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OBJECTIVES

Fundamental Problem:
Generalize the structure theory of multiary quasigroups to contin-
uous and differentiable local multiary quasigroups.

Reducible means the n-ary quasigroup xo = q(x1, 9, ..., x,) has
an expression in terms of multiary quasigroups of lower arities.

Known Structure Theory:

(1) q is completely reducible <= it is essentially an iterated
group operation. (Aczél, Belousov, and Hossz1)

(2) q is completely reducible <= its factorization graph is
3-connected. (Zaslavsky)

(3) ¢ is completely reducible <= all its ternary retracts are
essentially iterated groups. (Zaslavsky)

(4) If g is reducible, it has a unique maximal reduction. (Belo-
Usov)

(5) Algebra of quasigroups, used to prove (4). (Belousov)

(6) Graph-theoretical description of quasigroups, used to prove
(2, 3, 4) and a precise decomposition theory. (Zaslavsky)

New Idea:
Treat local quasigroups by adding topology to the graph theory:.



OUTLINE

Outline of my talk:

(1) Background, more background, and still more background:
e (Quasigroups.
e Continuous and local quasigroups.
e Graph theory (biased graphs).
e Representation of quasigroups by means of biased graphs.

(2) New definitions:
e Topological biased graphs (representing continuous quasi-

groups).
e Local biased graphs (representing local quasigroups).

(3) Speculation:
e The reducibility theorems for multiary quasigroups gener-
alize to multiary local quasigroups with similar proofs.
e Possibly, generalize local quasigroups using graph theory.

(No theorems yet. Very sorry. Is anyone interested?)



BACKGROUND: QUASIGROUPS

Definition: n-ary (or multiary) quasigroup 2Q
(for short: quasigroup):
® a set £,
e a function ¢ : Q" — Q, such that
e there exist functions ¢; : Q" — Q for ¢ = 1,...,n such that

q(x1,x9,...,T,) = T
> qi(T0, L1, Ty oo, Tpy) = T
(z; means: omit z;.)
Write qq := ¢q for symmetry.

Ezxample 1: Iterated group:
) = group with operation .
To=q(T1,...,Tp) =Tk Ty % -+ % Ty

Definition: Isotopy:
q and ¢’ are isotopic if we can get ¢ from ¢’ by changing the names
(separately) on each copy of Q in ¢’ : Q" — Q.

Erample 2: Iterated group isotope:
Any ¢ that is isotopic to an iterated group.



BACKGROUND: TOPOLOGICAL QUASIGROUPS

Definition: Continuous quasigroup:
3 topology on £ such that
e all ¢; are continuous.

Definition: Differentiable quasigroup:
3 differential structure on £ such that

e all ¢; are differentiable.

Definition: Local quasigroup:

Like a continuous quasigroup, but local:
e cach ¢; is defined on an open subset D; C Q", and
e cach ¢; is continuous.

Ezxample 3:
Q =R, ro=q(x1,...,T,) =21+ T2+ -+ 2, + 5.

Ezxample 4 (more general):
Q=R, F(xg,x1,...,2,) = a continuous function such that

F(xy,x1,...,2,) =0
determines the value of each x; (continuously) when all other z;
are given; then ¢;(xg, x1,...,Z;, ..., x,) = that value of x;.



BACKGROUND: QUASIGROUPS

Definition: Factorization:
q(x1,. .., @)
(1)

/ /!
:C](ZIJl,...,ZIZZ', q (Tit1,-..,%j), :Ijo,...,a;n),
where 1 <1< j3—-1<n-—1.

Fact: Iterated groups and their isotopes are the only quasigroups
(with n > 3) that factor completely. (Easy consequence of Aczél,
Belousov, and Hosszi 1960.)

Definition: Factorization graph:

e Vertex set: {vg, v, ..., U}
e Edge set with two parts:
x a circle of edges vov1, v1,v9, ..., Vp_1Un, VU, With
VU1 <= X1, ..., Up_1Up <> Ty, and v,vy < To;

* factorization edges v;v; whenever there exists a factoriza-
tion (1).

Fact: Tterated groups and their isotopes are the only quasigroups
(with n > 3) whose factorization graphs are complete (have all
edges).



BACKGROUND: GRAPH THEORY

Definition: Biased graph:
e a graph (V, E) with vertex set V and edge set F,
e a class B of distinguished circles (called balanced circles)
such that
in each subgraph composed of 3 internally disjoint paths from
vertex v to vertex w, the number of circles that belong to B
is either 0, 1, or 3 (but not 2).

Definition (basic object): Balanced edge set:
a subset S C E such that every circle in S belongs to the distin-
cuished class ‘B.

Definition: P = the class of balanced edge sets.

A biased graph is a graph with additional structure. What is it
good for?
Combinatorial geometry:.
Optimization.
Various fun problems in graph theory.
— Multiary quasigroups.



BACKGROUND: QUASIGROUPS AND GRAPH THEORY

Representation of a quasigroup by a biased graph:

Given: an n-ary quasigroup £ (with operation gq).

Construct: a biased graph (Q):
(1) Start with the graph C),, 1, which is the circle
UoU1, UV1,V2, ..., Up—1Up, UpV
on the vertex set {vg, v1,...,U,}.

(2) “Thicken” each edge v;_1v; in Cj41 by replacing it by the
set of parallel edges {v;_1v;} x Q. Each edge represents an
element of 9 which is a possible value of z;.

(3) This gives a circle with parallel edges. There are |Q|"*! dif-
ferent circles of length n 4 1 contained in this graph.

(4) Each circle C' of length n+1 corresponds to a choice of values
for zy (depending on which edge v,vy is in C'), x1 (depending
on which edge vyvy is in C'), ete. Let

B = {C : the corresponding values satisfy o = q(x1,...,x,)}.

(5) Forget the quasigroup labels on the edges.
From this biased graph €2(£), the operation ¢ can be reconstructed

uniquely up to isotopy. (Isotopic operations cannot be distin-
guished, because the labelling of edges was forgotten.)



BACKGROUND: GRAPH THEORY

Definition: Let A be a graph with no multiple edges. A biased
eraph 2 is a biased expansion of A if:

e () is a biased graph.

e There is a projection mapping p : {2 — A which is the
identity on vertices and is surjective on edges.

(Therefore, V' (§2) = V(A), and the same pairs of vertices are
adjacent.)

e bor every circle C'in A and every edge vw € C, and for every
way to choose a path P in () that projects one-to-one onto
the path C'\ vw C A, there is exactly one choice of edge
é € p~'(vw) such that P U € is balanced.

Definition: A group expansion of A is a biased graph (GA)
that is constructed with a group &:

e The vertex set is V(A).

e Orient the edges of A arbitrarily.

e The edge set of (BGA) is & x E(A), with the same orientations
as in A.

e A circle (g1, e1)(go,€2) -+ (g1,€) is balanced if and only if
g192 -+ - g = 1in &. (If you go against the orientation of the
edge, use g; ' instead of g;.)

A group expansion is a particular kind of biased expansion.



BACKGROUND: QUASIGROUPS AND GRAPH THEORY

Properties of biased expansions and quasigroups:

(X1) The biased expansions of C), 1 are in one-to-one correspon-
dence to the isotopy classes of n-ary quasigroups.
e ()(£) is a biased expansion of C), 1.
e Every biased expansion of C), 11 is £2(Q) for some n-ary
quasigroup £.

(X2) ©2(9) is a group expansion with group & <=
) is an iterated group isotope with the group  <—
the factorization graph is complete.

(X3) () extends to a biased expansion € of the factorization
graph A(), with the same circle edges and with new (mul-
tiple) edges for the factorization edges in A(L).

(X4) Each parallel class of new edges, corresponding to a factor-
ization edge v;v;, determines the factor quasigroups in (1).

What this means:

(A) There is no difference, except notation, between biased
expansions of a circle graph, and isotopy classes of quasi-
qroups.

(B) The factorization graph of a quasigroup corresponds to
extending the biased expansion to the most possible vertex
pairs without adding vertices.



BACKGROUND: QUASIGROUPS AND GRAPH THEORY

Exzample 3 again:
Q =R, ro=q(x1,...,T,) =21+ T2+ -+ 2, + 5.
The biased graph €23 that corresponds to this quasigroup has

e vertex set V' =40,1,...,n},
e cdge set

E=A(r,v,1,v):reR, i=0,1,...,n (mod n+ 1)},
e balanced circle class
B — {(T17U07 Ul) e (Tn7 Un—1, Un)(r(b Ups UO) :
—T0+T1+"'—|—Tn+520}.

(13 is a group expansion because one can rename the ry values to
be rj = 5 — ry (isotopy), then take the group to be (R, +). That

gives the same edges and the same balanced circles.

We expect {13 to be a group expansion, because it extends to a
biased expansion {23 of the factorization graph A(Q) by (X3), and

A(£) is complete. Then € is a group expansion by (X2).
A(£) is complete because every possible factorization exists:
q(x1, ..., xp) =21+ 1
+q" (Tig1s o T) Tt T 5

" .
where ¢"(zit1,...,2;) =21+ -+ 5.



BACKGROUND: GRAPH THEORY

Definition:
A graph is 2-connected if it is connected, it has at least 3 ver-
tices, and deleting any one vertex does not disconnect it.

It is 3-connected if it is connected, it is has at least 4 vertices,
and, if any 2 vertices are deleted (with their edges), the graph
remains connected.

Note that a graph with 3 vertices is not 3-connected. Therefore,
the next theorem will not apply to it.



BACKGROUND: GRAPH THEORY METHOD

Main Theorem of Biased Expansions. If () is a biased
expansion of a 3-connected graph A, then ) is a group expan-
S10M.

Idea of Proof: The technique used is to treat as equivalent two
paths, P and P, with the same endpoints, such that their symmet-
ric difference (as edge sets) is a balanced circle. In some undefined
weak sense, they are “homotopic”.

We consider an arbitrary biased expansion ) of a 2-connected
oraph A. Here are two of the main lemmas:

Lemma 1 (Unique Maximal Extension). Let A", A" O A
have the same vertex set as A. Assume () extends to a biased
expansion " of A’. Then:
(a) € is uniquely determined by 2 and A,
(b) If €2 also extends to a biased expansion €2 of A", then it ex-
tends to a biased expansion of A"U A",

Lemma 2 (Theta Extension). If A consists of 3 internally
disjoint paths joining two vertices v and w, then {2 extends to a
biased expansion of A U vw.



BACKGROUND: QUASIGROUPS AND GRAPH THEORY

Main Theorem of Quasigroups. If the factorization graph
of a multiary quasigroup L is 3-connected, then Q is an iter-
ated group isotope.

Proof. £2(1), the biased expansion of C),,1 determined by 9, ex-
tends to a biased expansion of the 3-connected factorization graph
A(9Q). By the Main Theorem of Biased Graphs, Q(£Q) is a group
expansion. By the correspondence with quasigroups, £ is an iter-
ated group isotope. []

Corollary (Dornte 1928). An n-ary group (i.e., associative n-ary
quasigroup) is an iterated group isotope.

Proof. The definition of “associativity” (which I omit) makes the
factorization graph obviously 3-connected. []

There are other corollaries of similar nature, i.e., immediate deduc-
tions of some known factorization theorems. However, my method
becomes dificult when one wants results that are about actual
quasigroups, not isotopy classes.



BACKGROUND: QUASIGROUPS AND GRAPH THEORY

[ state two further results. Their proofs are similar to the preced-
ing ones. I regretfully omit one definition from graph theory:.

Second Theorem of Biased Expansions. If () is a biased
expansion of a graph A with at least 4 vertices, and if every
4-vertex contraction is a group expansion, then ) is a group
expansion.

This immediately implies the fundamental nature of ternary re-
tracts of an n-ary quasigroup.

Definition: A ternary retract of an n-ary quasigroup (with
n > 3) is obtained by holding constant all but 3 of the n indepen-
dent variables.

Second Theorem of Quasigroups. If Q is an n-ary quasi-
group with n > 4, and if every ternary retract of Q s an
iterated group isotope, then L s an iterated group isotope.



NEW: CONTINUOUS AND LOCAL

Main Problem:
Does any of this apply to local quasigroups?

Ildea and Goals:

e Define continuous and local biased graphs and biased expan-
s10ns.

e Prove local analogs of the graph-theory lemmas and theorems.

e Use them to deduce local versions of the preceding quasigroup
theorems.

e Generalize local quasigroups using graph theory:.

This is a plan. Right now, I have only some definitions.



BACKGROUND: GRAPH THEORY

Given: A biased graph (2.

Definition: EP is the class of balanced edge sets.

Definition: Pencil:
a nonempty set
E,, = {edges with endpoints v, w}.

Every pair of adjacent vertices has a pencil.

Definition: Balance-closure:
The operation on balanced edge sets, bel : € — EP. defined by

bel(S) := S U {e : 9 balanced circle C' with e € C' C S Ue}.
This is an abstract closure, not a topological closure.



BACKGROUND: GRAPH THEORY

Properties:

e bcl, together with a balanced, connected edge set S that con-
tains both an edge e,, and an edge e,,, induces a partial
injection between pairs of pencils,

S wvwx - Euv — wa
(These are partial functions, not functions.)

® (5w aNd Qg 4 are inverse functions where the compo-
sition 1s defined.

o If () is a biased expansion, each partial function ag.,p s
E.., — E,.: 1s a bijection.



NEW: CONTINUOUS GRAPH THEORY

Definition: Topological biased graph:
e Biased graph ().
e Choose a topology T, on each pencil of parallel edges, E,,.
e Subproduct topology on edge sets and therefore on the class
of balanced edge sets, €. (Similar to a product topology.)
e bcl must be continuous.

Properties:
e The partial functions £, — FE,, are continuous.

e [f () is a biased expansion, the partial functions E,, — E,.
are homeomorphisms.
Thus, all pencils have the same topological type.

Ezxzample 3 yet again:
Q =R, ro=¢q(x1,...,x,) =21+ 29+ -+ 2, + 5.

R has the usual topology. Thus, X' E,. . gets a product topol-
ogy = R". The subset " inherits this topology. In fact, one
can show that €» = R” as a subspace of R**!.



BACKGROUND: LOCAL QUASIGROUPS

Definition: Local quasigroup:
e a topological space 9,
e open subsets D; € Q" fori=0,1,...,n,

e continuous functions ¢; : D; — £ such that

qi(Toy -y Tjy ..., Tpy) = @
> qi(xo, . Ty Tp) = Ty
when (xg,..., 2, ..., T,) € D,
and (zg,...,Zj,...,T,) € Dj.

(z; means: omit x;.)

Properties:
e Each ¢; may have a different domain.
e [t is a partial function on Q"
e Fach ¢; defines retracts
qij(xj) = qi(ao, R ,lej, c. ,.C%Z', ce ,CLn> . Dj — Di,
which are partial functions on £ and are local homeomor-
phisms.



BACKGROUND: LOCAL QUASIGROUPS

Ezxample 5 (generalized Example 4 ).
F:Dyx Dy x---xD, — D,
a continuous function such that a fixed level set
F(xy,x1,...,x,) = fixed constant

determines the value of each x; (continuously) when all other z;
are given. Define

qi(xo, 1, ..., T4, ..., Ty,) = that value of z;.

Modelling Example 5 with biased graphs:
We follow the pattern for quasigroups. We take €2 such that
oV =A{vy,v1,...,v,}, and
e every edge has endpoints v;_1, v; for some i (mod n + 1), so
every pencil is By, ..
Then we identity D; = £, _, ,, and the fixed level set of F' with

8]8 ={SCFE:Se€ €b and S connects all the vertices}.

Goal:
To model (and generalize?) local quasigroups (and in particular
this example) with topological biased graphs and biased expan-
sS101S.



NEW: LOCAL GRAPH THEORY

Master Definition (and end of talk):
Local biased graph:

e A topological biased graph ().

e Every partial function ag ypws @ Euw — Euwe (determined by
bcl as previously described) must be a local homeomorphism.

The last property is the special property of the “local” topology
that makes a local biased graph similar to a local quasigroup.

This is the definition. Next?
e Prove it is internally consistent and includes all local quasi-
groups. (In progress.)
e [s it more general than local quasigroups?
— Does it have factorization properties of quasigroups?
— Does it have interesting properties of local quasigroups?
— Adapt to local differentiable quasigroups and local differen-
tiable biased graphs.
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