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objectives

Fundamental Problem:
Generalize the structure theory of multiary quasigroups to contin-
uous and differentiable local multiary quasigroups.

Reducible means the n-ary quasigroup x0 = q(x1, x2, . . . , xn) has
an expression in terms of multiary quasigroups of lower arities.

Known Structure Theory:

(1) q is completely reducible ⇐⇒ it is essentially an iterated
group operation. (Aczél, Belousov, and Hosszú)

(2) q is completely reducible ⇐⇒ its factorization graph is
3-connected. (Zaslavsky)

(3) q is completely reducible ⇐⇒ all its ternary retracts are
essentially iterated groups. (Zaslavsky)

(4) If q is reducible, it has a unique maximal reduction. (Belo-
usov)

(5) Algebra of quasigroups, used to prove (4). (Belousov)

(6) Graph-theoretical description of quasigroups, used to prove
(2, 3, 4) and a precise decomposition theory. (Zaslavsky)

New Idea:
Treat local quasigroups by adding topology to the graph theory.



outline

Outline of my talk :

(1) Background, more background, and still more background:
• Quasigroups.
• Continuous and local quasigroups.
• Graph theory (biased graphs).
• Representation of quasigroups by means of biased graphs.

(2) New definitions:
• Topological biased graphs (representing continuous quasi-

groups).
• Local biased graphs (representing local quasigroups).

(3) Speculation:
• The reducibility theorems for multiary quasigroups gener-

alize to multiary local quasigroups with similar proofs.
• Possibly, generalize local quasigroups using graph theory.

(No theorems yet. Very sorry. Is anyone interested?)



background: quasigroups

Definition: n-ary (or multiary) quasigroup Q

(for short: quasigroup):

• a set Q,
• a function q : Qn → Q, such that
• there exist functions qi : Qn → Q for i = 1, . . . , n such that

q(x1, x2, . . . , xn) = x0

⇐⇒ qi(x0, x1, . . . , x̂i, . . . , xn) = xi.

(x̂i means: omit xi.)

Write q0 := q for symmetry.

Example 1 : Iterated group:
Q = group with operation ∗,
x0 = q(x1, . . . , xn) := x1 ∗ x2 ∗ · · · ∗ xn.

Definition: Isotopy:
q and q′ are isotopic if we can get q from q′ by changing the names
(separately) on each copy of Q in q′ : Qn → Q.

Example 2 : Iterated group isotope:
Any q that is isotopic to an iterated group.



background: topological quasigroups

Definition: Continuous quasigroup:
∃ topology on Q such that

• all qi are continuous.

Definition: Differentiable quasigroup:
∃ differential structure on Q such that

• all qi are differentiable.

Definition: Local quasigroup:
Like a continuous quasigroup, but local:

• each qi is defined on an open subset Di ⊆ Qn, and
• each qi is continuous.

Example 3 :
Q = R, x0 = q(x1, . . . , xn) = x1 + x2 + · · · + xn + 5.

Example 4 (more general):
Q = R, F (x0, x1, . . . , xn) = a continuous function such that

F (x0, x1, . . . , xn) = 0

determines the value of each xi (continuously) when all other xj

are given; then qi(x0, x1, . . . , x̂i, . . . , xn) = that value of xi.



background: quasigroups

Definition: Factorization:

(1)
q(x1, . . . , xn)

= q′
(

x1, . . . , xi, q′′(xi+1, . . . , xj), xj+1, . . . , xn

)

,

where 1 ≤ i < j − 1 ≤ n − 1.

Fact : Iterated groups and their isotopes are the only quasigroups
(with n ≥ 3) that factor completely. (Easy consequence of Aczél,
Belousov, and Hosszú 1960.)

Definition: Factorization graph:

• Vertex set: {v0, v1, . . . , vn}.
• Edge set with two parts:

∗ a circle of edges v0v1, v1, v2, . . . , vn−1vn, vnv0, with

v0v1 ↔ x1, . . . , vn−1vn ↔ xn, and vnv0 ↔ x0;

∗ factorization edges vivj whenever there exists a factoriza-
tion (1).

Fact : Iterated groups and their isotopes are the only quasigroups
(with n ≥ 3) whose factorization graphs are complete (have all
edges).



background: graph theory

Definition: Biased graph:

• a graph (V,E) with vertex set V and edge set E,
• a class B of distinguished circles (called balanced circles)

such that
in each subgraph composed of 3 internally disjoint paths from
vertex v to vertex w, the number of circles that belong to B

is either 0, 1, or 3 (but not 2).

Definition (basic object): Balanced edge set:
a subset S ⊆ E such that every circle in S belongs to the distin-
guished class B.

Definition: Eb = the class of balanced edge sets.

A biased graph is a graph with additional structure. What is it
good for?

Combinatorial geometry.
Optimization.
Various fun problems in graph theory.

→ Multiary quasigroups.



background: quasigroups and graph theory

Representation of a quasigroup by a biased graph:

Given: an n-ary quasigroup Q (with operation q).

Construct : a biased graph Ω(Q):

(1) Start with the graph Cn+1, which is the circle

v0v1, v1, v2, . . . , vn−1vn, vnv0

on the vertex set {v0, v1, . . . , vn}.
(2) “Thicken” each edge vi−1vi in Cn+1 by replacing it by the

set of parallel edges {vi−1vi} × Q. Each edge represents an
element of Q which is a possible value of xi.

(3) This gives a circle with parallel edges. There are |Q|n+1 dif-
ferent circles of length n + 1 contained in this graph.

(4) Each circle C of length n+1 corresponds to a choice of values
for x0 (depending on which edge vnv0 is in C), x1 (depending
on which edge v0v1 is in C), etc. Let

B := {C : the corresponding values satisfy x0 = q(x1, . . . , xn)}.

(5) Forget the quasigroup labels on the edges.

From this biased graph Ω(Q), the operation q can be reconstructed
uniquely up to isotopy. (Isotopic operations cannot be distin-
guished, because the labelling of edges was forgotten.)



background: graph theory

Definition: Let ∆ be a graph with no multiple edges. A biased
graph Ω is a biased expansion of ∆ if:

• Ω is a biased graph.
• There is a projection mapping p : Ω → ∆ which is the

identity on vertices and is surjective on edges.
(Therefore, V (Ω) = V (∆), and the same pairs of vertices are
adjacent.)

• For every circle C in ∆ and every edge vw ∈ C, and for every
way to choose a path P̃ in Ω that projects one-to-one onto
the path C \ vw ⊆ ∆, there is exactly one choice of edge
ẽ ∈ p−1(vw) such that P̃ ∪ ẽ is balanced.

Definition: A group expansion of ∆ is a biased graph 〈G∆〉
that is constructed with a group G:

• The vertex set is V (∆).
• Orient the edges of ∆ arbitrarily.
• The edge set of 〈G∆〉 is G×E(∆), with the same orientations

as in ∆.
• A circle (g1, e1)(g2, e2) · · · (gl, el) is balanced if and only if

g1g2 · · · gl = 1 in G. (If you go against the orientation of the
edge, use g−1

i instead of gi.)

A group expansion is a particular kind of biased expansion.



background: quasigroups and graph theory

Properties of biased expansions and quasigroups:

(X1) The biased expansions of Cn+1 are in one-to-one correspon-
dence to the isotopy classes of n-ary quasigroups.
• Ω(Q) is a biased expansion of Cn+1.
• Every biased expansion of Cn+1 is Ω(Q) for some n-ary

quasigroup Q.
(X2) Ω(Q) is a group expansion with group G ⇐⇒

Q is an iterated group isotope with the group G ⇐⇒
the factorization graph is complete.

(X3) Ω(Q) extends to a biased expansion Ω̂ of the factorization
graph ∆(Q), with the same circle edges and with new (mul-
tiple) edges for the factorization edges in ∆(Q).

(X4) Each parallel class of new edges, corresponding to a factor-
ization edge vivj, determines the factor quasigroups in (1).

What this means:

(A) There is no difference, except notation, between biased
expansions of a circle graph, and isotopy classes of quasi-
groups.

(B) The factorization graph of a quasigroup corresponds to
extending the biased expansion to the most possible vertex
pairs without adding vertices.



background: quasigroups and graph theory

Example 3 again:

Q = R, x0 = q(x1, . . . , xn) = x1 + x2 + · · · + xn + 5.

The biased graph Ω3 that corresponds to this quasigroup has

• vertex set V = {0, 1, . . . , n},
• edge set

E = {(r, vi−1, vi) : r ∈ R, i = 0, 1, . . . , n (mod n + 1)},

• balanced circle class

B = {(r1,v0, v1) · · · (rn, vn−1, vn)(r0, vn, v0) :

− r0 + r1 + · · · + rn + 5 = 0}.

Ω3 is a group expansion because one can rename the r0 values to
be r′0 = 5 − r0 (isotopy), then take the group to be (R, +). That
gives the same edges and the same balanced circles.

We expect Ω3 to be a group expansion, because it extends to a
biased expansion Ω̂3 of the factorization graph ∆(Q) by (X3), and
∆(Q) is complete. Then Ω̂3 is a group expansion by (X2).

∆(Q) is complete because every possible factorization exists:

q(x1, . . . , xn) = x1 + · · · + xi

+ q′′(xi+1, . . . , xj) + xj+1 + · · · + xn + 5

where q′′(xi+1, . . . , xj) := xi+1 + · · · + xj.



background: graph theory

Definition:
A graph is 2-connected if it is connected, it has at least 3 ver-
tices, and deleting any one vertex does not disconnect it.

It is 3-connected if it is connected, it is has at least 4 vertices,
and, if any 2 vertices are deleted (with their edges), the graph
remains connected.

Note that a graph with 3 vertices is not 3-connected. Therefore,
the next theorem will not apply to it.



background: graph theory method

Main Theorem of Biased Expansions. If Ω is a biased
expansion of a 3-connected graph ∆, then Ω is a group expan-
sion.

Idea of Proof : The technique used is to treat as equivalent two
paths, P and P ′, with the same endpoints, such that their symmet-
ric difference (as edge sets) is a balanced circle. In some undefined
weak sense, they are “homotopic”.

We consider an arbitrary biased expansion Ω of a 2-connected
graph ∆. Here are two of the main lemmas:

Lemma 1 (Unique Maximal Extension). Let ∆′, ∆′′ ⊇ ∆
have the same vertex set as ∆. Assume Ω extends to a biased
expansion Ω′ of ∆′. Then:

(a) Ω′ is uniquely determined by Ω and ∆′.
(b) If Ω also extends to a biased expansion Ω′′ of ∆′′, then it ex-

tends to a biased expansion of ∆′ ∪ ∆′′.

Lemma 2 (Theta Extension). If ∆ consists of 3 internally
disjoint paths joining two vertices v and w, then Ω extends to a
biased expansion of ∆ ∪ vw.



background: quasigroups and graph theory

Main Theorem of Quasigroups. If the factorization graph
of a multiary quasigroup Q is 3-connected, then Q is an iter-
ated group isotope.

Proof. Ω(Q), the biased expansion of Cn+1 determined by Q, ex-
tends to a biased expansion of the 3-connected factorization graph
∆(Q). By the Main Theorem of Biased Graphs, Ω(Q) is a group
expansion. By the correspondence with quasigroups, Q is an iter-
ated group isotope. �

Corollary (Dörnte 1928). An n-ary group (i.e., associative n-ary
quasigroup) is an iterated group isotope.

Proof. The definition of “associativity” (which I omit) makes the
factorization graph obviously 3-connected. �

There are other corollaries of similar nature, i.e., immediate deduc-
tions of some known factorization theorems. However, my method
becomes difficult when one wants results that are about actual
quasigroups, not isotopy classes.



background: quasigroups and graph theory

I state two further results. Their proofs are similar to the preced-
ing ones. I regretfully omit one definition from graph theory.

Second Theorem of Biased Expansions. If Ω is a biased
expansion of a graph ∆ with at least 4 vertices, and if every
4-vertex contraction is a group expansion, then Ω is a group
expansion.

This immediately implies the fundamental nature of ternary re-
tracts of an n-ary quasigroup.

Definition: A ternary retract of an n-ary quasigroup (with
n ≥ 3) is obtained by holding constant all but 3 of the n indepen-
dent variables.

Second Theorem of Quasigroups. If Q is an n-ary quasi-
group with n ≥ 4, and if every ternary retract of Q is an
iterated group isotope, then Q is an iterated group isotope.



new: continuous and local

Main Problem:
Does any of this apply to local quasigroups?

Idea and Goals :

• Define continuous and local biased graphs and biased expan-
sions.

• Prove local analogs of the graph-theory lemmas and theorems.
• Use them to deduce local versions of the preceding quasigroup

theorems.
• Generalize local quasigroups using graph theory.

This is a plan. Right now, I have only some definitions.



background: graph theory

Given: A biased graph Ω.

Definition: Eb is the class of balanced edge sets.

Definition: Pencil:
a nonempty set

Evw = {edges with endpoints v, w}.

Every pair of adjacent vertices has a pencil.

Definition: Balance-closure:
The operation on balanced edge sets, bcl : Eb → Eb, defined by

bcl(S) := S ∪ {e : ∃ balanced circle C with e ∈ C ⊆ S ∪ e}.

This is an abstract closure, not a topological closure.



background: graph theory

Properties :

• bcl, together with a balanced, connected edge set S that con-
tains both an edge euv and an edge ewx, induces a partial
injection between pairs of pencils,

αS,uv,wx : Euv → Ewx.

(These are partial functions, not functions.)

• αS,uv,wx and αS,wx,uv are inverse functions where the compo-
sition is defined.

• If Ω is a biased expansion, each partial function αS,uv,wx :
Euv → Ewx is a bijection.



new: continuous graph theory

Definition: Topological biased graph:

• Biased graph Ω.
• Choose a topology Tvw on each pencil of parallel edges, Evw.
• Subproduct topology on edge sets and therefore on the class

of balanced edge sets, Eb. (Similar to a product topology.)
• bcl must be continuous.

Properties :

• The partial functions Euv → Ewx are continuous.

• If Ω is a biased expansion, the partial functions Euv → Ewx

are homeomorphisms.
Thus, all pencils have the same topological type.

Example 3 yet again:
Q = R, x0 = q(x1, . . . , xn) = x1 + x2 + · · · + xn + 5.

R has the usual topology. Thus, ×n
i=0 Evi−1vi

gets a product topol-
ogy ∼= R

n+1. The subset Eb inherits this topology. In fact, one
can show that Eb ∼= R

n as a subspace of R
n+1.



background: local quasigroups

Definition: Local quasigroup:

• a topological space Q,

• open subsets Di ⊆ Qn for i = 0, 1, . . . , n,

• continuous functions qi : Di → Q such that

qj(x0, . . . , x̂j, . . . , xn) = xj

⇐⇒ qi(x0, . . . , x̂i, . . . , xn) = xi

when (x0, . . . , x̂i, . . . , xn) ∈ Di

and (x0, . . . , x̂j, . . . , xn) ∈ Dj.

(x̂i means: omit xi.)

Properties :

• Each qi may have a different domain.
• It is a partial function on Qn.
• Each qi defines retracts

qij(xj) := qi(a0, . . . , xj, . . . , x̂i, . . . , an) : Dj → Di,

which are partial functions on Q and are local homeomor-
phisms.



background: local quasigroups

Example 5 (generalized Example 4):

F : D0 × D1 × · · · × Dn → D′,

a continuous function such that a fixed level set

F (x0, x1, . . . , xn) = fixed constant

determines the value of each xi (continuously) when all other xj

are given. Define

qi(x0, x1, . . . , x̂i, . . . , xn) = that value of xi.

Modelling Example 5 with biased graphs :
We follow the pattern for quasigroups. We take Ω such that

• V = {v0, v1, . . . , vn}, and
• every edge has endpoints vi−1, vi for some i (mod n + 1), so

every pencil is Evi−1,vi
.

Then we identify Di = Evi−1,vi
and the fixed level set of F with

E
b
0 := {S ⊆ E : S ∈ E

b and S connects all the vertices}.

Goal:
To model (and generalize?) local quasigroups (and in particular
this example) with topological biased graphs and biased expan-
sions.



new: local graph theory

Master Definition (and end of talk):
Local biased graph:

• A topological biased graph Ω.

• Every partial function αS,uv,wx : Euv → Ewx (determined by
bcl as previously described) must be a local homeomorphism.

The last property is the special property of the “local” topology
that makes a local biased graph similar to a local quasigroup.

This is the definition. Next?

• Prove it is internally consistent and includes all local quasi-
groups. (In progress.)

• Is it more general than local quasigroups?
→ Does it have factorization properties of quasigroups?
→ Does it have interesting properties of local quasigroups?
→ Adapt to local differentiable quasigroups and local differen-

tiable biased graphs.
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