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ABSTRACT. A graph with signed edges is orientation embed-
ded in a surface when it is topologically embedded and a poly-
gon preserves or reverses orientation depending on whether its
sign product is positive or negative. We study orientation-
embedding analogs of three facts about unsigned graph embed-
ding: planarity is equivalent to having cographic polygon ma-
troid, the polygon matroid of a graph determines the surfaces
in which it embeds, and contraction preserves embeddability of
a graph in a surface.

"~ We treat three matroids of a signed graph. Our main results:
For a signed graph which is orientation embeddable in the pro-
jective plane, the bias and lift matroids (which coincide) are
cographic. Neither the bias nor lift nor complete lift matroid
determines the surfaces in which a signed graph orientation em-
beds. Of the two associated contractions of signed edges, the
bias contraction does not preserve orientation embeddability
but the lift contraction does. Thus the signed graphs which
orientation embed in a particular surface are characterizable
by forbidden lift minors.

1 Introduction

A signed graph ¥ = (T, o) is a graph I together with a mapping o: E(I') —
{+, —} that labels each edge with a sign. A graph I' embedded in a surface
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S is naturally signed in the following way. First each polygon C (the edge
set of a simple closed path) receives a sign, + or — according as going once
around C preserves or reverses orientation. Then o is chosen so that the
product of edge signs in each polygon matches its orientation-induced sign.
We say the resulting signed graph is orientation embedded in S. There
is a close relationship between the surface embeddability of an ordinary,
unsigned graph I' and its polygon matroid G(I") . In this article we discuss
how that relationship does and does not extend to signed graphs.

The facts we wish to extend are these:

(G1) Determinacy. The polygon matroid determines exactly which sur-
faces a graph embeds in (see [17]; [10] for planarity).

(G2) Monotonicity. If T' embeds in a surface S, then every minor of
I' also embeds in S. Explanation: A minor of a signed or unsigned
graph is any result of successively deleting edges and vertices and
contracting edges. A minor of a matroid is any result of deleting and
contracting points. For unsigned graphs, graph and matroid minors
are compatible: the matroid of a minor of I' is the corresponding
matroid minor of G(T').

(G3) Duality. The matroid G(T") is cographic (dual to the matroid of a
graph) if and only if I is planar [10]. '

By (G2) there exists a list of graphs which are forbidden (graph) minors
for S: a graph embeds in S if and only if none of its minors is in the
forbidden list (up to isomorphism) and the list is minimal with respect to
this property. The list of forbidden minors has recently been found to be
finite for every surface [1, 2, 4]. In view of (G1), I" embeds in S if and only
if no minor of G(I') is the matroid of a forbidden graph minor for S. It
follows that finiteness of the list of forbidden minors for each surface is a
consequence of Robertson’s conjecture that binary matroids are well-quasi-
ordered: that means that if matroids are quasi-ordered by M; < M if
M, is isomorphic to a minor of My (the minor ordering), then there is no
infinite antichain of binary matroids.

In seeking signed analogs of these facts the first problem is to decide
which matroid to use. Certainly there are many matroids on the edge set
E(X) of a signed graph X, but two, the ‘bias’ and ‘lift’ matroids, seem
especially close in spirit to the polygon matroid. These matroids were
originally motivated by geometry (see [12, Section 8] and [14]); here we
apply them to orientation embedding.

The bias matroid G(X) of a signed graph ¥ can be defined in terms of
its circuits as follows [12, 13]. First, a polygon is positive or balanced if its
sign product is positive. A handcuff is (the edge set of) a graph consisting
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of two polygons meeting at a single vertex or two vertex-disjoint polygons
and a simple path meeting each polygon at an endpoint and nowhere else.
A circuit of G(X)is a balanced polygon or a handcuff whose polygons are
both unbalanced. This matroid is ternary. If all polygons in £ = (T, o) are
balanced, G(X) is the polygon matroid G(T').

In the lift matroid L(X) a circuit is a balanced polygon or a pair of
unbalanced polygons meeting, if at all, at a single vertex. (This is the
standard lift of matroid theory; see [13].) The complete lift matroid Lo(X)
is a one-point extension on the set E(X)U{eg}, where e is an extra point not
in any graph, whose circuits are those of the lift and also the union with eg
of any unbalanced polygon. (Thus e behaves like a negative loop.) These
matroids are binary. If ¥ is balanced, then L(Z) = G(T') and Lo(Z) =
G(T') ® (matroid coloop).

Each matroid, bias or lift, implies a compatible definition of contraction
and therefore minors for signed graphs. (See Section 2.) The definitions
agree for contraction of an edge which is not a negative loop, so we call a
link contraction any result of successively contracting links (nonloop edges)
and a link minor any link contraction of a subgraph. If we contract negative
loops by the bias rule we get bias minors, which are always signed graphs;
if we adopt the lift rule we get lift minors, which can be signed or unsigned
graphs. .

If we could associate to every signed graph a matroid M (X) which (S1)
determines the surfaces in which ¥ can orientation embed and (S2) im-
plies a definition of signed-graph contraction which is monotone (that is,
if ¥ orientation embeds in S, so does every minor), and if furthermore
all matroids M(X) belong to a class of matroids which is known to be
well-quasi-ordered in the minor ordering, one could conclude that forbid-
den minors for orientation-embeddability in any given surface exist and are
finitely many. The importance of this deduction makes it worthwhile to ex-
amine possible functions M. But our results on the bias and lift matroids
are largely negative, though they do not entirely preclude the possibility of
deducing finiteness of forbidden lift minors for orientation embeddability
from binary matroid theory. (See the end of Section 4.)

Now here is the tenor of our results.

(S1) None of the three matroids determines the orientation embeddability
properties of signed graphs. However, it remains possible that the
lift or complete lift might determine the orientation embeddability of
3-connected signed graphs.

(S2) If X orientation embeds in a surface S, then so does every lift minor;
consequently there exist forbidden lift minors characterizing orien-
tation embeddability in S. (Note again that L and Ly are binary.)
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The same does not hold true for bias rhinors, not even if one can re-
place a bias minor by an arbitrary signed graph having the same bias
matroid.

(S3) The closest signed analog of the plane is the projective plane. Here
the bias and lift matroids coincide and are cographic. Conversely
however, having a cographic bias or lift matroid does not make a
signal graph projective planar. (It does if the matroid is not graphic
but we do not prove that here.)

The implication of these results is that there is not a matroid theory per se
of orientation embedding, at least none based on the bias or lift matroids.
But the lift-inspired definition of contraction does yield forbidden-minor
characterizations like those in ordinary graph theory. It remains to learn
the properties of these characterizations.

2  Preliminaries

Our graphs (and matroids) are all finite. They may have multiple edges
and loops. The symbols ¥ and I" will always denote respectively signed and
unsigned graphs. The vertex and edge sets of a graph or signed graph are
denoted by V and E. A signed graph, subgraph, or edge set is balanced if
all its polygons are positive. Particular signed graphs of importance are:
+T, or I" with all edges signed +; —I'; and £T, or I" with all edges doubled,
one of each pair signed + and one —. If ¥ is a signed graph, X° denotes ¥
with a negative loop at each vertex: for instance, +K3 or £K3. By |Z| we
mean the underlying graph of the signed graph X. We call X k-connected
when |X| is k-connected.

Switching ¥ means reversing the signs of all edges between a vertex set X
and its complement. Two signed graphs can be switched one to the other
if and only if they have the same underlying graph and the same balanced
polygons (and consequently the same matroids). In particular a balanced
graph can be treated as all positive (¢ = +). An isomorphism between X,
and ¥, is an isomorphism of their underlying graphs which preserves the
signs of polygons. We consider isomorphic signed graphs to be the same.

The bias and lift contractions of £ by an edge e, denoted by ¥/e and
3/ Le, agree on all but negative loops. A positive loop e is simply deleted.
If e is a link, X is switched so e is positive; then the endpoints of e are
coalesced and e is deleted. In the bias contraction of a negative loop, it and
its vertex v are deleted, all other loops at v are deleted, and each link from
v becomes a negative loop at its other endpoint. With these definitions
we have G(X \ e) = G(X) \ ¢, and also G(Z/e) = G(X)/e with perhaps
some matroid loops deleted [12, Theorem 5.2; 13, Theorem 2.5]. The lift
contraction by a negative loop e is the unsigned graph |\ e|. Then we have
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Lo(X\e) = Lo(Z) \ e and Lo(X/e) = Lo(X)/e and similar equations for the
lift matroid [13, Theorem 3.6]. As for contraction by an arbitrary edge set
S C E(X), written X/S or £/S as appropriate, it means contracting the
edges of S successively; the result is independent of the order of operations.

Graphs and signed graphs, more precisely their isomorphism classes, are
partially ordered by minors in several ways. The minor ordering of graphs
is given by I'y < T3 if I'y is (isomorphic to) a minor of I's. In the link-minor
ordering of signed graphs, ¥; < ¥ if £ is a link minor of X, . In the lft-
minor ordering of signed and unsigned graphs, A <;, X if A is a signed or
unsigned lift minor of X, and I'y <f, 'z if I’y < T'e. (A ‘lift minor’ of I'
‘therefore means just a minor.)

For basic matroid theory we refer the reader to [3, 7, 8. An n-point
uniform matroid of rank r is denoted by U,(n). A line is a uniform matroid
of rank two. ,

Let Ly(Z) denote the basepointed matroid (Lo(Z), €o). It is clear that
Ly(Z), hence also L(X), is not altered by Whitney’s 2-isomorphism oper-
ations [11]: adding or deleting isolated vertices, changing the attachment
points of blocks (including a loop as a block all by itself), and twisting
across a 2-separation. Conversely, if Lj(X1) & Lj(Z2) then £; and X are
2-isomorphic, that is, related by these operations.

Here are some examples. The bias and lift matroids of an unbalanced

polygon are independent (hence they are the same matroid); the complete

lift matroid is a circuit. G(£K3) is the four-point line, but L(£K3) is
a three-point line with one point doubled in parallel and Lo(£K3) is the
same with ep added to the double point, making a triple point.

Lemma 2.1. If G(X) is the four-point line U3(4), then £ = £K3.

Proof: ¥ is connected because G(X) is [13, Theorem 2.8]. If ¥ were
balanced then G(X) = G(|X|) would be graphic, which Uz(4) is not. Since
¥ is unbalanced it has two vertices [12, Theorem 5.1(j); 13, Theorem 2.1(j)).
In order to avoid loops and parallel elements in G(X), ¥ can have at most
one loop at each vertex — and that negative — and at most two links, signed
differently. Thus it is +K3. 0

The surfaces important for embedding are the compact surfaces. These
are the orientable surfaces T for g > 0, having Euler characteristic x(Ty) =
2—2g, and the nonorientable surfaces Uy for h > 1, for which x(Us) = 2—h.
It is customary to call g the genus of T, and h the crosscap number or
nonorientable genus of U,. To have a compatible unit of measurement I
define the demigenus d(S) to be 2 — x(S); thus d(Ty) = 2g and d(Uy) = h.
All surfaces herein will be compact.

An embedding of an unsigned graph I in a surface S is a topological
homeomorphism of ' with a closed subset of S. We call this topological
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embedding to emphasize that orientation embedding of a signed graph is
something different; nevertheless it is true that we always embed unsigned
graphs ignoring orientation while signed graph embedding respects it. The
demigenus d(T') is the smallest demigenus of any surface in which I" embeds
topologically. The demigenus d(X) of a signed graph is the smallest demi-
genus of a surface in which ¥ orientation embeds. For each signed graph ¥
there is a unique minimal surface S(E) in which ¥ orientation embeds, such
that if ¥ orientation embeds in S then S is obtained from S(Z) by adding
handles or crosscaps. The minimal surface is orientable if ¥ is balanced
and nonorientable otherwise. (For these basic properties and appropnate
references see [16].)

A signed graph is planar if it orientation embeds in the plane. Obviously
% is planar if and only if it is balanced and || is planar. We call & projective
planar if it orientation embeds in the projective plane U;.

Example 2.2. Here are three examples. A simple proof for —W, appears
in [16, Example 9.3] and a complicated proof for all three is contained in
[18]. Direct proofs are not hard to construct.

The all-negative 4-spoke wheel, written —W,, has demigenus 2.

Let &, be the signed graph consisting of +K, with all edges at one
vertex (say v) doubled by negative edges to the other vertices (z3,z2, and
23). Then d((I>4) =

Let W5 be the signed graph consisting of + K33 (with left vertices v, w
and right vertices z;,x2,z3) and negative edges —vz;, —vz2, —vx3. Then
d(¥s) =

3 The bias matroid and bias contraction

We show that G(X) does not determine d(X).
Example 3.1(a). For n > 2 let T, be the signed graph consisting of a
polygon Cy, on the vertices vy, ...,v, (in circular order; subscripts modulo
n) with all edges e; (endpoints v; and v;y) positive except e, between
v, and v;, and also another vertex v supporting a negative loop e and
positively linked to every v;. (See Figure 3.1.) Then d(T,/e) = n because
T, /e has n disjoint unbalanced polygons, the f; at v; fori=1,...,n '

Let ®,, consist of C,, with e, replaced by a negative loop €], at v; and
with negative edges f; having endpoints v; and v, for i = 1,...,n (so f},
is a negative loop). We see in Figure 3.2 that ®,, orientation embeds in
the Klein bottle Us. It is not projective planar because it has two disjoint
unbalanced polygons. Thus d(®,) =

Now we have d(T,/e) =n > d(®,) = 2 for n > 3. Yet the correspon-
dence of T, /e to ®,, indicated by the edge names is a matroid isomorphism.
This is obvious for n = 2. To prove it for n > 3 we use induction.
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T, CU, T./e

Figure 3.1. The signed graphs Y, and Y, /e of Example 3.1.
Positive edges are solid; negative ones are dashed.

»
. €n

7
A o,

Qn q’n C U 2
Figure 3.2. The signed graph ®,, of Example 3.1(a).

The conclusion follows if we show that e, and e/, have the same rank in
- G(Tn/e) and G(®,), which is obvious, that G((Tn/e)/es) = G(®Pn/e;)
by the edge-name correspondence, and that G((T,/e) \ e,) = G(,, \ el)
similarly. The former isomorphism follows by induction because (T /) /en
is isomorphic to Ty /e;, with f,, added as a negative loop doubling f; and

135




&, /e, is isomorphic to ®,_, with f. similarly doubling f{. These iso-
morphisms are specified not by the edge-name correspondence but by the
rule

el!f'h €4, fi € E((Tn/e)/e") And
en—1, fa-1,€i-1, fi-1 € E(Tn_1/e)

where 2 < 7 < n, and a similar rule for the primed edges. The second
isomorphism is demonstrated by the following argument. Let X,, be T, \e,
with e replaced by a negative link from v to v,. Then Ty, \ e, and Z,, have
the same matroid, for in each case e is a matroid isthmus and the remainder
is the same (all-positive) graph. It follows that G((Tr \ en)/e) = G(Z,/e).
We now have the desired isomorphism, because (T, \ en)/e = (Tn/e) \ en
and £, /e = &,,. (m]

The next two examples show that bias contraction of a negative loop can
increase the demigenus, hence that the signed graphs orientation embed-
dable in a particular nonorientable surface (possibly excepting the projec-
tive plane) have no characterization by forbidden bias minors.

Example 3.1(b). d(T,) = 2 (see Figure 3.1). Yet if n > 3, d(Tn/e) =
n>2

Example 3.2(a). The signed graph M,, n > 3, is shown in Figure 3.3
together with an orientation embedding in the Klein bottle, which is its
minimal surface. The bias contraction M,,/e (Figure 3.3), which has n.
disjoint unbalanced polygons, cannot orientation embed in U,,_,. It does
orientation embed in U, (Figure 3.3). »

So far bias matroids and minors are not working out. There still remains
the possibility that the bias matroids of U,-embeddable signed graphs are
closed under taking of minors. But even this fails for A > 2, according to
the continuation of Example 3.2. /

Example 3.2(b). No other signed graph has the Same matroid as My,/e.
We omit the proof.

For an example of signed graphs ¥ and +I" which are 3-connected and
have the same bias matroid but not demigenus, see Example 4.2.

4 The lift matroids and lift contraction
Neither L(Z) nor Lo(X) nor even Ly(X) determines d(X), for 2-isomorphism
operations can change the demigenus. We give a 2-connected example.
Example 4.1. Let £; consist of +C, with two adjacent edges doubled by
negative edges; X is similar but the doubled edges are nonadjacent. It is
easy to see that d(X1) = 1 and d(Z3) = 2, although Lj(Z;) = L§(Z2). O
Signed graphs which are not 2-isomorphic may nonetheless have the same
lift matroid and at the same time different demigenus.
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M,/e M,/eC U,

Figure 3.3. Signed graphs in Example 3.2.

Example 4.2. Let Ty be a 2-connected graph and e a link in I'g. Set
I'=To\eand £ = (+I'U—e)/e. Then G(X) = L(X) = L(4+T) = G(+I") =
G(T') but d(X) may or may not equal d(+T).

For instance (cf. Example 2.2): Let I' = K33 \ e; then £ = —Wj, so
d(4T) =0#d(X)=2. Orlet I" = K; \ ¢; then £ = &4 and again we have
d(+T) = 0 # d(X) = 2. (In this case both graphs are 3-connected.) On
the other hand if I' = K33 and e is an edge not parallel to any in T, then
L = U5 and we have d(+T) =2 =d(Z).

Notice that Lo(X) % Lo(+T') because ep is a matroid isthmus in Lo(+T)
‘but there are no isthmi in Lo(X). Also notice that L(X) is graphic; for such
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signed graphs it appears to be exceptionally difficult to determine all &,
and therefore all d(X,), such that L(Z;) = L(Z). ’ m]

Despite the inadequacy of the lift matroids themselves, the lift contrac-
tion turns out to be suitable for the demigenus problem. The question is
whether d(X/Le) < d(X) for every edge e. If e is a negative loop we have
the slight complication that /e is unsigned; consequently we have to or-
der by lift minors the whole class of signed and unsigned graphs, whence
the definition given in Section 2 of the lift-minor ordering. ;

The exposition of our results is greatly simplified by the somewhat for-
bidding notations

O(Ur) = {X: X orientation embeds in U},
Th-1)={I':d(') <h-1}.

Theorem 4.3. The class of lift minors of signed graphs whose minimal
surface is Uy, equals O(U,) U T(h —1).

Proof: Suppose T has minimal surface Uj,. The only minor-forming opera-
tion which requires attention here is contraction of a negative loop. Suppose
e is a negative loop in ¥. Orientation embed X in Uj,. Pinching e to a point,
forming the space Uy /e, amounts to replacing a 1-sphere by a point; thus
the Euler characteristic rises by one. The following argument shows that
Un/e is a surface. The closed edge e has a neighborhood that is a Mébius
band with an odd number of half-twists, which is homeomorphic to U\
(disk), e being a noncontractible simple closed curve in U;. Shrinking e

in U yields the sphere. Thus the neighborhood of e remains a surface in .

Ur/e. We conclude that Uy,/e = Up,_; or T(h-1)/2- Hence the class of lift
minors is contained in O(U,) U T(h — 1).

The converse containment is obvious from a fact we formulate as Lemma
44. a

Lemma 4.4. An unsigned graph T has d(I') < h—1 if and only if there is
a signed graph of the form (T, o)) which has demigenus < h. a

Here we mean by (T, 0)(*) a signing of I" together with an extra negative
loop at a vertex v which may be in I or may be a new vertex.

It follows from Theorem 4.3 that the signed graphs orientation embed-
dable in Uy, can be characterized by forbidden lift minors. The mini-
mal nonmembers of O(U4) in the link minor ordering are called the for-
bidden link minors for O(U,). The minimal nonmembers of the class
O(U) = O(Up,) U{T': T is a lift minor of a signed graph which orientation

embeds in U,} in the lift minor ordering are the forbidden lift minors for

O(Un). By Theorem 4.3, the unsigned forbidden lift minors for O(U},) are
precisely the forbidden minors for T(h — 1), and the signed forbidden lift
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M, /e M,/eC U,

Figure 3.3. Signed graphs in Example 3.2.

Example 4.2. Let I'p be a 2-connected graph and e a link in Io. Set
I'=Ty\eand & = (+I'U—e)/e. Then G(T) = L(Z) = L(+T) = G(+T) =
G(T') but d(X) may or may not equal d(+T).

For instance (cf. Example 2.2): Let ' = K33 \ ¢; then ¥ = —Wj, so
d(+T) =0#d(Z) =2. Or let ' = K5 \ ¢; then ¥ = &4 and again we have
d(4+T) = 0 # d(Z) = 2. (In this case both graphs are 3-connected.) On
the other hand if I' = K3 3 and e is an edge not parallel to any in T, then
¥ = ¥5 and we have d(+T) =2 =d(Z).

Notice that Lo(X) 2 Lo(+T) because ep is a matroid isthmus in Lo(+T)
‘but there are no isthmi in Lo(X). Also notice that L(X) is graphic; for such
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minors for O(U,) are precisely the (signed) forbidden link minors ¥ for
O(U}) such that, for every negative loop e in I, d(|X \ e]) < k. It follows
from the former fact and the finiteness of forbidden minors for T'(h —1) [1,
6] that the forbidden link and lift minors are both finite or both infinite in
number. :

I conjecture they are finite. Possibly this can be deduced from Neil
Robertson’s conjecture that binary matroids are well-quasi-ordered by mi-
nor inclusion. A small step has been taken already:

Proposition 4.5. Let h > 1. If the number of signed, 2-connected forbid-
den lift minors for O(Uy) is finite for each k =1,2,..., h, then the number
of forbidden link minors for O(Uy,) is finite.

Proof: Finiteness of 2-connected forbidden minors for O(Uy) for all k < h

implies the number of all forbidden minors is finite by [16, Corollary 10.9]. O
One needs a 3-connected analog of this result, which should be a conse-

quence of solving

Problem 4.6. Calculate d(X; U X5) in terms of ¥; and X3, when £, N X,

consists of two vertices.

The deduction of finiteness from Robertson’s conjecture would be com-
plete if it could be proved that Lo(Z) determines d(X) when ¥ is 3-connected.
Even if this is false, there might be a way to use the fact that Ly(X) deter-
mines such a X.

5 The projective plane
Protective-planar signed graphs are especially nice.

Lemma 5.1. If ¥ is projective planar, then G(X) = L(X) and L(X) is a
regular matroid.

Proof: Since X can have no two vertex-disjoint unbalanced polygons G(X) =
L(X) (obviously) and this matroid is regular [15, Corollary 3D]. O

In higher surfaces G(X) need not even be binary, since d(£K3) = 2
and G(£K3) is the four-point line, which is not binary. L(Z) need not be
regular because, setting = = (Cy)\ edge, d(X) = 2 and L(X) = F;, the
dual of the Fano matroid F;.

Lemma 5.2. If ¥ is projective planar, then LO(E),Z G(Ks), G(K33).

Proof: Lo(X) > G(T') means either ¥ > ¥’ where Lo(X') or L(X') = G(T),
or ¥ >, I" where G(I') = G(T'). In the latter case, setting I' = K5 or K33
we have IV =T by Whitney’s 2-isomorphism theorem [11] because I is 3-
connected. But I' is nonplanar, hence when X is projective planar ¥ 2, T
(clearly, or see Theorem 4.3).
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Suppose that Lo(X’) = G(I') where again I' = K5 or K33. By [15,
Proposition 5A)], ¥’ = &, or —W, (Example 2.2). Therefore, £’ would not
be projective planar, a contradiction.

Suppose that L(X') = G(I'). The several possible &’ are classified by [15,
Proposition 5A]. Either £’ = +T (but then [16, Lemma 3.3] would imply
+TI is planar, which is ridiculous) or ¥’ is unbalanced. Such a ¥’ either is
—W4 or &4 with a negative loop at the vertex of highest degree, or ¥5 or
—(Ks\ edge), or contains two disjoint unbalanced polygons. In no case is
¥’ projective planar. This contradicts the hypothesis. a

Notice that Lo(X) need not be cdgraphic, since £K3 and — K, are pro-
jective planar and Lo(+K3) = F7, Lo(—K4) = F;- [15, Proposition 34].

Theorem 5.3. If X is projective planar, L(X) [= G(X)] is cographic.

Proof: L(X) is regular by Lemma 5.1. By Lemma 5.2 it has no minor
isomorphic to G(K5) or G(K33). Thus by Tutte’s famous theorem ([9,
Theorem 9.42 et. seq.]; what Tutte called “graphic” is now called “co-
graphic”) L(X) is cographic. O
The converse is false since 7(_;, consisting of two vertices each supporting a
negative loop, is not projective planar but G’(-K—;) and L(I?;) are cographic.
Still it seems that there is a kind of converse: for a signed 2-connected
graph X, if G(X) is cographic then either T is projective planar or G(X) is
graphic. (My unverified “proof”, which depends on knowing the forbidden
link minors for projective planarity [18], consists of a long and probably
unreliable case-by-case analysis.) '
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