each e E U ,which satisfies (M) and (L) for every matroid in its domain. 
We call a = (a, :e E U) and b = (be : b E U) respectively the deletion and con-
traction parameter sequences of F ,and we let p, = (;;) , p = (;) . A weak Tutte 
function is the same, except it need not obey (M). A Tutte function (strong or 
weak) is thus a pair ( F  , p) but we usually leave the parameters implicit. Tutte 
fuilctions Fl and F2 are equal (Fl = F2)if their domains and codomains are 
the same and F l ( M )  = F2(M) for every M in the domain; they are identical 
(Fl = F2) if they also have the same parameter sequences, pl = p2. Our usual 
point of view is that the domain, codomain, and parameters have been fixed in 
advance and we study the associated Tutte functions. 

Evidently a strong Tutte function F is completely determined by its domain, 
codomain, parameters (in which its point universe is implicit), and point val-
ues, and F(0) if F is nil (since F ( 0 )  = 1 otherwise). Thus we may write 
F = F[a ,  b ;x ,  y] = F[p  ; q] to mean that F is a strong Tutte function with 
the indicated parameters and point values. The precise domain L is thereby 
unspecified but in fact F [ p ;  q] has a unique largest possible domain. Given 
p and q , let L [ p  ;q] consist of all matroids M in U for which there exists 
a strong Tutte function with domain L ( M )  and parameters and point values 
PI^(^) and qlE(,). We call L [ p ;  q] the natural domain of a strong Tutte 
function F = F[p;  q] ,because of 

Theorem 1.1. Let p ,q E ( K ~ ) ~. There is a strong Tuttefunction F[p ; q] whose 
domain is L [ p ;  q] . Any strong Tuttefunction Foof matroids in Uo G U whose 
parameter and point value sequences are pl ,and ql uo has domain contained 
in L [ p ;  q] and extends to the strong Tuttefunction F[p ;  q] on L [ p  ;q] . 

We say a strong Tutte function F = F [ p ;  q] on an arbitrary domain has 
global type if L [ p ;  q] = L ( U )  . If the domain is clear from context we may, 
loosely, call F "global." 

Given a parameter sequence p E (KU)2 ,let U* = { e  E U :Pe # 0 ) .  

Lemma 1.2. A strong Tutte function F = F[p  ;q] is degenerate if I U*I 5 3 

Proof. Writing E, = E,(M) , etc., we have in general 

Supposing IE,I 5 3 ,  MIE, is determinedby E, and rk(MIE,) = rk M-IEl I, 
hence by the information available to a degenerate function of M .  Hence if 
E, G U* and I U*I 5 3 ,  M is completely determined by that information. 

Since linearity forces F ( M )  = 0 if E, 9 U* , it follows that F is degener-
ate. 
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We begin by listing the seven kinds of global strong Tutte functions, giving 
for each type not just its parameters and point values but also a general formula. 
Every kind is essential: none is contained by the rest. 

Example 2.1 (Normal functions). Given fixed a ,  b E K u  , the parametrized 
rank polynomial of a matroid M in U is the two-variable polynomial 

For the empty matroid this equals 1. A function of matroids which has the form 
F ( M )  = RM(a,  b;  u ,  v)  for suitable a ,  b E KU and u ,  v E K is called nor- 
mal. Any other function is abnormal. Routine calculations show that normal 
functions are strong Tutte functions. They are, as we shall see, the only sig- 
nificant ones which exist for all parameters, and the only nondegenerate global 
ones. 

Observe that 
RM1(a,  b ; u , v ) = R ~ ( b , a ; v ,  u ) ,  

that a normal function has x, = a,u.+ be, ye = a, + b,v , or more concisely 

and that the usual matroid rank polynomial [2] is R M ( u ,  v) = R M ( ~, 1; u ,v)  . 
A parametrized rank polynomial seems not to have been defined for matroids 

before, but analogs for graphs have appeared in the literature (see 5 10). 

Example 2.2 (Nil functions). A nil function is a strong Tutte function if and 
only if F ( 0 )  is idempotent, that is, 1 or 0. It is normal if F(0)= 1 and all 
p, are collinear-hence in particular for Tutte-Grothendieck invariants, where 
all p, = ( 1 ,  1)-but not otherwise. 

Example 2.3 (Elementary functions). Here we have two dual examples. Let 
Eo = Eo(M) and E l  = E 1 ( M ) .  Given a fixed a E K u  and arbitrary u E K 
and y E K u  , the (parametrized) rank-loop polynomial of M is 

For the empty matroid this equals 1. We also define the (parametrized) corank- 
coloop polynomial, 

where b E KU is fixed and v E K and x E KU are arbitrary. 
A function which can be expressed as the rank-loop polynomial for suitable 

arguments is called primal elementary. One which equals the corank-coloop 
polynomial is dual elementary. A primal (or dual) elementary function is a 
strong Tutte function with parameters a and 0 (or, 0 and b ). For a primal 
elementary function F we have 

(2.2a) xe = a,u, ye is arbitrary. 
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For a dual elementary function, 
(2.2b) x, is arbitrary, ye = b,v. 

Example 2.4 (Pairlike functions). A strong Tutte function is pairlike if F(0)= 
1 and p, = qe = 0 for all but at most two points. It is strictly pairlike if p, # 0 
for exactly two points. 

Example 2.4A (Planar pairlike functions). Distinguish two points d l  , d2 E U . 
Choose fixed pd, ,pd2 E K2 and set pe = 0 for e E U\{dl, d2). Let u , v , w E 
K be arbitrary and define a function G on L ( U )  by 

G((di)iB ( d ~ ) ~ )G((dl)i)G((d2)j) for i ,  j = 0 ,  1 ,  = 

G(M) = 0 if E ( M )  g {dl ,  d2). 
A function of this form is called planar pairlike; if pd, and pd2 are linearly 
independent it is truly-planar pairlike. It is clearly a strong Tutte function. 

If pdl and pd2 are collinear but nonzero, this falls under Example 2.4B. If 
one or both pdi are zero, it falls under Example 2.5B or A. 

Example 2.4B (Collinear pairlike functions). Here again there are two special 
points d l  , d2 E U . Let p = ( a ,  b) E K~ be any nonzero vector, let pL  = 
(b ,  - a ) ,  and choose 7~ E K u  SO that rc, = 0 if e # d l  , d2. Set p, = rc,p . Also 
let r = (rl , ro) E K2 be a vector not orthogonal to p . Let t ,  zdl , zd2 E K be 
arbitrary and define a function H on L ( U )  by 

H ( 0 )  = 1 ,  

qdi(H)= tndir + z ~ for i =~1, 2 ,, ~ 

H((dld2)l)= tndlnd2r ' P ,  

H((d1)i @ (d21j) = H((dl)i)H((d2)j) for i ,  j = 0 ,  1 ,  

H ( M )  = 0 if E ( M )  g { d l ,  d2). 
Then H is a collinear pairlike function. If red, , rcd2 # 0 ,  it is collinear strictly 
pairlike. It is obviously a strong Tutte function. 

An equivalent definition begins with p , 7c , and p, as above. Let qd, , qd2E 
K~ be arbitrary vectors satisfying p .(ndl qd2 - nd2qd1) = 0 . Define a function 
H on L ( U )  as before except that 

qd,(H) = qd, for i = 1, 2 ,  

H((dld2)l)= ndlP ' qd2= nd2P' qdl-
When one or both pdi are zero, this example falls under Example 2.5B or A. 

Example 2.5 (Multiplicative discrete functions). Let x ,  y E K u  and define F 
on A ( U )  by 

n Xe . n Ye if M is discrete, 
eEEo(M) 

if M is not discrete. 
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We call F a discrete function because it is zero on nondiscrete matroids and 
multiplicative because it obeys (M). A nil function is one example. 

Example 2.5A (Paranil functions). A multiplicative discrete function on d ( U )  
is obviously a strong Tutte function with parameters a = b = 0 .  We call it 
paranil because it has zero parameters. 

Example 2.5B (Pointlike functions). Here there is one special point d E U .  
Choose a nonzero p = ( a ,  b) E K~ and any n E K " \ { ~ ) .  Set pe = nep if 
e # d and choose any pd E K 2 .  Let p' = ( b ,  -a) .  For arbitrary w E K ,  set 

(2.3) q d = w p L ,  b u t q e = O i f e # d .  
This determines a multiplicative discrete function on &(U) , which is easily 
seen to be a strong Tutte function. We call it a pointlike function. It is strictly 
pointlike if n # 0 or pd # 0 ;otherwise it is paranil. 

One can easily verify that a nonnil function whose domain contains all digons 
is pointlike if and only if it is a strong Tutte function whose point-value vector 
is zero at all but one point. 

Now the first main theorem. 

Theorem 2.1. The strong Tutte functions with point universe U and with any 
minor-closed domain & > &(3) (U), in particular the global strong Tutte func- 
tions over U ,  are precisely the normal, nil, elementary, planar and collinear 
pairlike, paranil, and pointlike functions. 

A nice way to state the classification of global strong Tutte functions is 
that they are determined by precisely the parameter-point-value quadruples 
(a ,  b ;x , y) in the following list: 

( 0 , o ;  x ,  Y) (paranil) , 
(a ,  0 ;  a u ,  Y) (primal elementary), 
(0 ,  b;  x ,  bv) (dual elementary), 
( a ,  b ;  O,O) (nil; F ( 0 )  = 0 or I), 
( a ,  b ;  a u + b ,  a + b v )  (normal), 
( ( a ,  a2, 0 ,  ...1 ,  (b l ,  b2, 0 ,  ...1 ;  

(ual + wbl , ua2 + wb2, 0 ,  .. .) , 
(wal + v b l ,  wa2 +vb2, 0 ,  ...)) 

(planar pairlike), 
( ( a ,  n u ,  0 ,  ...), ( b ,  n b ,  0 ,  ...); 

(trl + z lb ,  tnrl + z2b, 0 ,  ...), 
(tro- zla  , tnro - z2a, 0 ,  . . .)) 

(collinear pairlike), 
( ( a l ,  a n ) ,  (bl , bn) ; (wb ,  0) , (-wa, 0)) (pointlike). 

Important domains to which Theorem 2.1 applies are the classes of matroids 
of outerplanar graphs or series-parallel networks, graphic matroids, regular ma- 
troids, transversal matroids, the matroids representable over a fixed field, or the 
matroids having no minor in any fixed list of matroids on four or more points. 

The second main theorem concerns Tutte functions of colored matroids. A 
colored matroid is a pair ( M ,  K )  consisting of a matroid M and a coloring 
K , which is a mapping E ( M )  + C , where C is a fixed color set. A minor 
of ( M ,  K ) is a colored matroid (MI,  K I  .(,,)), where MI is a minor of M .  
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(We may write (MI, K) , understanding the restriction of K to E(M1) .) An 
isomorphism of colored matroids is a matroid isomorphism which preserves 
colors. If &?' is a class of matroids and C is a color set, the class of C-colored 
matroids in A' is 

[A',C] = { ( M ,  K)  : M E  A' and K : E ( M )  -+ C). 

An invariant of [A?',C] is a function on [A',C] for which F ( M 1 ,rcl)  = 
F ( M 2 , ~ 2 )whenever ( M I ,  k-1) and (M2,  ~ 2 )are isomorphic as colored ma- 
troids. A strong Tutte function (or, invariant) of C-colored matroids in &?' is a 
function (or an invariant) F defined on [&?' , C] ,where &?' is a point-covering 
minor-closed class in U , together with parameters a, and b, for all c E C , 
satisfying 

if M = M l $ M 2  and 

if e is a nonseparator of Ml  . A strong Tutte function of colored matroids is 
global if its domain is [&?'(U), C] . It has global type if it is a restriction of a 
global strong Tutte function; loosely speaking, we may then call it global if the 
domain is made plain by context. 

To define normal, nil, elementary, and paranil functions of colored matroids, 
simply replace the parameters p, = (a,, be) by pK(,) = (aK(,), bK(,)) in Exam- 

for 
e E U ,  c E C .  The (parametrized) rank polynomial of a colored matroid 
( M ,  K )  , with parameter sequences a ,  b E K C ,  is 

A normal function of colored matroids is just an evaluation of this polynomial. 

Theorem 2.2. Let A' be a point-complete, minor-closed class of matroids in U 
containing a triangle and a triad and let C be a nonvoid set. The strong Tutte 
functions of C-colored matroids in A' are the normal, nil, elementary, and 
paranil functions of colored matroids. The strong Tutte invariants of C-colored 
matroids in &?' are the normal and nil functions as well as those elementary and 
paranil ones for which x and y are functions of color alone. 

Of the seven global types of strong Tutte function the normal type is the most 
important, both because it is the exact generalization of Tutte-Grothendieck 
invariants-since it is given by a rank polynomial-and because it is the only 
nondegenerate type and (besides nil functions, which are trivial) the only type 
which exists for all parameters, at least when the universe has more than two 
points. So it is worth knowing when a function of another global type really 
is abnormal. In reading the following proposition, keep in mind the following 
fact presented below (Theorem 6.1): a global strong Tutte function is necessarily 
paranil if a = b = 0 ,  primal elementary if a # 0 = b , and dual elementary if 
a = O = b .  

,),and qe by q(, ,c),(e), by ((e), and 2.5A, the matroids ples 2.1-2.3 
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Proposition 2.3. A strong Tutte function F is normal ifand only i f  
( 1 )  it is nil, and F ( 0 )  = 1 ,  if F is paranil, 
( 2 )  y = a ,  if F is primal elementary, 
(3) x = b ,  if F is dual elementary. 


When neither a nor b is 0 ,  F is normal ifand only if 

( 4 )  the parameter vectors are collinear, i f  F is nil, 
( 5 )  w = 1 or pd, I(pd2, if F is planar pairlike, 
( 6 )  there is q E K2 such that qe = neq for all e , if F is collinear pairlike, 
( 7 )  pe = 0 for all e # d ,  or aexd = - I P ~ , pel (equivalently, beyd = Ipd, pel) 

for some (equivalently, all) e # d such that pe # 0, if F is pointlike, 
(8) qd = 0, if F is pointlike and pe(lpd for some e # d such that pe # 0 .  

We omit the proof. One can be based on 554 and 5. 

The crucial properties of a strong Tutte function live on small matroids, 
having up to three points. Given a minor-closed class A, obviously a strong 
Tutte function on A restricts to a strong Tutte function on 4 3 ) . Conversely, 

Theorem 3.1. Any strong Tutte function on A ( 3 ) extends to a unique strong Tutte 
function on A . 

Proof. Let F be a strong Tutte function on 4 3 ) . Extend it inductively to a 

function on A by taking, for each M E A \ 4 3 )  ,either a direct decomposition 
M = MI  @ M2 (if possible) and defining 

or else a nonseparating e E M and setting 

This is certainly the only way to extend F to a strong Tutte function on A. 
The question is whether it is consistent. 

Supposing it were not, there would be a smallest M E A for which the 
extended F is inconsistently defined. That is, either M has a direct-sum 
representation M = Mi @ Mi with 

or it has a nonseparating element f such that 

Suppose (3.1) applies to M . If inequality (3.1') also holds, let Mij = 
MIIE(Mi)n E(M,! ) ] ,so that for instance Mi = Mil @ Mi2.  Since M is a 
smallest counterexample, F ( M 1 ) F ( M 2 )= nF (Mi j )  = F(Mi )F  (M;)  , contra-
dicting (3.1') . 

On the other hand if (3.2') holds for M , say with f E Ml , then calculating 
F ( M I )  yields F ( M 1 ) F  (M2)  = af  F (M\ f )  + b f F ( M /  f )  , contradicting (3.2') . 
If M satisfies (3.2) and (3.1'), a similar calculation yields a contradiction. 

This discussion shows that M 
four points. 

it has at least ,4 3 )  $! Mis connected. Since 
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Lemma 3.2. Let e , f be nonseparating points in a matroid N . The following 
statements are equivalent: 

(i) e is a separator in N \  f . 
(ii) e is a coloop in N\  f . 

(iii) e and f are in series in N. 
(iv) f is a separator in N\e  . 

Now define D = {e E M : (3.2) holds for e)  . Let e E D and f E Dc. 
Suppose that f is a separator in neither M \ e  nor M/e . Therefore 

F ( M )  = aeF(M\e)  + beF(M/e) 

= aeafF(M\ef )  + aebfF(M\e/f )  + beafF(M/e\f) + bebfF(M/ef ) .  

By Lemma 3.2 and its dual, e is a nonseparator in M \  f and M /  f .  As a 
consequence, the last expression 

But this contradicts the hypothesis f E DC. We conclude that f is a separator 
in M \ e  or M l e ,  hence e and f are in series or in parallel in M whenever 
e~ D and f E DC. 

When {e , f )  and {e', f') , where e , el E D and f ,  f' E DC, have one 
element in common, it is impossible for one to be a circuit and the other a 
cocircuit. We deduce that either {e ,  f )  is always a circuit (for e E D and 
f E DC), in which case M is a cocircuit, or {e ,  f )  is always a cocircuit, in 
which case M is a circuit. 

Say M is a circuit. (The opposite case is treated dually.) Let E ( M )  = 
{el , e2, . . . , en) with el E D and e2 E DC. Thus 

and 
F ( M )  # ae2F(M\e2)+ be2F(Mle2) 

= (ae2xe1 + be2ae,)xe3...xe,,+ be2be,F(M/ezel). 
Combining and simplifying, 

On the other hand, performing the same calculation in (ele2e3)2E 43)shows 
that (3.3) should be an equality. This is a contradiction. 

It follows that no M can exist and Theorem 3.1 is proved. 

Given a class d of matroids in U , not necessarily minor-closed, let 

be the class of matroids in U whose digon, triangle, and triad minors lie in 
AY . If 4 3 )  d , then 22 d . The theorem implies that 
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Let F be a function defined on d . We say F satisfies the multiplicative 
decomposition M = M I  M2 if M ,  M I  , M2 E d and (3.1) holds. We say F 
satisjies the linear decomposition ( M ,e )  if e is a nonseparating point of M 
and (3.2) holds. 

Corollary 3.3. Let F be a function deJined on a class d of matroids such 
that d 2 4 3 ) .  Suppose F is a strong Tutte function on 4 3 )  and satisfies 
a decomposition of each M E d \ 4 3 ) .  Then F extends uniquely to a strong 
Tuttefunction on 2. 
Proof. F extends uniquely to a strong Tutte function F on 2 ,  which 
necessarily agrees with F on d . 

A weakening of ( M ) is the following property of discrete multiplicativity: 

( D M )  F ( M )  = n xe . n ye if M is discrete. 
eEEl ( M )  eEEo(M) 

As one would expect, this can substitute for ( M ) .Corollary 3.3 is one means of 
proving this fact. 

Corollary 3.4. A function defined on a minor-closed class of matroids, which 
satisfies ( L )and (DM) ,also satisfies ( M )and is a strong Tuttefunction. 
Proof. Let F be the function and &f' its domain. F is a strong Tutte function 
on ~ 4 ~ )because every matroid in 43)is discrete or connected. F satisfies a 
decomposition of every M E d\43): multiplicative if M is discrete, linear 
otherwise. Apply Corollary 3.3. 

4. THEEFFECT OF DIGONS 

A function F defined on a minor-closed class &f' of matroids in U is sharply 
constrained already by being a Tutte function on two-point circuits. Suppose 
( ef ) l  E &f' and F is a Tutte function (weak or strong, which are equivalent 
here) on d ( ( ef ) l ) .  By deleting and contracting either e or f we get two 
equal expressions for F ( ( ef )  1 )  : 

(4.1) F ( ( e f ) ~ )= aexf + beyf = afxe + bfye. 

Thus we have 

Lemma 4.1. Let F be defined on d ( ( ef ) ~ ). F is a weak Tutte function on 
J ( ( e f ) l )  i f a n d o n l Y i f ~ e * q f = P f . q e = F ( ( e f ) ~ ) .  

If pe and pf are linearly independent, there is a unique matrix Aef such 
that (q, , q f )  = Aef(p, ,p f )  . If also F is a weak Tutte function on L ( ( ef ) l )  , 
Lemma 4.1 implies that A, is symmetric. 

Suppose F is a weak Tutte function on 42)and (ele2)1 , (ele3)1 , (e2e3)I E 
A%.Then (4.1) gives three equations: 
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Multiplying respectively by b3, bl , b2,  adding up the equations, and rearrang-
ing, we get the first equation in (4.2); the second is proved similarly. 

Suppose pl , p2 are linearly independent. Then (91, 92, q3) = A(p1, p2, p3) 
for some matrix A .  But A is determined by el and e2 and is symmetric. 
Varying e3 ,we obtain 

Lemma 4.2. Let F be a weak Tutte function on 4 2 )  . Let U have elements el 
and e2 for which p,, and p,, span K2 and suppose (ele2) , (ele)1 , (e2e)lE A?' 
for all e E U\{el , e2) .  Then there exist a ,  p , y E K such that 

and there is no other 2-by-2 matrix A such that q, = Ap, for all e E U .  

Suppose on the other hand that F is a weak Tutte function on 4 2 )  and in 
U the vectors p, are collinear but not all zero; that is, there is a nonzero vector 
p = ( a ,  b) E K2 SO that p, = n,p for all e E U . Let U* = {e E U :p, # 0 ) .  
Lemma 4.1 takes the following form: 

while n,p qf = pf .q, = 0 if e E U*,  f E U\U*,  and (ef)l E A, in other 
words 

(4.5) p l q f  if f E U\U* and (3e E U*)(ef ) l  E A?' 

Let G2(W) be the graph whose vertex set is W S U and whose edges are the 
pairs {e , f )  whose digon (ef ) l  E A?. If G2(U*) is connected, then (4.4) 
holds for all e ,  f E U* ;so there is a vector r E K~ such that q, = n,r + &,pi 
for all e E U* , where pi = ( b ,  -a) is orthogonal to p . If in addition for 
every f E U\U* there is an e E U* which is adjacent to f in G2(U), then 
qf = efpi for each f E U\U* . 

Lemma 4.3. Let F be a weak Tutte function on 4 2 )  . Suppose the parameter 
vectors p, , e E U ,  are collinear but not all zero. Let U* = {e E U : p, # 0 ) .  
Suppose that G2(U*) is connected and everypoint of U\ U* is adjacent in G2(U) 
to a point of U* . Choose p = ( a ,  b) # 0 to span the vectors p, , so p, = n,p 
for e E U ,  and let pi = ( b ,  - a ) .  Then there exist r E K~ and s E K~ so that 
q, = n,r + &,pi for all e E U .  

Let us define two types of function on A?'2(U). 

Example 4.1 (Planar functions). Suppose U and a ,  b E K u  are given. Let 
u ,  v ,w E K be arbitrary. Define a function F on 4 2 ) ( U )  by 
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We call F a planar function on 4 2 ) ( U )  since in general the parameter vectors, 
and also the point-value vectors, will span K~ . If the parameter vectors do span 
K 2 ,  we call the function truly planar. A planar function is obviously a strong 
Tutte function on 4 2 )  (U) . 

Example 4.2 (Collinear functions). Suppose U , n E K ~ ,and nonorthogonal 
vectors p = ( a ,  b) and r = (rl , ro) E K2 are given. Set p, = n,p (so a = n u  
and b = nb)  and pL = ( b ,  - a ) .  Let t E K and z E K~ be arbitrary. Define 
F :4 2 ) ( U )  +K by 

I4e = trier + ZeP , 
F ( ( e f )1) =Pe ' 4 ~=Pf ' qe = tnenfP .r. 

We call F a collinear function on 4 2 ) ( U )  since the parameter vectors are 
homogeneously collinear and the normalized point-value vectors qe/ne (for 
ne # 0) lie on an affine line. A collinear function is obviously a strong Tutte 
function on J ~ ~ , ( U ). 

A notation we use in connection with collinear functions is the vector q, = 

(ne 3 ze). 
Proposition 4.4. A planar function is a collinear function precisely when the pa-
rameter vectors pe are collinear. A collinearfunction is planar if and only if the 
point-value vectors are collinear, 

Proposition 4.5. Let U and parameters a ,  b E K U  be given and set pe = 
(ae, be). 

(a) If the parameter vectors p, ,e E U ,  span K 2 ,  then the weak Tutte func-
tions on 4 2 )  ( U )  with parameters a ,  b are precisely the planar functions. Two 
such functions are equal if and only if (u , v ,w )  = (u' ,v l ,  wl ) .  

(b) If the vectors p, ,e E U , are collinear but not all zero, say p, = n,p where 
p = ( a ,  b) E K 2 ,  then the weak Tutte functions on 4 2 ) ( U )  with parameters 
a ,  b are precisely the collinear functions. Two such functions are equal if and 
only if 

Proof. (a) Apply Lemma 4.2. 
(b) Lemma 4.3 implies the function is collinear. Suppose two collinear func-

tions are equal. That means 

ne(tlr' - tr) = (z, - zL)pL for all e E U. 

If n, # 0 ,  t'rl - tr = n;'(z, - z:)pL . Since this quantity is independent of 
e E U* , there must be a scalar constant a such that z, - z: = n,a for all 
e E U* and t'rl = tr + a p L .  Thus a p  . p  = It'r' - t r ,  p l .  If n, = 0 ,  then 
z, - z: = 0 = n,a . This settles the conditions under which the two functions 
are equal. 

5. THEEFFECT O F  TRIANGLES AND TRIADS 

We now consider a function F on a minor-closed class A" which is a Tutte 
function on d(2)with respect to a parameter sequence p .  When is it a strong 
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Tutte function on 43)? The answer depends in part on how big 4 3 )  is, but 
since even one triangle or triad is very influential we begin by examining their 
individual effects. We define 43)2= { M  E 4 3 )  : IE(M)I < 2 )  . 

Lemma 5.1. Let F be a function on a minor-closed class A of matroids which 
is a strong Tuttefunction on 43)2with parameters a ,  b E KU . 

(a) Suppose C = (ele2e3)2E A. Then F is a strong Tuttefunction on A ( C )  
i fand only if it satisjes a decomposition of C and 

for all permutations ijk of { 1, 2 ,  3 )  . 
(b) Suppose D = (ele2e3)1E A .  Then F is a strong Tuttefunction on A ( D )  

i fand only if F satisjes a decomposition of D and 

for all permutations i j k  of (1 , 2 ,  3 )  . 
Proof. We prove (a); the proof of (b) is dual. 

Suppose F is a strong Tutte function on A ( C ). Deleting and contracting 
first in the order eiej and then in the opposite order, we obtain 

F ( C )  = aixjxk f biajxk+ bibjyk
(5.3) 

= ajxixk + bjaixk+ b jb iyk ,  

which simplifies to (5 .1 ) .  
Suppose on the other hand (5.1)holds for all k = 1 , 2 ,  3 .  We wish to prove 

that the value of 
aijk = aixjxk + biajxk+ bibjyk 

is independent of the ordering i j k .  Equation ( 5 . 1 )  expresses the fact that 
aijk = ajik . That F is a Tutte function on 4 2 )  implies aijk = aikj.  It 
follows that all aijk are equal. Since F ( C )  equals one of them by hypothesis, 
F is a strong Tutte function on A ( C ) . 

When F is a planar function ( 5 . 1 )  simplifies to 

(5.4) ( ~ - 1 ) / ~ i , ~ j I ~ k . ( u , w ) = o  

and (5.2) to 

Lemma 5.2. Let F be a function, defined on a minor-closed class A ,  which is 
planar on 4 2 )  with respect to parameters a ,  b . 

(a) If F is a strong Tuttefunction on A ( C )  for some C = ( efg)2  E A?, then 
either F is normal, or u = w = 0 (so x = 0 ), or p, ,pf ,p, are collinear, or 
exactly two of p, ,pf ,p, are orthogonal to ( u, w )  (soexactly the corresponding 
two of x, , x f  , x ,  are zero). 

(b) Under a similar hypothesis on d ( D )  for D = ( ef g )  E A?, either F is 
normal, or w = v = 0 (so y = 0 ), or p, ,pf ,p, are collinear, or exactly two of 
p, ,pf ,pg are orthogonal to ( w  , v )  (soexactly two of ye ,y f  , yg are zero). 
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When F is a collinear function ( 5 . 1 )  simplifies to 

(5.6) ablqi ,  pjlpk. ( t r l ,  b )  = 0 
and (5.2) to 

(5.7) ablqi ,  qjlqk ' (fro, -a)  = 0 ,  
where qe denotes (n ,  , 2,) . Thus: 

Lemma 5.3. Let F be a function, defined on a minor-closed class A ,  which is 
collinear on 42)with respect to parameters p = n p  , where p = ( a ,  b )  . 

(a) If F is a strong Tuttefunction on 4 ( C )for some C = ( ef g)2 E 4 ,  then 
either a or b = 0 ,  or pe , q f  , q ,  are all parallel, or exactly two of qe , q f  ,q ,  
are parallel to (-b , t r l )  (so the two corresponding xh = 0 ) . 

(b) If F is a strong Tuttefunction on A ( D )  for some D = ( ef g )1 E A ,  then 
either a or b = 0 ,  or y e ,  pf , qo, are all parallel, or exactly two of Ye, q f  , qg  
are parallel to ( a ,  tro)(so the two corresponding yh = 0 ). 

6. PROVINGSAND IMPROVINGS OF THE MAIN THEOREMS 

We are ready to prove a slight strengthening of Theorem 2.1. 

Theorem 6.1. Let 4 be a minor-closed class of matroids in a set U , let a ,  b E 
K U  bejhed parameters, and assume 4 contains every two-point circuit in U . 
The strong Tuttefunctions on A with parameters a and b are precisely 

( 1 )  the multiplicative discrete functions, i f  a = b = 0 ; 
( 2 )  the primal elementary functions, i f  b = 0 but a # 0 ; 
(3) the dual elementary functions, i f  a = 0 but b # 0 ; 
( 4 )  the normal, pointlike, and nil functions and the planar and collinear 

pairlike functions, i f  a and b # 0 and A contains every three-point 
circuit and cocircuit. 

Proof. The case a = b = 0 is obvious. 
If b = 0 # a ,  a strong Tutte function F is, by Proposition 4.4(b),a collinear 

function for which b = 0 # a .  Then Xe = n e x ,  where x = trl , and ye = 
tnero - z,a is completely arbitrary. Thus F is primal elementary. 

The case a = 0 # b is similar. 
Henceforth F is a strong Tutte function on A? with parameters a ,  b # 0 

and with 4 > 4 3 ) .  The proof splits according as the parameter vectors pe 
span K2 or not. 

If they span K 2 ,  Proposition 4.5(a) applies. Assume F is abnormal, so 
w # 1 .  Choose dl and d2 so pd, and pd2 span K 2 .  Letting e = dl  and 
f = d2 in Lemma 5.2 yields x ,  = y, = 0 for all g # dl  , d 2 .  

If p, = 0 for all g # dl  , d 2 , then F is planar pairlike. Otherwise there is 
a pd3# 0 such that, say, pdl and pd3 are linearly independent. From Lemma 
5.2 with e = dl , f = d 3 ,  and g = d 2 ,  we deduce qd2 = 0. If any p, is 
independent of pd, we can similarly deduce qd, = 0 ,  whence F is nil. The 
alternative is that p, = rep for e # dl  , where p = ( a ,  b )  # 0 .  From Lemma 
4.1 we have qd, .p = 0 ; it follows that qdl is a scalar multiple of pL = ( b ,  -a) 
and therefore F is pointlike. 

This concludes the case in which the parameter vectors span K ~ .Notice 
that we used only the existence in A? of 3-point circuits and cocircuits on all 
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triples {dl , d 2 ,g} ,where d l  and d2 are a fixed pair whose parameter vectors 
are independent. 

From now on we assume each p, = n,p for some vector p = ( a ,  b) in which 
neither component is zero, and not all n, are zero. Proposition 4.5(b) shows 
that F is collinear. 

If U contains points dl  and d2 whose vectors qdl and qd2 are linearly 
independent, then Lemma 5.3 with e = dl  and f = d2 implies 

for all g # dl , d2 ,  

whence t(p .r) = 0 .  It follows that t = 0 ,  so qg = zgpL for all g E U and 
q, = 0 for g # dl , d2 .  If n, # 0 for some e # dl , d 2 ,  then q, is linearly 
independent of qd, or qd2, let us say qdl , and from Lemma 5.3 with f = dl 
and g = d2 we deduce zd2 = 0 ,  whence qd, = 0 .  Therefore F is pointlike. 
If on the contrary n, = 0 for all e # dl  , d 2 ,  then F is a collinear pairlike 
function because nd,qd2- nd2qd, is a scalar multiple of pL . 

Suppose finally that the vectors q, , e E U , are collinear. Because n # 0 ,  
z = On for some 6' E K and we have q, = n,(tr + 6'pL). Thus F is normal. 
This completes the classification. 

We shall deduce Theorem 2.2 from a generalization of Theorems 2.1 and 6.1 
to colored universal point sets. A coloredpoint universe (U , y )  is a universe U 
together with a mapping y : U + C ,  called a coloring of U , whose codomain 
is a color set C . A color class is any nonempty set y-'(c) for c E C . The 
coloring itself is usually less important than the partition into color classes and 
the corresponding equivalence relation on U ,which we denote by =. We may 
even call ( U ,  =) a colored universe, ignoring the coloring itself. 

A colored isomorphism of matroids Ml and M2 in a colored universe is an 
isomorphism 0 :E(Ml)+E(M2) which preserves color class; that is, e = 0(e) 
for all e E E(Ml).  By MI -M2 we mean Ml and M2 are color-isomorphic. 
A function q on U is equivariant if it is constant on color classes. A function 
F of matroids in U is called equivariant when it satisfies 

A strong or weak Tutte equivariant of matroids in (U , =) is a Tutte function of 
matroids in U which is an equivariant function and whose parameter sequence 
is also equivariant. For a strong Tutte function, equivariance is implied by 

Here is the main theorem. 

Theorem 6.2. Assume a colored point universe (U' , =), equivariant parameters 
a ,  b E K ~ ', and a point-covering minor-closed class A' of matroids in U' are 
given such that, for any {el, e2} C U', there is a circuit E A' with 
el = fi and e2 - f2. Then the strong Tutte equivariants defined on A' with 
parameters a and b are precisely the equivariant functions which are 

(1) multiplicative discrete, if a = b = 0 ; 
(2) primal elementary, if a # 0 = b ; 
(3) dual elementary, if a = 0 # b ; 
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(4) normal, nil, paranil, pointlike (with distinguished point constituting a 
singleton color class),planar pairlike (with distinguishedpoints constitut-
ing two singleton color classes), or collinear pairlike (with distinguished 
points constituting two singleton or one doubleton color class), if a and 
b # 0 and if for any triple {el, e2, e3) c U' , there are matroids 
( f i f2 f3 )2  and (glg2g3)1E A' with ej = f; gi for i = 1 , 2 ,  3 .  

Proof. Let A" be the class of matroids MI' in U' such that M" = M' for 
some M' E A ' ,  and define F(M1') = F(M1). This extends F to A" as a 
strong Tutte function if F was a strong Tutte equivariant of A ' ,  because a 
colored isomorphism 0 of M" to M' induces a bijection of A(M1') with 
A ( M 1 )  which preserves colors, parameters, function values, and the minor 
relationship. Now A" satisfies the conditions of Theorem 6.1. Theorem 6.2 
follows. 

Proof of Theorem 2.2. We reifj, the colors, which means we construct a colored 
universe U' = Ux C ,equivariant parameters a' , b' E KO' given by pi,, ,) = pc , 
and a certain new minor-closed class A'. To define A' we need to construct 
from ( M ,  K )  E [A,C] a matroid M, in U' . The point set is E(MK)= 
{(e,~ ( e ) ): e E M )  and the matroid M, is chosen so that projection on the 
first coordinate is an isomorphism M, -+ M .  Then A' = {M, : ( M ,  K )  E 

[ A ,  C]) . Finally we define Ft(M,) = F ( M ,  K )  . Now apply Theorem 6.2 
with F' as the function and a', b' as the parameters. This gives Theorem 2.2. 
There are no pairlike or pointlike examples in Theorem 2.2 because every color 
class has at least three members. 

An ordered matroid ( M ,  0) is a matroid M together with a linear ordering 
0 of its point set (or of a larger set). Given a fixed basis B we call a point e 
internally active [or, inactive] with respect to B if e E B and it is [or, is not] the 
largest element of the unique cocircuit in BCu {e) . We call e externally active 
[or, inactive] with respect to B if e 6B and e is [or, is not] the largest element 
in the unique circuit in BU{e) . (Thedefinitions of internal and external activity 
in graphs are due to Tutte [12]; they were extended to matroids by Crapo [I].) 
Let 

B+ = {e E B :e is internally active), B- = B\B+ , 
Bf = {e 6B :e is externally active), B- = BC\B+. 

Now suppose parameters a ,  b E K ~ ( ~ )and variables x ,  y E K ~ ( ~ )are 
given. The (ordered) parametrized Tutte polynomial of ( M ,  0) is 

tM,o(a,b;  x ,  Y) = x(B+)b(B-)y(BC)a(B-), 
B 

summed over all bases B of M .  (Here z(S) denotes neEsze.). If for 
particular values (a ,  b ;x ,y) the value of tM,o(a,  b ;x , y) is independent of 
the ordering, we call this value the parametrized Tutte polynomial of M and 
write tM(a, b ;x ,  y) for the common value. In these circumstances we also say 
tM(a,  b ; x ,y) is well dejned. 



334 THOMAS ZASLAVSKY 

Of course t~ is not really a polynomial in x and y since their permitted 
values are constrained by the need for t~ to be well defined. However, when 
appropriate choices of x and y are made, t~ does become a polynomial; see 
the concluding remark of this section. 

The main results about Tutte polynomials show that in a sense they are uni- 
versal strong Tutte functions. 

Theorem 7.1. Given a set U ,parameters a ,  b E K u  , and variables x ,  y E KU, 
then tM(a,b ;x ,y) is a well-defined strong Tutte function on &[a, b ;x ,y] 
with parameters a and b . Furthermore, if & is any minor-closed subclass of 
A ( U )  on which tM(a, b ;x ,  y) is well defined, then & C&[a, b ;x ,  y] . 
Theorem 7.2. Given a strong Tutte function F on a minor-closed class A@' of 
matroids in a set U,  let x and y be its point values and a ,  b its parameters. 
Then tM(a , b ;x , y) is well defined and equals F (M)  for every M E d,unless 
F is identically zero (with F(0)= 0) .  

Before proving these theorems we mention an orthogonal duality property 
of the Tutte polynomial. Let B be a basis of M .  Its corresponding basis of 
M I  is BC . Calculating B+ , etc., in M and (BC)+ , etc., in M I  , we see that 
(BC)+= B+ , (Be)- = B- , (BC)+= B+ , and (BC)- = B- . Therefore 

We need some notation and a lemma. Let us write t~ as an abbreviation 
for tM(a, b ;x ,  y) , tM,0 for tM, o(a,  b ;x ,  y) , etc. We shall take M to have 
point set E(M) = {el, e2, .. . , en}, the points numbered in increasing order 
according to 0 .  We write ai for a,, , etc. 

Lemma 7.3. We have 

and 
t ~ ,  a1 if el is not a separator of M. o = 0 + bl tM,,, ,0 

Proof. The first formula is obvious. 

For the second formula we make some observations about a fixed nonsepa- 
rating point ei and basis B of M .  Suppose ei 61 B . A point e, 61 B , other 
than ei , has the same state of activity (with respect to B ) in M\ei as it does 
in M . A point ej E B is active in M precisely when it is the largest element 
in [ c ~ o S ~ ( B \ ~ ~ ) ] ~  ; it is active in M\ei precisely when it is the largest element 
in [ ~ l ~ s ~ \ , , ( B \ e j ) ] ~[~ l loS~(B\e j ) ]~ \ e~Provided j > i , ej is the largest = . 
element in both sets or in neither. Taking i = 1 we get 

where the calculations on the right are done in M with B ranging over bases 
of M not containing el . 

If ei E B we look at M I  and its basis Be. Applying (7.2) to ML\el yields 
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summed over bases BCof M I  which do not contain el . Dualizing by means 
of (7.1) and the argument preceding it gives 

summed over bases B of M which do contain el . 
Now we observe that 

= a1tM\el,0 f bl tM/el,0 

by (7.2) and (7.3). 

The proof shows that we cannot in general expect t ~ , oto be linear with 
respect to other points than el . 
Proof of Theorem 7.1. Lemma 4.1, equation (5.3), and Lemma 7.3 imply that 
t~ is well defined on ~ 4 7 ~ )[p ;q] . Lemma 7.3 and Corollary 3.3 imply that tM,0 

is a strong Tutte function on J473)[p;q] ,which equals A l p ;  q] by (3.4). This 
is true equally well of tM,0, for any other ordering 0' ;hence t ~ ,0 and t ~ ,01 

are identical strong Tutte functions on &[p ;q] . So t~ is a well-defined strong 
Tutte function on A [ p  ;q] . 

If t~ is well defined on a minor-closed class &, it is multiplicative and 
linear on & by Lemma 7.3. Thus A' C&[p ;q] by Theorem 1.1. 

Proof of Theorem 7.2. Since & G &[p ;q] , t~ is a well-defined strong Tutte 
function on 4.So on A it is identical to F . 

Example 7.1. To show that the function t~ can be well defined even though 
M @ A [ a ,  b ;  x ,  y] (but as we saw, M cannot be a minimal nonmember of 
&[a, b ;  x ,  y]) we give the example of M = (ele2e3)1,a three-point cocircuit. 
We take a1 = a2 = a3 = 0 ,  y2 = y3 = 0 ,  but yl , b2, b3 # 0 .  We indicate the 
ordering of points by the subscript sequence ijk . We have tM,i;k = biyjyk = 0 
for all orderings, but 

so t(12)1and t(13)1are not well defined even though t~ is. 

What goes wrong with t~ must happen at the bottom or not at all, according 
to the next result. 

Corollary 7.4. If a ,  b , x ,y E K are such that t ~ ( a ,b ;x ,y) is well defined 
for all digons, triangles, and triads in U , then t ~ ( x ,y ;a ,  b) is a well-defined 
strong Tutte function on 4 ( U ) . 
Proof. Under the hypothesis, &?[a, b ;x ,y] =&(U) . 

Theorem 7.2 implies formulas, which the reader can easily supply, expressing 
the Tutte "polynomial" as a polynomial function of the parameters, the other 
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arbitrarily chosen quantities, and possibly 0 ,  in each global example of 52. For 
example, the nil function tM(a,b ;0 ,  0) is the polynomial OIE(M)I . 

Pointwise scaling means transforming a function F :&Y -+ K to F' defined 
by 

where y E (K*)" . Cross scaling means transforming F to F" defined by 

where a ,  p E K* . The names are explained by Proposition 8.1. For y ,n E 
K u  , let y o n denote the pointwise product ("~ene: e E U ). 

Proposition 8.1. The function obtained from a strong Tutte function F = 
F[a ,b ;x ,y] through pointwise scaling by y E ( K * )  is the strong Tutte func-
tion F' = F [ y  o a ,  y ob;  y o x ,  y oy] on thesame domain. 

Thefunction obtainedfrom F through cross scaling by a and P is the strong 
Tuttefunction F" = F[aa,  Pb;  Px ,  ay] on the same domain. 
Proof. The first part is obvious from the definitions. Both parts are obvious 
from the Tutte polynomial. 

Let us call strong Tutte functions scaling equivalent if they are related by 
pointwise and cross scaling. Evidently they are then essentially similar. One can 
use scaling to simplify the great variety of Tutte functions. Pointwise scaling 
allows one to assume, say, that all a, = 1 or 0 .  Up to scaling equivalence, 
all the parameter vectors of every collinear function belong to ((0,  0) , (0,  1), 
( 1 ,  O), ( 1  , I))  . A primal elementary function with all a, # 0 scales to 

a dual elementary function with all be # 0 scales to 

and any normal collinear function scales to the ordinary Tutte polynomial, 
tM(x,y )  = RM(x- 1 ,  y - 1 ) .  However, scaling does not seem to help much 
with the most general type: normal functions whose parameter vectors are non-
collinear. 

Here we examine transformations of strong Tutte functions that are more 
substantial than scaling: permutations, which are induced by permuting the 
point universe, and conjugations, induced by dualizing and permuting. We are 
interested particularly in the functions which equal their own transforms; this 
will enable us in 5 1 1  to cast some new light on Kauffman's "Tutte polynomial 
of a signed graph" and his recursive link-diagram polynomial. 
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A permutation o of U acts on functions of U ,  like Ku  and (KU)2 ,and 
on A ( U )  in the obvious ways, e.g., y E KU becomes ya given by (y a)e  = ye0 , 
and M becomes Ma defined by E(Ma)  = E(M)' and rkMo(Sa)= rkM(S). 
For A A ( U )  let Aa= {Ma :M E A } .  If F is a function on A ,  Fa is 
the function on Aa given by Fa(Ma)= F ( M ) . 

Duality acts on A by the rule AL= {ML : M E A )  , on F by the defini-
tion F L ( M )= F(ML), and on K2 and (Ku)2by interchanging coordinates, 
i.e., p = ( a ,  b) H p* = (b ,  a )  and p = (a ,  b) H p* = (b,  a ) .  Combining 
duality with a permutation o yields the a-conjugate: MLa, P * ~ ,or F * a .  

The supersymmetric group of U , 6*(U), consists of all permutations and 
conjugations of A ( U )  . Its permutation part e O ( U )is the symmetric group 
6 ( U ); its conjugation part is 6 l ( U ) .  The supersymmetric group of A G 
A ( U )  , the subgroup leaving A invariant, is written 6*(A). An action of 
a group 6 on A is a homomorphism p : 6 -+ 6*(A); we define 6' = 
p- ' (6 ' (A))  and we call o E 6 a permutation or conjugation according as 
p(o) is one or the other. We normally suppress the symbol p . For an object 
X acted upon by 6 and for 6 G 6 ,  X 6  denotes {Xu:o E 6 ) .  An object or 
set is, as usual, invariant under 6 if it equals its image under the action of 6 ,  
e.g., if X 6  = X ;it is self-conjugateunder 6 if 6 consists of permutations and 
it is invariant under { l o  : o E 6). We say self-dual for self-conjugate when 
6 = {identity}. As is customary we shorten (0)-invariant to o-invariant, and 
so forth. A strong Tutte function F = F[p; q] is strongly invariant (or, self-
conjugate) if both F and its associated parameter sequence p are invariant 
(or, self-conjugate). 

The action of 6 is odd if there is a conjugation o E with a fixed point; 
otherwise it is even. 

Lemma 9.1. An action is even ifand only if e6O ne6l  = 0 for everypoint e . 

Most interesting perhaps is the case where 6 is a cyclic subgroup ( 6 )  of 
6 * ( U ) .  The action of ( 6 )  is odd if and only if 6 is a conjugation whose 
permutation part has an odd cycle. 

Suppose 6 acts on A ( U )  . The obvious way to get a strong Tutte function 
which is @-invariant is to take F = F[p; q] ,where p and q are @-invariant. 
Not every example is of this type: consider for example a nil function with 
parameters that are not invariant; or more substantially F (M)  = n{ae + be : 
e E M )  = RM(a,b ; 1 , 1)  ,where a +b is @-invariant( 6 being a permutation 
group); here the parameters can be varied as long as each sum a, + be remains 
constant. But @-invariantparameters do exist in both cases, with some excep-
tions: in the latter example for instance we may take a: = b: = i(a, + be) to 
get parameters that are both @-invariantand self-dual, except when char K = 2 
and a, + be # 0 .  This behavior is typical. 

Theorem 9.2. A strong Tutte function of matroids which is @-invariant(where 
6 acts on A ( U ) )  always has a parameter sequence that makes it strongly 6-
invariant-with the possible exception, when char K = 2 and 6 has odd action, 
of a 6-self-conjugatefunction which is degenerate or nonglobal. 

The proof depends in the first place on finding out how the parameters which 
may be associated with a given strong Tutte function F (are feasible for F ) 
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are constrained by the values of F . For e E U , let 

and put F( M, e) = (F(M\e),F(MIe)) E K2 . The constraints on p, may be 
written as 

Thus the set S(e) of feasible parameters p, forms an affine subspace of K2 
and the choices of parameter vectors p, for different points e are independent. 

Let F be @-invariant. We may assume 6 6*(U)  without loss of gener-
ality. We have Leg= (&,)", F(Mu, eu)= F ( M ,  e) ,and S(eU)= S(e) for 
every o E 6'. Let [el denote the orbit of 6 which contains e . 

Let us look first at the case 6 G 6 ( U ) .  Pick one fixed element dLelin each 
orbit [el and define p' E ( K ~ ) ~by p: = pdIel. Then p' is a @-invariantfeasible 
parameter sequence for F ,as required. 

Suppose 6 g 6 ( U ) .  For a conjugation 6 = Io o ,  from F' = F it 
follows that A!'" A7 , Leo= ( L B ) e o= (Le)B, F(M6)  = F6(MB)= F(M)  , 
F ( M 6 ,  e") = F"M6, eu)= F ( M ,  a ) * ,and hence 

S(eU)= {p E K2 :p F ( M ~ ,e") = F(M') VM$E Leo= (&e)B) 

SO that S(eu)= S(e)*,where S* denotes {p*:p E S )  . Define 

if the action of 6 on [el is even. 
If the action of 6 on [el is odd, let z E 6 l  have fixed point e . It follows 

that S(e) = S(e7)= S(e)*. Thus p,' E S(e) and, as long as charK # 2 ,  we 
can take 

to get self-conjugate parameters. 
To solve the case of characteristic 2 we need a deeper analysis. We can 

restate S(e) = S(e)* as self-duality of the constraints on p, : a constraint 
pe .F ( M ,  e) = F(M)  implies p, .F ( M ,  e)* = F(M)  is also a constraint. 
Subtracting, we get 

p , . [F(M, e) - F ( M ,  e)*]= O .  

So if F(M\e)  # F(M/e)  for even one ( M ,  e) E ,Ne,we have pee(1 ,-1) = 0 ,  
whose general solution is p, = (t , t) . Therefore p, is self-dual, and one can 
take P: =Pdlel 

Let U1 be the set of all e E U such that 6 acts oddly on [el and 

(9.3) F(M\e)  = F(MIe) for all M E L e  , 

and let Uo = {e E U1 :F(M\e)  = 0 VM E A,).  Each Ui is a union of orbits. 
The unsolved case is where U1 is nonvoid. Assuming that F is global and has 
no @-self-conjugateparameter sequence and that charK = 2 ,  we prove that 
U1 # 0 implies F is degenerate. We may as well assume at the outset F is 
normal. 
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Say e E U1 . Taking M = ( ef ) l  in (9.3),we deduce 

(9.4) xf  = y f  for all f # e.  

If e E Uo, then qf = 0 for all f # e . Hence F is nil or pointlike, degenerate 
either way. So we may assume Uo = 0 .  

We show Ul nU* # 0 . Suppose on the contrary that pe = 0 for all e E Ul . 
Then p is self-conjugate on Ul and (as in (9.2))can be made so on U\Ul , 
contradicting one of the hypotheses on F . So in fact there is a point e E 
ulnu* .  

By applying (9.4) to e we infer a f ( u  - 1 )  = b f ( v  - 1 )  for all f # e .  If 
u = v = 1 , F is degenerate; otherwise we have pf = n f p  if f # e , for some 
p = ( a ,  b )  E K2 and n E KU\, . Consequently x f  = n f x  if f # e , where 
x = au + b = a + bv . If x = 0 ,  F is obviously degenerate; therefore we can 
assume x # 0 .  

Now taking M = ( efg)2  in (9.3) we see that F ( (f g ) 2 )  = F ( ( fg ) l ) ,  in 
other words xfx ,  = a f x ,  + b f y g. This reduces to n f n g x 2= n f n g ( a+ b ) x  . 
We can take f ,  g E U*\e (or else F would be degenerate, by Lemma 2.2); 
then n e n f x  # 0 so a + b = x . It follows that a f  + b f  = x f  = y f  Vf # e , and 
thence we have by induction on IE,  ( M )I the formula 

i f e $ M ,  

(9.5) F ( M )  = 1, . n xf , where 1, = if e E E o ( M )u E 1 ( M ) ,  
feM\e ae+be i f e ~E, (M) .  

The conclusion: F is degenerate. 

We have already seen that there do exist global degenerate examples of self-
conjugate strong Tutte functions in characteristic 2 which have no self-conjugate 
parameters. I do not know whether there exist any nonglobal, nondegenerate 
examples. One would like to know, for instance, whether there are such func-
tions with domain A ( M o ), where Mo is a self-dual matroid which is large 
enough to be nontrivial. 

One can apply Theorem 9.2 to colored matroids by reifying the colors as in 
the proof of Theorem 2.2 (in $6). That is to say, we define an action of 6 on 
C-colored matroids in A to be an action of 6 on [A,C ], or on A' (see 
$6).  

Theorem 9.3. A strong Tutte function of colored matroids which is @-invariant 
(where 6 acts on C-colored matroids in A) always has a parameter sequence 
that makes it strongly invariant-with the possible exception, when char K = 
2 and the action is odd, of a @-invariantfunction which is degenerate or not 
global. 

In a typical application 8 acts exclusively on the colors, not the point uni-
verse U (see $ 1 1  for the case of two colors). 

A weak Tutte function of graphs is a function F defined on (finite) graphs 
which satisfies 

(LG) F ( T )= a, F (T\e) + beF (Tie) if e E E' (T), 
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where E1(T) is the set of nonloop edges of the graph T . A strong Tutte function 
of graphs also satisfies 

(MG) F(T1 kJ l-2) = F(Tl)F(T2),  
where Irl means disjoint union. These differ slightly from the corresponding 
matroid postulates: (LG) is stronger than (L) since in the former e may be an 
isthmus, but (M G )  is weaker than (M). In this respect we follow the original 
work on the subject [ l l ] ,  where Tutte studied functions of graphs he called W-
functions and V-functions, which are weak and strong Tutte functions having 
the invariance property T1 2 T2 + F(T1)= F(T2) as well as a, = be = 1 for all 
e . (In modern terminology one might call a V-function a Tutte-Grothendieck, 
or TG, invariant of graphs.) 

10a. Portable Tutte functions. Two further properties a function F might 
have are K1 -invariance and portability of loops: the properties that F(K1) is 
independent of the exact vertex in the K1 and that F(T)  is not altered if a 
loop is moved from one vertex to another. We shall investigate mainly such 
functions, which we call portable. A portable TG invariant is, it turns out, 
merely a suitably adjusted TG matroid invariant; to be precise, an evaluation 
of the dichromatic polynomial 

Qr(u, V )  = S - n + c ( S )  = UC(S)R v ) ,G(T)(u, 
SCE(l-1 

where n = IV(T)l, c(S) is the number of components of (V(T) , S), and G(T) 
denotes the "polygon" or "circuit" matroid of T ,  whose matroid circuits are the 
graph circuits. We are therefore led to suspect a similar connection for strong 
Tutte functions and indeed it is almost true (see Theorems 10.1 and 10.2). 

We begin with some notation. T denotes a finite graph with vertex set V = 
V(T), edge set E = E(T), order n = I V1 , and size m = I El . E, is the set 
of nonloop, nonisthmus edges. We assume all graphs are finite with E C U ,  
a fixed universal edge set; we call them graphs in U . Given a K1-invariant 
function F of graphs, we define A = F(K1) and A, = F ( h ) ,  h being the 
one-vertex graph whose single edge is a loop e . We also write A = (A, : e E U) . 
If F depends only on the matroid G(T), it can be regarded as a function of 
graphic matroids. 

Theorem 10.1. Let F be a portable strong Tutte function of all graphs in U 
with parameters a and b and with A # 0 .  Then A-C(r)F(T) is a strong Tutte 
function of graphic matroids in U which satisfies x = aA + b . 
Proof. Let F1(T) = A-@)F (T). We use induction on m = I El . For m = 0 
the result is obvious. So let m 2 1 and take T with m edges. We assume that 
for all graphs T1 having fewer edges, F1(T1) depends only on G(Tl); abusing 
notation slightly we write F1(G(Tl)) for this value. 

Suppose e E E, . Then (L G )  implies F1(T) = aeF1(T\e)+ beF1(T/e)= 
aeF1(G(T)\e)+ beF1(G(T)/e). So G(T) determines F1(T) and F1 satisfies 
(L). 

Suppose e E E is an isthmus and let T\e = T1 Irl T2,  where e joins a 
component of Tl to one of T2 .  In this case G(T\e) = G(T/e) = G(T)\e, so 
(LG) yields 

(10.1) F1(T)= (aeA+ be)F1(G(T)\e). 
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Evidently F1(T)  depends only on G ( T ). If we choose T = K2 with e as its 
edge, ( 1  0.1) yields xe = (aeA+ b e ) F 1 ( 0 ), which is aeA+ be because F ' ( 0 )  = 
1 . (The only other possible value, F ' ( 0 )  = 0 ,  implies F' = 0 ;  but then 
3, = AF1(G(K1))= 0 ,  contrary to hypothesis.) Thus F1(T)= x,F1(G(T)\e), as 
required by ( M ) .  

Supppose e is a loop. Then 

Now, ye = F 1 ( K )by definition. So ( M ) is satisfied here too. 
In every case F1(T)depends only on G(T). F1(G(T) )satisfies ( L )for every 

possible e and ( M )  if there is a separating point of G(T). So F' is a strong 
Tutte function on 43)( G ( T ) )and, by Theorem 3.1, on d ( G ( T ) ). 

By induction, F' is a strong Tutte function of graphic matroids which has 
x = d + b .  

The same calculations make the converse obvious. 

Theorem 10.2. Let F' be a strong Tutte function of all graphic matroids in U 
such that x = au +b for some u . Then F ( T ), defined as U ~ ( ~ ) F ' ( G ( T ) ) ,is a 
portable strong Tuttefunction of all graphs in U and satisfies A = u . 

For the classification theorem we need a lemma. 

Lemma 10.3. Let F be a K1-invariant strong Tuttefunction of all graphs in U . 
Then b = 0 or A = aA +b y  for some scalar y . 
Proof. Let us calculate F on the digon K2(ef )  , whose edges are e and f . 
From ( LG )  and (M G )  we deduce 

F(K2(ef ) )  = aeafi12+ aebfA+ beAf 

= afaeA2+ afbeA+ bfAe. 

from which the lemma follows. 

Now we define the parametrized dichromatic polynomial with indeterminates 
u and v : 

Here SC denotes E\S. Evaluating u and v gives a function F ( T )  = 
Qr(a,  b ;  u ,  v )  , which we call normal. It is a portable strong Tutte function 
of graphs, by Theorem 10.2. 

Versions of the parametrized dichromatic polynomial have appeared in the 
literature. The earliest I know of is the polynomial Z ( G )  of Fortuin and Kaste-
leyn [3, $71,which equals Qr(a,  b ;  u ,  1 )  with the minor restriction ae+be = 1 . 
Traldi [ l o ]defines a two-variable polynomial which amounts to Qr(l  ,b ;u ,v )  ; 
this is scaling equivalent to our apparently more general polynomial as long as 
no a, = 0 .  
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I should mention that a chromatic formula for Qr(u, v) due to Tutte [I 1, 
Theorem XI generalizes to the parametrized polynomial. A k-coloring of T is 
a function y/ : V + (1 , 2 ,  ... , k)  ; it is proper if every edge is proper, where 
an edge whose endpoints are vl and v2 is proper if y/(vl) # y/(v2). (Hence 
a loop is improper.) The chromatic polynomial xr(k) counts the number of 
proper k-colorings of T. Let I(y/)= { e  E E : e is improper ) . An edge set 
A & E is closed if, whenever e E E has endpoints connected by a path in A ,  
then e E A . Evidently I(y/)is always closed in the polygon matroid. 

Proposition 10.4. For a nonnegative integer k the parametrized dichromatic 
polynomial is given by 

summed over all k-colorings y /  of T, 

summed over closed edge sets A . 
Proof. The first formula follows by the reasoning of Tutte [I 1, Theorem XI. 
The second follows from the first upon replacing the sum over y /  by a double 
sum over closed sets A and then over colorings y /  such that I(y/)= A .  

The first formula is a direct generalization of [I 1, Theorem XI.It was sug-
gested to me by Kauffman's expression [6, p. 1071for his Z ( G )  (which he calls 
the dichromatic polynomial, but which is slightly different from Tutte's and my 
dichromatic polynomial). 

Recall that ye = A-I F (I/,). 
Theorem 10.5. A portable strong Tuttefunction F of all graphs in U with A # 0 
is either normal with u = A ,  or has b = 0 and is the adjusted primal elementary 
function 

nonloop loop 

Conversely, any function F of these two types, even with A = 0 ,  is a portable 
strong Tutte function of all graphs in U . 
Proof. Assume F is a portable strong Tutte function with A # 0 .  F ( 0 )  = 0 
would imply A = 0 ,  so F ( 0 )  = 1. When b # 0 ,  we see from the lemma that 
ye = a + b(p/il) for some p , so we take u = il and v = p/il . Otherwise we 
use Theorem 10.1 directly. 

The converse is clear. 

Theoretically speaking, the significance of Theorems 10.2 and 10.5 is that 
four apparently distinct properties of a graphic strong Tutte function F are 
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almost equivalent if A # 0 .  They are, in increasing order of apparent strength: 

( 10.3a) Portability. 

(10.3b) F(T) depends only on G(T) and n. 

(10.3~)F(T)  = A'(~)F'(G(T))for some matroidal strong Tutte function F'. 

(10.3d) F(T)  = Qr(a, b ;  u ,  v) for some u and v. 

We have shown that (10.3a) implies (10 .3~)when il# 0 and implies (10.3d) 
with a few exceptions. 

When A = 0 ,  those implications do not hold. Indeed the case 3, = 0 is 
remarkably complicated. (Fortunately it is not very important.) We mention 
one fact without proof: If 3, = 0 ,  then Ad # 0 for at most one d E U , and if 
some Ad # 0 then be = 0 for all e # d and F(T)  = 0 whenever n > 1 or 
d @ E .  

lob. Edge Tutte functions. Suppose we postulate (for use in $11) slightly 
different properties of a function: (Lb) ,which is (LG) restricted to nonisthmus 
edges e ,and a graphical discrete multiplicativity 

(DMG) F(T) = n xe .nye if T is a forest with loops. 
isthmus loop 

Such a function is really matroidal. Recall that G(T) is the polygon matroid of 
r . 
Proposition 10.6. A function F of all graphs in U which satisfies (Lb) and 
(DMG) equals F' o G for some global strong Tutte function F' of matroids in 
U .  
Proof. We show that F(T) depends only on G(T),by induction on the number 
of edges which are neither loops nor isthmi. When this number is zero the result 
is immediate from (DMG). Otherwise let e E E*. Then 

where F' is, inductively, well defined by the formula F1(G(T1))= F(T1) on 
graphic matroids with fewer nonloop, nonisthmus edges. Thus F(T)  itself is a 
function of G(T) alone. 

Now F' satisfies (L) and (DM) so Corollary 3.4 applies. 

10c. Edge-colored graphs. An edge- C-colored graph is a pair C = (T,  ic) , 
where ic : E + C is an edge coloring. We assume C is fixed and each color 
c E C comes with parameters a, and b,. Define C\e = (T\e,  ICIE\,)and 
C/e = (Tie , I c I ~ \ ~ )for e E E . A weak Tuttefunction of edge-C-colored graphs 
in U is a function F defined on edge- C-colored graphs with E C U and 
satisfying 

(IcG) F(Cl )  = F(C2) if there is a color-preserving isomorphism T1 E T2; 

it is strong if it also obeys 

(McG) F(C1U C2)= F(Cl)F(&).  
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We call F portable if its value is not changed by moving a loop from one vertex 
to another (without changing its color, of course). Again let A denote the value 
of F on K1 andlet yc =A- 'F(&,  c )  for C E  C,where (&, c )  i sa  c-colored 
loop e . The (parametrized) dichromatic polynomial of an edge-colored graph 
C = (T, rc) with parameters a ,  b E KC is 

Any evaluation of Qc(a, b ; u ,v) is called normal. 

Theorem 10.7. Let F be a portable strong Tutte function, with 1# 0 ,  of all 
edge-C-colored graphs in a set U . Then F1(G(T),K )  = A-@)F (T, ic) is a 
well-dejined global strong Tuttefunction of C-colored matroids in U , and F is 
either normal with u = 1,or has all bc = 0 and is given by 

F(Z) = 1" n a ~ ( e ).n ~ K ( e ) .  
nonloop loop 

Conversely, any function F of either of these types, even with A = 0 ,  is a strong 
Tutte function of all edge- C-colored graphs in U . 
Proof. Directly from Theorem 10.5. 

There are obvious colored analogs of (LL) and (DMG )  ; call them (LLG) 
and (DM CG) . We call a function obeying them and (ICG)a strong edge Tutte 
function of edge-colored graphs. We then have 

Proposition 10.8. A function F of all edge- C-colored graphs in U which obeys 
(ICG),(LLG),and (DMcG) has theform F ( T ,  ic) = F1(G(T),K )  ,where F' is 
a global strong Tuttefunction of C-colored matroids in U.  

10d. Two concluding notes. First, our results are stated for functions of all 
graphs in U ,  or all graphic matroids, but they remain valid if the domains 
of the graph functions are restricted to a minor-closed class which includes all 
triangles and triple-parallel-edge graphs in U ,when I UI > 3 ,and if the matroid 
functions are correspondingly restricted. Thus we could have said "all planar 
graphs in U " and "all graphic-cographic matroids in U ," for example. 

Secondly, we use terms like "conjugation" and "self-conjugate" just as for 
matroids (see $9) with the obvious modifications. Notably, in defining self-
conjugacy of graph functions we require F(T)  = F(T*") (T* being the dual 
graph) only when T is dualizable, that is to say, planar. 

11. UUFFMAN'STUTTEPOLYNOMIAL 

We are finally in a position to fit Kauffman's "Tutte polynomial of a signed 
graph" into our system. A hl-labelled graph is an edge-colored graph C = 
(T, ic) where the color (or "label") set is {+ 1, -1) ; then the coloring map is 
K : E -+ {+ 1,-1). For E = h1 let E,(E)be the set of nonloop, nonisthmus 
edges, and mo(&)and m l ( ~ )the numbers of loops and isthmi, whose color 

Kauffman's "signed graph." I think it better to regard the color set {+1 , -1) as acted upon 
by but not identical with the sign group {+ , -) ,because the labels do not multiply in an interesting 
way. When they do, the phenomena are different. 
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is E . We take it that when we dualize a fl-labelled graph we reverse the 
colors. We call this operation conjugation to avoid confusion with ordinary 
graphical duality. Of course it is a conjugation in the sense of 59. Conjugation 
arises naturally in the study of recursive invariants of link diagrams: the two 
f l-labelled graphs that are naturally associated with the two region types in a 
2-coloring of the regions of the diagram are conjugate. 

We shall call Kauffman's polynomial T(C) . Let A and B be indeterminates. 
His definition, from [4] or [5, p. 2331, is recursive, with three parts: 

(11.1) T(C) = 
BT(C\e)+AT(C/e) i f e  E E , (+ l ) ,  
AT(C\e)+ BT(C/e) if e E E,(-I), 

and 

(11.2) T(C) = x ~ ~ ( + ~ ) + ~ o ( - ~ ) Y ~ o ( + ~ ) + ~ I ( - ~ )if C is a forest with loops, 

where 

(11.3) X = Bd + A and Y = B + Ad for an indeterminate d .  

These formulas evidently determine T(C) as a function of A ,  B ,and d ,pro-
vided it is well defined. 

For S & E , let m(S,  E )  be the number of &-colorededges in S . 
Proposition 11.1. Given that A and B are indeterminates and T(C) is not identi-
cally zero on nonnull signed graphs, equations (11.1) and (11.2) have the unique 
solution 

T(C) = R(G(T),K )(a 9 b ;d ,  d )  
(11.4) -- x d l s l + 2 ~ ( s ) - n - ~ ( r ) ~ m ( S ,+ l ) + m ( s c ,  -~ )BM(" ,  + l ) + m ( S ,  -1) 

SCE 

(where a+1 = b- 1 = B and a- 1 = b+l = A) ;whence ( 11.3)follows. 
Proof. The postulated equations are special cases of (LLG) and (DMcG) with 

We conclude from Proposition 10.8 that T is a global strong Tutte function 
of 2-colored matroids, restricted to graphic matroids, and from Theorem 2.2 
and the fact that p+l = (B ,  A) and p-1 = (A, B) are linearly independent 
(because A and B are indeterminates) that T is either nil or normal. The 
former is ruled out by hypothesis. The latter entails 

Then Bu + A = A + Bv implies u = v . Call their common value d . Since 
r k S  = n - c(S) for any S C E ,  in particular cork S = rk T- rk S = 
c(S) -c (T) ,  we have (11.4). 

Thus T is well defined and the hypotheses (11.3) are redundant if T is as-
sumed not totally trivial. The maximal-forest expansion of T(C) now becomes 
a consequence of our general theory (§7), since a basis of G(T) is the same as 
a maximal forest in T ,  and so does the dichromatic formula 

(11.5) T(C) = d-' Qz(a, b ; d , d )  if C is connected and nonnull , 
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a restatement of (11.4). We also deduce that T(C) is preserved by Whitney 
2-isomorphism operations (see [141 or 18, $6.3]),since G(C) is so preserved, by 
Whitney's theorem. 

A more interesting characterization of T(C) follows from $9. A function 
of 51-labelled graphs is self-conjugate if it takes the same value on conjugate 
graphs. The meaning of the next result is that T(C) is the universal interesting 
self-conjugate strong Tutte function. 

Theorem 11.2. Kaufman 's polynomial T(C) is a self-conjugate, nondegenerate 
strong edge Tutte function of & 1-labelled graphs. Any such function of & 1-
labelled graphs (or & 1-labelled planar graphs) equals the function obtained by 
choosing appropriate values of A,  B , and d in T(C) . 
Proof. Apply Proposition 10.8 first. Then by Theorem 9.3 self-conjugacy and 
nondegeneracy of the function imply it equals a strongly self-conjugate strong 
Tutte function. Then apply Theorem 2.2. 

The main significance of the theorem is that one cannot gain anything by 
allowing parameters that are not self-conjugate. This is not entirely obvious a 
priori. In the original domain of this subject, planar diagrams of links, it is 
natural to take only self-conjugate parameters (and consequently self-conjugate 
functions) because that is one way to make the defining recurrence (LkG) (cf. 
$ 10c) directly meaningful for link diagrams. (Kauffman discusses the diagram-
matic approach in 15, $11,pp. 204-2051.) However, once graphs are introduced 
it is natural to postulate only self-conjugacy of the function. One could hope 
that new self-conjugate functions would arise from non-self-conjugate parame-
ters. But in fact they do not, by Theorem 11.2. 

Kauffman's definition is not always as stated above. In 16, $IV] he adds the 
postulate 

with k = d . (To avoid nonsense C1 and C2 should be nonnull.) In 15, p. 2351, 
(11.6) is added with k = AX + BY . If (11.6) is postulated, (11.2) must be re-
stricted to connected graphs. Then obviously T has the form F(G(T), K),  
where F is a global strong Tutte function of colored matroids, necessarily (due 
to the choice of parameters) either normal with u = v = d or nil. To get a 
Tutte-polynomial basis expansion of T for disconnected C ,the basis expansion 
formula must be modified by inserting a corrective factor of . 

Finally, some historical remarks. The dichromatic formula (11.5) for T 
and the conclusion that T is well defined were obtained, independently from 
each other and this work, by Traldi and Murasugi. Traldi used his general 
"weighted dichromatic polynomial," Qr (1, b ;  u ,v) ,with weights be = A/B if 
e is negative and be = B/A if e is positive 110, $31. Murasugi 17, Definition 
2.11 defined a modified dichromatic polynomial for an edge-2icolored graph 
which is y-I Qc (1,b ;  y , z )  (or 0 if C = a) with be = xe and observed that 
(11.5) holds if x = B/A . Although neither author explicitly mentions that 
T depends only on the colored matroid (G(T),K )  , Murasugi does state that 
his polynomial is preserved by 2-isomorphism [7, p. 51, which by Whitney's 
theorem implies it is a colored-matroid invariant. 
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