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A graph 1 is parity embedded in a surface if a closed path in the graph is orienta-
tion preserving or reversing according to whether its length is even or odd. The
parity demigenus of 1 is the minimum of 2&/(S) (where / is the Euler charac-
teristic) over all surfaces S in which 1 can be parity embedded. We calculate the
maximum parity demigenus over all graphs, simple or not, of order n. � 1996

Academic Press, Inc.

Let us try to embed a graph 1, not necessarily simple, in a surface so
that every odd polygon (the graph of a simple closed path of odd length),
regarded as a path in the surface, reverses orientation while every even
polygon preserves it. What is the smallest surface in which this is possible?
That is, what is the minimum demigenus d(S)=2&/(S) over all embedding
surfaces S? We call this kind of embedding parity embedding1 and the
smallest d(S) the parity demigenus of 1, written d(&1 ). There is in general
no exact formula but there is a simple lower bound based on Euler's poly-
hedral formula and the obvious fact that a face boundary must (with trivial
exceptions) have length at least 4:

d(&1 )��
m
2 |&n+2 (1)

if 1 is connected and has no multiple edges and m�2, where n=|V |, the
order of 1, and m=|E |, the number of edges. There is also an obvious
upper bound in terms of the order, namely d(&K%n) where K%n is the com-
plete graph with a loop at every vertex (since multiple edges do not affect
parity embeddability, but loops do). Here we establish the value of this
upper bound by proving that, except when n�5, d(&K%n) equals the lower
bound given by (1).
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Theorem. For any graph 1 of order n,

n, if n�4,

d(&1 )�d(&K%n)={6, if n=5, (2)

W 1
4n(n&3)X+2, if n�6.

We sketch another interpretation of the theorem. Let 1� be a connected
bipartite graph with bipartition V=V1 _ V2 , embedded in Tg (the sphere
with g handles) so that an involutory autohomeomorphism { of Tg whose
quotient is Ug+1 (the sphere with g+1 crosscaps) carries 1� to itself while
exchanging the two independent vertex sets V1 and V2 . The minimum
possible g is d(&1 )&1, where 1 is the quotient of 1� by {. In particular,
if 1� is Kn, n with all edges of the form v{(v) doubled (a technical necessity),
the smallest g is d(&K%n)&1, which exceeds by approximately n�4 the mini-
mum when the embedding is unrestricted, which is W 1

4 (n&2)2X. (Let us call
this graph Kn, n({). The difference in the minimum g is largely due not to
antipodality but merely to the fact that, if n�2, an antipodal embedding
of Kn, n({) has no digonal faces. This simple property raises the Eulerian
lower bound on g to W 1

4n(n&3)X+1, which turns out to be the true mini-
mum number of handles needed for an embedding of Kn, n({) without
digonal faces when n�2. We omit the details.)

A reader familiar with the usual, unsigned graph embedding may wonder
why we allow loops. In unsigned embedding, loops and multiple edges have no
effect on the surfaces in which a graph embeds. In parity embedding, multiple
edges have no effect, but loops, in contrast, can alter the minimal surface.
Indeed, the largest parity demigenus of a simple graph, which is obviously
d(&Kn), equals W 1

4n(n&5)X+2 for n�6 (a result that will appear separately).
This is smaller by about 1

2n than the overall upper bound d(&K%n).
Before proceeding to the proof let us see how parity embedding fits

into the more general scheme of orientation embedding of signed graphs.
A graph with signed edges is said to be orientation embedded in a surface
if it is embedded so that a closed path preserves orientation if and only if
its sign product is positive. Parity embedding is therefore the same as
orientation embedding of &1, the all-negative signing of 1. Let us call the
demigenus d(7 ) of a signed graph 7 the smallest demigenus of any surface
in which it orientation embeds. I believe that d(&K%n) maximizes not only
d(&1 ) but also d(7 ) for all signed graphs of order n that have no parallel
edges. Equivalently, and a bit more simply,

Conjecture. d(&K%n) is the maximum demigenus of any signed K%n .

The Proof of the Theorem

Let $n denote the right-hand side of (2).
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Proof that d(&K%n)�$n . Taking account of (1) and the fact that the n
loops already require n crosscaps, we deduce that

d(&K%n)�max \n, �
n2&3n

4 |+2+ . (3)

This takes care of all cases except n=5, where, as it happens, both quan-
tities on the right-hand side of (3) equal 5. We need to prove that there is
no parity embedding of K%5 in U5 .

Suppose there were such an embedding. Being minimal it would be cellular;
every face would be an open 2-cell. Let fi denote the number of faces whose
boundaries have length i (briefly, i-faces). Then fi=0 unless i=4, 6, 8, ...
because a complete walk around a face boundary must be orientation
preserving. Consequently 2m=4f4+6f6+ } } } =4f +2( f6+2f8+ } } } );
since by Euler's formula f =m&n+/(U5)=7, we have f6=1 and f4=6.
We show that these face numbers are unable to carry the five orientation-
reversing loops.

We shall think of the boundary �F of a face F as a walk in the graph.
If an edge appears twice on a face boundary we therefore count it as two
edges in �F.

We now prove some lemmas about face boundaries of any cellularly
parity-embedded K%n .

Lemma 1. Two appearances of a vertex v on a face boundary �F cannot
be separated along �F by exactly one vertex not equal to v.

Proof. Suppose �F contained the vertex sequence v, w, v. Then the
edges vw and wv are consecutive in �F. But that can happen only if w is
monovalent, which cannot occur in K%n . K

Lemma 2. A 4-face can have only one loop on its boundary. A 6-face can
have as many as four boundary loops only if n=2. (We count a repeated loop
as two.)

Proof. If the same loop appears twice on �F, Lemma 1 is violated
unless F is a 6-face and the repeated loop appears consecutively. Thus for
�F to contain two loops (if a 4-face) or four loops (if a 6-face), the edges
of �F must be wv, vv, (vv), vw, ww, (ww). Let us see what this entails at v.
The loop vv splits a neighborhood of v into two sides. Tracing �F from w
to v, then along vv, we are on the opposite side of v from wv. Therefore �F
cannot immediately go back along vw. This disposes of the 4-face case. In
the 6-face case �F must be able to continue along vv; this means no edges
meet v on the side opposite wv. After tracing vv a second time, �F must
return along vw, so there can be no other edge incident to v on the wv-side
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of v. Hence v has only one neighbor, from which it follows that n=2.
(If n=2 it is clear that there is just one face and its boundary length is
indeed 6.) K

Now, in a parity embedding of K%5 in U5 , the six 4-face boundaries and
the one 6-face boundary can account for at most 6(1)+(3)=9 loop
appearances, which is too few for five loops. Therefore the supposed
embedding does not exist. We have proved d(&K%5)>5. K

Proof that d(&K%n)�$n . The constructions diagrammed in Figs. 1 to 8
demonstrate the existence of a parity embedding of K%n in U$n for all n. We
begin with an explanation of how to read the diagrams.

A lens shape with a number (say, i ) inside denotes a crosscap in the form
of a hole on whose rim opposite points are identified. The sharp ends are
vertex i and the sides are the loop at i. The two points representing the ver-
tex are labelled + and & (only the + being shown). We call these figures
loop lenses.

A crosscap which is not a loop lens is drawn as a circle or oval with a
tilde inside. Again this denotes a hole whose opposite boundary points are
identified. In Fig. 2 the outer circular boundary also denotes a crosscap:
that is, opposite points on it are identified.

A handle is drawn as a pair of circular holes (called its ends) whose
boundaries are identified with each other in opposite senses or in the same
sense. In the former case the handle preserves orientation with respect to
the plane of the figure, which means that a closed path passing through
that handle and no other handle or crosscap is orientation preserving. Such
a handle is called a prohandle. In the latter case the handle reverses orienta-
tion; it is called an antihandle. (In some cases only one of the two ends is
depicted��this is the case for the ``outside handles'' to be defined later.)

Fig. 1. A parity embedding of K%4 in U4 . The whole figure lies in the plane. By deleting
vertices (and incident edges and lenses) we get minimal parity embeddings of K%3, K%2 , and K%1 .
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Fig. 2. A parity embedding of K%6 in U7 , presented as six loop lenses in the projective
plane. By deleting one vertex we obtain a parity embedding of K%5 in U6 .

Fig. 3. A parity embedding of K%7 in U9 , drawn as a torus with seven loop lenses. The
torus is presented as a planar tessellation. The + end of each lens is at the right. A funda-
mental domain is outlined in dashes.
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Fig. 4. The inductive scheme for parity embedding of K%6+4s : (a) the environment before
gadget insertion, (b) the gadget in the environment, and (c) the new environment, from (b).
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Any path has a sign which is calculated according to the following rule.
An endpoint which is a vertex is signed (as mentioned earlier); any other
endpoint is treated as positive. To calculate the path sign we multiply the
endpoint signs and negate once for each crosscap or antihandle through
which the path passes. By this rule a closed path has positive sign if and
only if it preserves orientation. Also, the sign of a concatenation of two
paths (say from P to Q and Q to R) equals the product of the signs of the
paths. In particular, the sign of a polygon of length l in the graph is (&1) l

if every edge is negative. Thus we have a parity embedding if we make
every edge negative.

Now we describe the minimal parity embeddings. Embeddings for
n�7 are shown in Figs. 1 to 3. We construct embeddings for higher
order inductively. In outline, starting from embeddings of K%6 and K%7 we
repeatedly add a four-vertex ``tetradic gadget'' (different for n#6 and 7
modulo 4) to get embeddings for all larger n#6 and 7 (mod 4). We
solve n#8, 9 (mod 4) by adding to an embedded K%6+4s a ``dyadic'' or
``triadic'' gadget of two or three vertices. In every embedding the parity
property is assured by making every edge negative according to the rule
stated earlier.

In greater detail: A gadget added to an embedded K%n is inserted in a
suitable environment, which is a portion of the embedding having a cer-
tain shape (which is constant within each residue class of n modulo 4).
The environment is a union of closed faces of the embedded graph; its
boundary therefore consists of some edges and (signed) vertices of K%n
and its interior consists of open faces and edges (but no vertices, as it
happens). The environments are shown in Figs. 4a and 7a. Note that
some vertices are unlabelled: they play no part in adding a gadget, so
they can be anything. On the other vertices, different labels signify that
the vertices are actually different. The vertex signs are not in themselves
important; their role is to tell us (by the usual rule) the sign of a path
drawn through the environment between two labelled boundary vertices.
A different presentation of the environment in which parts of it pass
through crosscaps or antihandles might have different vertex signs, but it
is the same environment so long as the path signs are the same. In Figs.
4 and 7, for example, (c) is the same environment as (a) although
drawn differently.

In (a) the faces are labeled I and II. In (b, c) the new environment is similarly labeled. The
vertices i, j, k, l of the old environment correspond to j, B, A, l in the new. The new vertex
pairs are iD and kC; their attachment faces are labeled accordingly. In (b) the two holes of
the internal handle, which is an antihandle, are labelled jlCD. Outside handles are starred;
only the ends within the replacement surface are depicted.

An initial environment (that is, for n=6) with i=1, j=5, k=4, and l=3 is shown in
Fig. 2. The initial pairing of outside vertices is 26.
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Fig. 5. A parity embedding of K%8+4s , shown as a dyadic gadget inserted in the environ-
ment of K%6+4s .

Gadget insertion can be viewed as a two-step process. First, the interior
of the environment is removed and replaced by a surface which contains a
parity-embedded K%4 (or K%2 or K%3) and edges joining the new vertices to
some of those on the boundary of the environment. (We call these latter
vertices direct. There are four of them if n=6+4s, three if n=7+4s. The
remaining old vertices are called indirect.) This replacement surface con-
tains, besides the loop lenses, several crosscaps and handles to permit all
the connecting edges to be drawn with negative sign and no crossings.

In the second step one adds outside handles to carry edges from the new
vertices to the indirect old ones. Each such handle carries edges to two
indirect vertices from two or (in the triadic case) three new vertices. The
two indirect vertices, say p and q, must therefore be on a common face Fpq ,
called their attachment face, which the handle reaches from a suitable face
of the replacement surface. To make all this possible one wants in advance,
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Fig. 6. A parity embedding of K%9+4s , shown as a triadic gadget inserted in the environ-
ment of K%6+4s .

besides the environment, a pairing of the indirect vertices such that all the
attachment faces are distinct. In order to guarantee negative edge signs we
choose the Fpq so that both vertices appear on �Fpq with the same sign.
(Actually, one vertex appears twice, with both signs; we use the copy
whose sign equals that of the other vertex.) We place in Fpq one end of each
handle carrying edges to p and q (see Fig. 8); from there the handle edges
can be distributed to p and q without passing through any crosscaps or
handles, so the sign contribution to an edge at this end of the handle will
be the same for p and for q. At the other end of the handle we arrange
things so that the sign calculated there for every edge in the handle is the
same. (For example, one edge may start at vertex +x and pass through
two crosscaps on its way to the handle end, while another starts at &y and
goes through one crosscap; thus both edges have + signs on that side of
the handle.) Now all we need do is choose a pro- or antihandle, whichever
makes the handle edges negative. Since that is always possible, in the
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Fig. 7. The inductive scheme for parity embedding of K%7+4s . (a, b, c) are as in Fig. 4.
In (a) the faces are labeled I, II, III. In (b, c) the new environment is labeled similarly. The

vertices i, j, k of the old environment correspond to D, k, i in the new one. The new vertex
pairs are jC and AB.

An initial environment (for n=7) with i=1, j=4, k=2 and initial pairing 35, 67 is shown
in Fig. 3.

drawings we can safely ignore the exact orientation type of the outside
handles.

When we add the dyadic or triadic gadget, only one outside handle goes
to each attachment face. In the triadic gadget, this handle carries three
edges to each indirect vertex; those going to each such vertex must be
grouped together in the handle, and the gadget is constructed to do this.

Now we come to the last crucial point. In order to make induction
possible, adding the tetradic gadget must reproduce the environment: the
new embedding must contain a group of closed faces whose union is similar
to the original environment. Furthermore, it must admit a suitable pairing
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Fig. 8. An attachment face Fpq , showing the indirect vertices p and q, the ends in Fpq of
the two outside handles, the four edges (dashed) that run through the handles to each of p
and q, and the new attachment face F*pq .

of vertices which are outside the new environment. To explain how we
meet these requirements we note that the new surface consists of two parts,
the replacement surface and the remnant of the old surface, both modified
by the addition of outside handles. The boundary between the two parts we
call the border. Bear in mind that each outside handle consists of two
circular holes with identified boundaries, one hole in the remnant and one
in the replacement surface; thus it is topologically a circle. The border
therefore consists of the original environment's boundary and the outside
handles. Note that the border is transverse to the embedded &K%n+4: they
intersect in a finite set of points, none a vertex.

The border may cut a face F of the new embedding into components,
each of which is clearly a topological disk. A component is a pseudopod if
its boundary consists of a path in the border and a path in �F and contains
exactly one vertex. One can check in Figs. 4b, 7b, and 8 that every face cut
by the border has exactly one component that is not a pseudopod.

Now examine Figs. 4 and 7. The diagrams 4c and 7c show the new
environment, which, as the diagrams 4b and 7b demonstrate, lies within
the replacement surface. The new pairing is chosen to be the old one
together with two new pairs tu whose attachment faces Ftu are in the
replacement surface (except for pseudopods). The old attachment faces Fpq

are broken up by the outside handles and their edges but a new attachment
face F*pq can be found by taking the part of Fpq , as split up, which abuts
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the loop pp. (See Fig. 8.) The new face F*pq is outside the replacement sur-
face (again, aside from pseudopods). It follows that the new attachment
faces are all distinct.

The final verification of all requirements is by the reader's inspection of
Figs. 4�7.

It remains to show that the surface resulting from addition of the gadget
to a minimal parity embedding of K%n , n�6, has the right demigenus.
A tetradic gadget contains 4 loop lenses and 3 other crosscaps. If n#6
(mod 4) there is also one internal handle. The W (n&4)�2X indirect vertex
pairs require 2W (n&4)�2X handles. The total increment to d(&K%n) is there-
fore 2n+1. Assuming d(&K%n)=$n , we have K%n+4 embedded in demigenus

�
n2&3n

4 |+2+(2n+1)=�
n2+5n+4

4 |+2,

which equals $n+4. The dyadic gadget has 2 loop lenses, one other
crosscap, and (n&4)�2 outside handles for a total demigenus increment of
n&1; and $n+(n&1)= 1

4 (n2+n&2)+2=$n+2 . The triadic gadget has 3
loop lenses and 3 other crosscaps plus one for each outside handle. There
are (n&4)�2 outside handles. The total demigenus increment is 3

2n, and
$n+ 3

2n= 1
4(n2+3n+2)+2=$n+3. Thus in every case the new graph is

parity embedded in the desired demigenus. K
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