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Board size: n = 10. Queens: q = 8.



An n× n board:

q identical chess pieces:

P P P · · · P P

Put the pieces on the board!
The pieces are kindly and do not wish to attack each other.

The Question: How many ways are there to do this, as a function of n?

NP (q; n)

NQ(n; n) ? (The n-queens problem.)



Coordinate system:
y

x

Pi

Pj

Pi coordinates: (xi, yi) ∈ Z2 ⊆ R2.

Configuration: (x1, y1, . . . , xq, yq) ∈ R2q.

Moves: αµk where µk = (µk1, µk2) ∈ MP and α ∈ Z.

Attack: (xj, yj)− (xi, yi) ∈ 〈µk〉.

Permitted configurations:

(x1, y1, . . . , xq, yq) ∈ {1, 2, . . . , n}2q = (0, n + 1)2q ∩ Z2q.

Forbidden hyperplanes:

Hk,i,j : [(xj, yj)− (xi, yi)] · µ⊥k = 0, in R2q.

The count:

NP (q; n) = # of integer points in (n + 1)(0, 1)2q \
⋃
k,i,j

Hk,i,j.



Polytopes and Ehrhart theory

Convex polytope P in Rδ with rational vertices.

EP(t) := # of integer points in tP, for t = 1, 2, . . . .

d := least common denominator of all vertices.

Theorem 1 (Ehrhart, Macdonald).
(a) EP(t) is a quasipolynomial function of t > 0 with leading term vol(P)tδ.
(b) Its period p divides d.
(c) EP◦(t) = (−1)δEP(−t). (Ehrhart reciprocity.)

Quasipolynomial f (t): It is p polynomials f1(t), . . . , fp(t) with

f (t) := ft mod p(t).

Its period is p.

Example:
P = [0, 1]δ, vol(P) = 1, p = 1.

(Integral vertices give a polynomial.)

Computation: LattE computes the number of points for fixed t.



Inside-out polytopes

Convex polytope P with rational vertices.
Finite set of rational hyperplanes H of hyperplanes, all in Rδ.

EP,H(t) := # of integer points in tP but not in
⋃

H.

Theorem 2 (Beck & Zaslavsky). The Ehrhart properties (a–c) hold for EP,H(t).
Also:
(d) (−1)δE◦

P◦,H(0) is the number of regions of P as dissected by H.

Reduction to standard Ehrhart theory via

L := the set of non-empty intersections of hyperplanes in P◦,

ordered by reverse inclusion so 0 = P◦, and

µ(0, u) = Möbius function of L.

Theorem 3 (Beck & Zaslavsky).

E◦
P◦,H(t) =

∑
u∈L

µ(0, u)EP◦∩u(t).

Example: P = [0, 1]δ, vol(P) = 1, period p � 1 with forbidden hyperplanes.



Chromatic polynomials via Ehrhart

Graphs.

χΓ(λ) := number of proper colorations of Γ with colors 1, 2, . . . , λ

= E◦
P◦,H(λ + 1) (i.e., t = λ + 1),

where P = [0, 1]|V | and H = {xi = xj : ∃ eij}.
Integral vertices. Denominator: 1. Period: 1.

Conclusion: One monic polynomial of degree |V |.

Signed graphs.
Σ := graph with + and − edges.

χΣ(2k + 1) := number of proper colorations of Σ with colors 0,±1,±2, . . . ,±k

= E◦
P◦,H(2k + 2) (i.e., t = 2k + 2),

χ∗
Σ(2k) := number of proper colorations of Σ with colors ± 1,±2, . . . ,±k

= E◦
P◦,H(2k + 1) (i.e., t = 2k + 1),

where P = [0, 1]|V | and H = (1
2, . . . ,

1
2) + {xi = sgn(eij)xj : ∃ eij}.

Half-integral vertices. Denominator: 2. Period: 1 or 2.
Conclusion: Two monic polynomials of degree |V |.



The count of non-attacking configurations

With a chess piece P :

δ = 2q,

P = [0, 1]2q.

H = {Hk,i,j : 1 ≤ k ≤ # of basic moves, 1 ≤ i < j ≤ q},
NP (n) = E◦

P◦,H(n + 1) (i.e., t = n + 1).

NP (−1) = E◦
P◦,H(0) = the number of combinatorial types of configuration.

The hyperplanes are given by a matrix:

MP :=

µ⊥1
µ⊥2
...

 ,

one line for each basic move, and D(Kn).

Period p? (Needed for computer calculation.) Hard!

A bound p′ for p =⇒ the quasipolynomial by computer calculation of all polynomial
constituents of all EP◦∩u(t) in Theorem 3 using LattE.

∴ Task: To bound p for every q.

An upper bound is d.
∴ Task: To bound d for every q. Hard!



The period

For the chess problem we need:

lcmd(A) := least common multiple of all subdeterminants of A.

Kronecker product: A⊗B :=

[
a11B a12B . . .

... ... . . .

]
.

Proposition 4 (Hanusa & Zaslavsky). Let A be a 2 × 2 matrix, not identically
zero, and q ≥ 1. The least common multiple of all square minor determinants of
A⊗D(Kq) is

lcmd
(
A⊗D(Kq)

)
= lcm

(
(lcmd A)q−1,

bq/2c
LCM
p=2

(
(a11a22)

p − (a12a21)
p
)bq/2pc)

.

For a chess piece, B = D(Kq). For the bishop or queen,

A =

(
1 1
1 −1

)
or

(
1 0 1 1
1 0 1 −1

)
from (MP )T .

Apply Proposition 4, using lcmd(A) = 2. We get

lcmd
(
A⊗D(Kq)

)
= 2q−1,

an upper bound on d, hence on the period p, for q bishops or queens.



The bishop

MB =

(
1 1
1 −1

)
, lcmd(MB) = 2.

For two bishops,

NB(2; n) =
n(n− 1)(3n2 − n + 2)

6
=

n

6

(
3n3 − 4n2 + 3n− 2

)
.

For 3 and more bishops we haven’t yet done the computer work.

The queen

MQ =


1 0
0 1
1 1
1 −1

 , lcmd(MQ) = 2.

For two queens,

NQ(2; n) =
n(n− 1)(3n2 − 7n + 2)

6
=

n

6

(
3n3 − 10n2 + 9n− 2

)
.

For 3 or more queens we’ll need computer work.
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