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A graph with signed edges (a signed graph) is k-colorable if its vertices can be
colored using only the colors 0, 1, .., £k so that the colors of the endpoints of
a positive edge are unequal while those of a negative edge are not negatives of each
other. Consider the signed graphs without positive loops that embed in the Klein
bottle so that a closed walk preserves orientation iff its sign product is positive.
All of them are 2-colorable but not all are l-colorable, not even if one restricts
to the signed graphs that embed in the projective plane. If the color 0 is excluded,
all are 3-colorable but, even restricting to the projective plane, not necessarily
2-colorable. €: 1995 Academic Press, lac.

A signed graph X (a graph with signed edges) is said to be (properiy)
colored in k colors 1f its vertices are labelled by the “colors” 0, +1, +2, ..,
+k so that the endpoints of a positive edge have different colors, while
those of a negative edge have colors which are not negatives of each other.
The chromatic number y(X') is the smallest value of k& for which there exists
a proper k-coloring; the zero-free chromatic number y*(X) is defined
similarly for colorings that do not use the color 0. For example, let + K
denote the complete signed graph of order n, which consists of n vertices
with all possible positive and negative links (non-loop edges) and negative
loops, and let + K, denote the complete signed link graph, that is, + K,
without the loops. Then y(+ K, )=wn, since any two vertices must be
colored with different nonzero absolute values, and y(+ K, )=r—1, since
one vertex can be colored 0.

Suppose we embed signed graphs in a surface S according to the rule of
orientation embedding: a closed walk reverses orientation if and only if its
sign product is negative. (This is the only embedding rule we shall use here.
The surfaces we are mainly interested in are the unorientable surfaces U,
for £= 1, consisting of the sphere with A crosscaps. The demigenus d(X) is
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the smallest demigenus ( =2 — Euler characteristic) of any surface, oriented
or not, in which X embeds.) The largest chromatic number of any signed
graph without positive loops that orientation embeds in S is called its
signed chromatic number, written y . (S); the largest zero-free chromatic
number is called the zero-free signed chromatic number of S and is written
7% (5). I propose that, with the exception of x, (U,), x, (U,) equals the
largest order of a complete signed graph that embeds in U, and x% (U,)
equals the largest order of a complete signed link graph that so embeds.
Here we take a first step towards a proof by evaluating the numbers for the
projective plane U, and the Klein bottle U,.

THEOREM 1. ¥, (U,)=2 and y* (U,)=3.

THEOREM 2.y, (U,)=2 and y* (U,)=3.

These results agree with the conjecture above. Their demonstration is
based on the method of double contraction employed to prove the planar
five-color theorem in [3, p. 32, Second Proof] and earlier, in a less simple
dual form, in [1, Appendix 1 to Chapter V]. (I do not know the origin of
this ingenious technique, which was also used in [2, p. 72] to evaluate the
unsigned chromatic number of the Klein bottle.)

Our results determine chromatic numbers for antipodal coloring of
antipodally embedded planar and toroidal graphs. In the g-fold torus T,
there is an involutory self-homeomorphism « (not unique, but we arbitrarily
choose one such mapping) whose quotient space is U,,,. A graph I is
antipodally embedded in T, if it is embedded so that a restricted to the
embedded 7 is an automorphism of I'. An antipodal coloring of I' is an
ordinary coloring using integer colors in which the colors of antipodal ver-
tices (that is, a vertex v and its image x(v)) are negative to each other. The
antipodal chromatic number of T, is the smallest number of colors chosen
from the integers that suffice to color antipodally all antipodally embedded
loopless graphs in T,. The antipodal interpretation of the signed chromatic
numbers of U, is the following statement.

PROPOSITION 1. The antipodal chromatic number of T, equals the lesser
of 2+ (U1 )+ 1 and 25 (U, 4 ).

Thus by Theorems ! and 2 the antipodal chromatic number of the
sphere is 5, greater than the ordinary chromatic number, while the
antipodal chromatic number of the torus, also 5, is less than the ordinary
chromatic number of 7. (The easy proof of Proposition 1 will appear
elsewhere.)

Now, some technicalities. Since, in orientation embedding a signed graph,
it clearly suffices to constrain only the signs of polygons (graphs of simple
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closed walks), what really matters is the polygon signs. Switching a signed
graph 2 means reversing the signs of all edges having one endpoint in a
certain subset X of the vertex set and the other endpoint in the complemen-
tary subset. Two signings of the same graph are related by switching if and
only if they have the same polygon signs. (This is well known in signed
graph theory. For an easy proof see, e.g, (6, Proposition 3.27.) When
switching a colored signed graph we also switch the colors by negating
those of vertices in the switched set X thus switching preserves propriety
of a coloring (that is, the property of being proper). Since by switching we
can always reduce the color set to {0, +1, +2, .., +k}, it makes sense to
regard +/ and —i as essentially one color. So, we shall call each of 0, +1,
—1, +2,.. a semicolor.

To contract edge e in a signed graph X, if it is a link, we switch so that
it is positive, then identify its endpoints and delete the edge. The resulting
signed graph ZX/e is determined up to switching. Topologically, if X is
embedded in a surface, contraction means shrinking the edge to a point, so
if 2" embeds in S, Z/e does as well. Note that we do not contract loops.

Given a signed graph 2, we write V=V(2) and E=E(Z). 2, is the
(unsigned) subgraph on vertex set V' whose edges are the positive edges of
2. The neighborhood in 2 of a vertex v is N(v)= {we V: w is adjacent but
not equal to v}; the complete neighborhood is N'(v)= N(v)u {v}. Each of
these sets induces a subgraph of 2, denoted respectively by X(v) and 2"(v).
The graph of double adjacency of L is X ,,=(V, E,,), where E|,, is the set
of vertex pairs vw such that v and w are both positively and negatively
adjacent in 2.

A basic fact about U, is that it contains no 4+ 1 pairwise disjoint, orien-
tation-reversing, simple closed curves. (This is well known and easy to
prove. Suppose the contrary. Cut along the A+ 1 curves; that leaves a
closed surface with boundary equal to A+ 1 disjoint circles, whose Euler
characteristic is still 2 — 4 because, the curves being one-sided, the cut sur-
face remains connected. Attach 4+ 1 disks to the circles to form a closed
surface. Its characteristic is (2 — /) + (h+ 1) =3, which is impossible.)

To begin the proof of Theorems 1 and 2, note that if 2" has a k-coloring,
it has a zero-free (k + 1)-coloring. Thus y*(ZX’) equals x(Z) or y(2)+ 1. An
instance of the latter case is + K. Clearly, y(+K;)=2 while y*(+K;)=3.
Since + K; embeds in U;, x4 (U,)>=3 and y, (U,)>2 for h> 1. Further-
more, z. (U,)=2 implies y* (U,)=3.

For the proof that y . (U,)=y, (U,)=2, let 2’ be embedded in U, and
simply signed (that is, without positive loops or parallel edges of the same
sign; this in particular rules out multiple negative loops at a vertex), and
suppose that 2 is not 2-colorable but every simply signed, U,-embeddable
graph having fewer vertices is 2-colorable. (Hence 2 is connected.) Our
task is to prove that X is 2-colorable.
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Standard reasoning, as for instance in the proof of [4, Lemma 4.1],
enables us to bound the average degree. (The degree is the number of edge
ends at the vertex. A loop counts 2.) We briefly sketch the argument. A
graph embedding is cellular if every face is an open 2-cell. Suppose X is
embedded in S, whose Euler characteristic is & We can cut out any non-
cellular face and replace it by one or more cells to make the embedding
cellular. (Youngs calls this operation capping [5]. Abstractly, it can be
done with rotation systems; see {7, Section 6] for definition and referen-
ces.) Call the resulting surface Sg; it has Euler characteristic ¢, > 6. X is
orientation embedded in S, because a neighborhood of X is preserved
during the capping. Now let / be the number of faces of the capped
embedding in S;. Because 2 is simply signed, all face boundaries have
length at least 3; therefore 3/< sum of face boundary lengths =2 |E|.
Cellularity of the capped embedding implies Euler’s formula, | V| —|E} +
f=¢&y. Thus the average degree is at most 6(1 —¢y/n). In our situation
S=U, or U,, so ¢ =¢>=0, whence the average degree is at most 6.
Moreover, if it equals 6 then ¢,=¢=0 so0 S,=S (see [5, p. 309, (3) and
(4)]) and the original embedding is a triangulation of U,. Consequently,
2 has a vertex of degree at most 6,

Case 1. If X had a vertex of degree four or less, or one of degree five
supporting a negative loop, its 2-colorability would be obvious by induc-
tion. So X has no such vertex.

Case 2. Suppose there is a vertex v of degree five, not supporting a
negative loop. If v has distinct neighbors v, and v, joined to v by positive
edges e, and ¢, but not positively adjacent to each other, then we contract
e, and e,. Thus v, and v, are merged into v. No positive loop is created;
hence by induction the contracted graph 2’ has a 2-coloring. We apply this
2-coloring to X£\v, giving v, and v, the color of v in 2’'. That leaves v with
at least one of the five semicolors available, so X is 2-colorable.

If v is linked by edges e, and e, to distinct vertices v, and v, and there
is no edge which forms with e, and e, a positive triangle, then by switching
we may make ¢, and ¢, positive and thence conclude that 2 is 2-colorable.

Now let us switch so that each neighbor of v is positively adjacent to it.
We see that X is 2-colorable unless every neighbor is positively adjacent to
every other. If 2 has four or more neighbors, we therefore have + K5 (an
all-positive K} embedded in U,. But an all-positive graph embedded in U,
or U, is planar (that is, can be embedded in the plane, although the actual
embedding in U, need not contractible. See, e.g., [7, Lemma 3.3] and, for
proofs, the references cited therein). Since K is nonplanar, we have a con-
tradiction. It follows that (because X is not 2-colorable) v can have no
more than three neighbors and that, for any edges ¢, and ¢, from v to dis-
tinct neighbors v, and v,, there is an edge e, such that ¢,e,,¢, is a positive
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triangle. We conclude that 2’(v) is + K, minus an edge at v, possibly with
negative loops added at some of the three neighbors of v.

If 2 happens to be projective planar our proof is done. For 2 necessarily
has a vertex of degree less than 6, but, because U, has no two disjoint
essential curves, 2 can have no two vertex-disjoint negative polygons.
Hence by contradiction we have Theorem 1.

In general, however, Case 2 requires more work and there is a third case.

Case 2, resumed. Let N(v)= {v,,v,, v}, the missing edge of the +K,
being —uvv’. (Note that the sign on the missing edge is arbitrary; it can be
reversed by switching v or v'.)

LemMa 1. If X has a second vertex of degree S, it is v'.

Proof. If there is a second vertex w of degree 5, let N(w)= {w,, w,, w'}
and (without loss of generality) 2’(w) be +K,\(—ww"), perhaps with
negative loops at some of the vertices in N(w). Let us assume that w is non-
adjacent to v, whence v, v/, w are distinct.

Were w, not adjacent to v, then 2 would contain three vertex-disjoint
negative polygons: two digons in 2'(v) and one digon on ww,. But U,
cannot contain such a configuration. So w,, w, € N(v). But now we have a
different problem: the subgraph induced on {v, v’, w, w’, v, v,} has
average degree greater than 6 (whether or not w’ is adjacent to v), which
is too high for a simply signed graph embedded in the Klein bottle. The
only possible conclusion is that w is a neighbor of v, whence w=2v". }

LEMMA 2. 2 has no separating vertex.

Proof. Suppose to the contrary that there is a separating vertex p; that
is, Z=2,0J%,, where 2, nZ,={p}, 2, and &, have order smaller than
X, and 2|, 227(v). The formula of [7, Theorem 8.1] states that d(X)=
d(2,)+d(X,)— 93, where 6 =0 usually, but 6 =1 if, for bothi=1and i=2,
adding a negative loop to p in X, does not raise the demigenus. Since
22d(2)2zd(X)=d(2'(v)) 22, we deduce that d(2,)=35<1.

In case 6 =0, 2, is planar. Make it all positive by switching. We can
2-color 2 by 2-coloring X', (in the signed sense) and then S-coloring the
unsigned graph |2,| (in the ordinary sense) with the colors {0, +1, +2}
so that p has the same color as in 2',. In case § =1, let /, be a loop at p;
then both graphs X, u { —/, } embed in U, and have smaller order than X,
so they are 2-colorable. The loop prevents p from being colored 0, so we
can arrange the colorings of 2, and X, to agree on p, thus 2-coloring 2. |}

Let m,, m,, and m’ be the amounts by which the degrees of v, v,, and
v’ exceed 6, 6, and 5, respectively. Lemma 1 implies that the sum of all
degrees is at least 6 | V| +m,; +m,+ (m' —1)— 1. Since the average degree
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is at most 6 we can conclude that m, + m, +m’ < 2. Thus at least one of
v, and v, has no loop; therefore X'(v) is 2-colorable. It follows that £ has
more than the four vertices of 2'(v}, so 2°(v) is attached by one or two
edges to a graph X,; this entails that 2’'(v) has no loops. By Lemma 2
the number of attaching edges is two, they are vertex disjoint, and X, is
connected.

Say p, p’ € N'(v) are adjacent respectively to ¢, ¢’ V(X, ). By switching
we ensure that the edges pg and p’q’ are positive. Let X, be X, with an
edge +¢gq’. (If £, contains that edge, &% is X',.) Since there is a positive
path from ¢ to ¢’ through N’'(v), X% embeds in U,, hence is 2-colorable.
Choose a 2-coloring. One at least of ¢ and ¢’ 1s not colored 0; say the color
¢(g) is not 0. We now 2-color 2'(v) so that ¢(p)#c(q) and c(p')#clq’),
which is possible because 2, can only prevent our using zero at the one
vertex p’ of X'(v), while X'(v) lets us use zero at either v, or v,. Therefore
2 is 2-colorable, contrary to hypothesis. We conclude that Case 2 cannot
occur.

Case 3. Suppose & is 6-regular. Here we need not only double but
triple contraction and more.

We focus on a vertex v. Bear in mind that, under our general hypotheses
on X, a loop is always negative and a double adjacency, or digon, consists
of a positive and a negative link.

LemMa 3. If v is doubly adjacent to x| and x,, then x| and x, are doubly
adjacent to each other.

Proof. If they are not, we may suppose after adequate switching that
+x,x, is absent from 2. Contracting +uvx, and +uwvx, gives a graph 2,
that by induction is 2-colorable. Coloring all vertices except v as in 2|, we
see that c(x,)=c(x,) so there is a semicolor available for v. But this
contradicts the hypotheses on 2. |

LEMMA 4. At most two vertices are doubly adjacent to v.

Proof. 1f v had three double neighbors, by Lemma 3 2"(v) would be
+K,. But d(+K,)>2 by Proposition 2 in the Appendix. ||

LEMMA 5. |N(v)|#6.

Proof. Suppose to the contrary that v had six distinct neighbors, say
Xy, .., Xg in cyclic order around v as embedded. (We take subscripts on the
x; modulo 6.) We prove that X is 2-colorable.

First we switch so all edges vx, are positive. Recall that X' triangulates
U,. Since each vx; | and vx; are boundary edges of a face F;, there is an
edge +x, ,x; completing the boundary. (It is positive because a face
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boundary is positive.) The union of the closed faces F; is a disk D with ali-
positive boundary polygon xgx, --- x,.

Suppose x,, X3, x5 mutually nonadjacent in &', . Contract them all into
v, 2-color the resulting graph, and carry the coloring back to X'\v. Since
N(v) rules out at most four semicolors, X is 2-colorable.

We may therefore suppose that in the set {x,, x;, x5} there is a positive
edge e, and similarly that in {x,, x,, x,} there is a positive edge /. If ¢ and
[/ crossed with respect to the hexagon xyx,---xq, 2(v), would contain a
subdivided K,, so in 2'(v), there would be a subdivided K. But as we
noted earlier, an all-positive subdivided K, cannot embed in U, ; thus ¢ and
fdo not cross. For the same reason there is at most one more positive edge
in 2(v) and, without loss of generality, we may assume that 2(v), consists
of the hexagon x,x, --- x¢ with diagonals +x,x; and + x,x¢ and possibly
+ XXy,

This information allows us to 2-color 2. In the embedded X, D contains
v and six radial edges to the x,. Replace this by edges +x,x; and +x,x,
in D, contract them, 2-color the result, and pull back to a 2-coloring of
2 in which ¢(x,)=c¢(xs) and ¢(x, ) =c(x,). Now N(v) has at most four
semicolors, so v can be colored, as claimed. [

The preceding three lemmas imply that the double-adjacency graph X,
is the disjoint union of K,’s and K,’s. Furthermore, because U, contains no
three mutually disjoint orientation-reversing curves, 2',, has at most two
components and, if it has two components, at most one vertex in each edge
component and none in each triangle component can support a negative
loop of 2.

Now we show that in every case X is 2-colorable. The case |V| <2 is
trivial. When [ V| =3, 2 has a loopless vertex which can be colored 0 while
the other vertices are colored +1 and +2. Thus if 2',, is connected we are
done. Otherwise, if one component is an edge with loopless vertex x, then
x has five neighbors in X yet |V| <5, a contradiction. If 2',, has two
triangle components, say with vertex sets X ={x,, x,,x,} and Y=
{ ¥o» ¥1» ¥2 1. the simple edges of X form a 2-regular bipartite graph
between X and Y, hence a hexagon. Supposing X and Y labelled so that
x;€X and y,e Y are nonadjacent in X for i=0, 1, 2, we color ¢(x,;)=
¢(y,)= +1i. That concludes the proof of Theorem 2. }

APPENDIX: THE DEMIGENUS OF + K,

PropPOSITION 2. d(+K,)=3.

Proof. Figure | shows + K,\(—v,v;) embedded in U,. To embed + K,
in U, place a crosscap next to edge +v,v; and run —o,v; through it.
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Fic. 1. +K;.(—t,r;) embedded in the Klein bottle, represented as a square with sides
suitably identified. Positive edges are solid; negative ones are dashed.

The proof that + K, cannot embed in U/, is based on three lemmas that
apply rather generally. For them we need definitions and terminology.

Let 2 denote any loopless, simply signed graph embedded in a surface
S. We think of each vertex as oriented in an arbitrary but fixed way. The
rotation R(v) at a vertex v of degree k is the cyclic sequence {e,, €5, ..., €, »
of signed edges at v, read counterclockwise as viewed from above in the
local orientation at v. We write e;=¢,vv,, where ¢, is the sign. Each con-
secutive pair (e;_,, e;) (subscripts taken modulo k) is separated by a face
F.. If F,is a triangle (that is, its boundary has length three; the boundary
vertices and edges need not be distinct), then the third bounding edge is
(¢, (&) v, v, because a face boundary walk must be positive. Thus
one can deduce a portion of R(v;) from R(v) if it is known that F; is
triangular.

LEMMA 6. If X is a loopless signed graph, then each triangular face has
distinct vertices.

Proof. Suppose a triangular face F had two coincident vertices. One
would need a loop at that vertex in the boundary of F. But we assumed X
is loop free. |

It follows that a triangular face has distinct edges; thus its closure is a
closed 2-cell.
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LemMMA 7. If X is a loopless, simply signed graph,
R(v)={e,vv,, &,00,, oy & LUV, _ ¢, &;00;, ... ),

where 4 <i< k, and F, and F, are triangular faces, then (v, v, ) # (v, v,_, ).

Proof. Suppose to the contrary that equality held. Since X is simply
signed, ¢;= —¢, and &, ,= —¢&,. By switching we may assume that
& =¢&,= +. The boundary of F, in the clockwise direction (in the local
orientation at v) is <{+wvv,, +uv,0, +v,vy while that of F, is
{—vry, +v,v5, —0,v». The closed walk (+vr,, —v,v) 15 negative,
therefore orientation reversing. It is also homotopic to a path from v to v
in S, to wit, through F, to the center of + v, v, and on through F, to v. This
latter path is orientation preserving because it lies in an annulus formed by
the union of the closures of F,, F,, and a small neighborhood of v. Thus
we have a homotopy between an orientation-reversing and an orientation-
preserving path, which is impossible. [

LEMMA 8. Suppose that every vertex of X has degree at least equal to 5.

If
R(v)={e,00,, 65005, €300, oy &; 2UU;_ 5, & UU; 4, §;00;, ... ),

where 6 <i<k, and F,, Fy, F,_,, and F; are triangles, then (v,, v, t3)#
(D2, by, 1)

Proof. Suppose to the contrary that there were equality. By suitable
switching make ¢, =¢,=¢6,= + and ¢;, ,=¢,_,=¢;= —. Then the third
edges bounding F, and F;, and also F, | and F,, are +0v,v, and +v,0;.
We see that R(v,) can only be {+wv,v5, +v,0, +0,0,, —v,v) (or the
inverse rotation). But then v, has degree 4, contrary to hypothesis. |

Now we apply the lemmas to +K,. If it could embed in U,, the
embedding would be a triangulation. (This follows by standard arguments
based on the Euler charcteristic.) Let us abbreviate the rotation at a vertex,
say v,, by writing not the edges ¢,v, v, but only the subscripts of the second
vertices. Then R(v, ) is a cyclic permutation of the multiset {2, 2, 3, 3, 4,4}
in which there is no adjacent pair ii (by Lemma 6), no reflected pair ij---ji
(but jji--- is permitted), and no repeated triple ijk - -- ijjk - --. One can easily
verify that these conditions cannot be met. Hence, + K, cannot embed

inU,. |}

A forbidden link minor for orientation embedding in a surface S is a
signed graph which does not embed in S, but such that every proper sub-
graph and every contraction by a link do embed.
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COROLLARY 1.  + K, is a forbidden link minor for orientation embedding
in the Klein bottle.

Proof. Proposition 2 and Fig. 1 leave to be proved only that + K, /edge
embeds in U,. This contraction consists of + K, with a negative loop at a
vertex v and all links at v doubled. The doubling of links can be ignored.
Embedding + K, in U,, one crosscap added in a face abutting v suffices to
embed the loop as well. Thus + K, /edge embeds in U,. ||
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