LATTICE POINTS AND KINDLY CHESS QUEENS

Thomas Zaslavsky Binghamton University of SUNY

Jointly with Matthias Beck, Seth Chaiken, and Christopher R.H. Hanusa

Board size: n = 10. Queens: q = 8.

An $n \times n$ board:

q identical chess pieces:

 $P P P \cdots P P$

Put the pieces on the board!

The pieces are kindly and do not wish to attack each other.

The Question: How many ways are there to do this, as a function of n? $N_P(q; n)$

 $N_Q(n;n)$? (The *n*-queens problem.)

Coordinate system:

 P_i coordinates: $(x_i, y_i) \in \mathbb{Z}^2 \subseteq \mathbb{R}^2$. Configuration: $(x_1, y_1, \dots, x_q, y_q) \in \mathbb{R}^{2q}$.

Moves: $\alpha \mu_k$ where $\mu_k = (\mu_{k1}, \mu_{k2}) \in \mathcal{M}_P$ and $\alpha \in \mathbb{Z}$. Attack: $(x_j, y_j) - (x_i, y_i) \in \langle \mu_k \rangle$.

Permitted configurations:

 $(x_1, y_1, \dots, x_q, y_q) \in \{1, 2, \dots, n\}^{2q} = (0, n+1)^{2q} \cap \mathbb{Z}^{2q}.$

Forbidden hyperplanes:

$$H_{k,i,j}: [(x_j, y_j) - (x_i, y_i)] \cdot \mu_k^{\perp} = 0, \text{ in } \mathbb{R}^{2q}.$$

The count:

$$N_P(q;n) = \#$$
 of integer points in $(n+1)(0,1)^{2q} \setminus \bigcup_{k,i,j} H_{k,i,j}$

POLYTOPES AND EHRHART THEORY

Convex polytope \mathbf{P} in \mathbb{R}^{δ} with rational vertices.

$$E_{\mathbf{P}}(t) := \#$$
 of integer points in $t\mathbf{P}$, for $t = 1, 2, \ldots$

d := least common denominator of all vertices.

Theorem 1 (Ehrhart, Macdonald). (a) $E_{\mathbf{P}}(t)$ is a quasipolynomial function of t > 0 with leading term $\operatorname{vol}(\mathbf{P})t^{\delta}$. (b) Its period p divides d. (c) $E_{\mathbf{P}^{\circ}}(t) = (-1)^{\delta} E_{\mathbf{P}}(-t)$. (Ehrhart reciprocity.)

Quasipolynomial f(t): It is p polynomials $f_1(t), \ldots, f_p(t)$ with $f(t) := f_{t \mod p}(t).$

Its period is p.

Example:

$$\mathbf{P} = [0, 1]^{\delta}, \quad \text{vol}(\mathbf{P}) = 1, \quad p = 1.$$

(Integral vertices give a polynomial.)

Computation: LattE computes the number of points for fixed t.

INSIDE-OUT POLYTOPES

Convex polytope \mathbf{P} with rational vertices. Finite set of rational hyperplanes \mathcal{H} of hyperplanes, all in \mathbb{R}^{δ} .

 $E_{\mathbf{P},\mathcal{H}}(t) := \#$ of integer points in $t\mathbf{P}$ but not in $\bigcup \mathcal{H}$.

Theorem 2 (Beck & Zaslavsky). The Ehrhart properties (a-c) hold for $E_{\mathbf{P},\mathcal{H}}(t)$. Also:

(d) $(-1)^{\delta} E^{\circ}_{\mathbf{P}^{\circ}, \mathfrak{H}}(0)$ is the number of regions of \mathbf{P} as dissected by \mathfrak{H} .

Reduction to standard Ehrhart theory via

 $\mathcal{L} :=$ the set of non-empty intersections of hyperplanes in \mathbf{P}° , ordered by reverse inclusion so $\mathbf{0} = \mathbf{P}^{\circ}$, and

 $\mu(\mathbf{0}, u) =$ Möbius function of \mathcal{L} .

Theorem 3 (Beck & Zaslavsky).

$$E^{\circ}_{\mathbf{P}^{\circ},\mathcal{H}}(t) = \sum_{u \in \mathcal{L}} \mu(\mathbf{0}, u) E_{\mathbf{P}^{\circ} \cap u}(t).$$

Example: $\mathbf{P} = [0, 1]^{\delta}$, $\operatorname{vol}(\mathbf{P}) = 1$, period $p \gg 1$ with forbidden hyperplanes.

CHROMATIC POLYNOMIALS VIA EHRHART

Graphs.

 $\chi_{\Gamma}(\lambda) := \text{ number of proper colorations of } \Gamma \text{ with colors } 1, 2, \dots, \lambda$ $= E^{\circ}_{\mathbf{P}^{\circ}, \mathcal{H}}(\lambda + 1) \quad (\text{i.e.}, t = \lambda + 1),$

where $\mathbf{P} = [0, 1]^{|V|}$ and $\mathcal{H} = \{x_i = x_j : \exists e_{ij}\}.$

Integral vertices. Denominator: 1. Period: 1. Conclusion: One monic polynomial of degree |V|.

Signed graphs.

 $\Sigma := \text{graph with} + \text{and} - \text{edges.}$

$$\chi_{\Sigma}(2k+1) := \text{ number of proper colorations of } \Sigma \text{ with colors } 0, \pm 1, \pm 2, \dots, \pm k$$
$$= E^{\circ}_{\mathbf{P}^{\circ}, \mathcal{H}}(2k+2) \quad (\text{i.e.}, t = 2k+2),$$

 $\chi_{\Sigma}^{*}(2k) := \text{ number of proper colorations of } \Sigma \text{ with colors } \pm 1, \pm 2, \dots, \pm k$ $= E_{\mathbf{P}^{\circ}, \mathcal{H}}^{\circ}(2k+1) \quad (\text{i.e.}, t = 2k+1),$

where $\mathbf{P} = [0, 1]^{|V|}$ and $\mathcal{H} = (\frac{1}{2}, \dots, \frac{1}{2}) + \{x_i = \operatorname{sgn}(e_{ij})x_j : \exists e_{ij}\}.$

Half-integral vertices. Denominator: 2. Period: 1 or 2. Conclusion: Two monic polynomials of degree |V|.

The count of non-attacking configurations

With a chess piece P:

$$\delta = 2q,$$

$$\mathbf{P} = [0,1]^{2q}.$$

$$\mathcal{H} = \{H_{k,i,j} : 1 \le k \le \# \text{ of basic moves, } 1 \le i < j \le q\},$$

$$N_P(n) = E^{\circ}_{\mathbf{P}^{\circ},\mathcal{H}}(n+1) \quad (\text{i.e., } t = n+1).$$

 $N_P(-1) = E^{\circ}_{\mathbf{P}^{\circ},\mathcal{H}}(0)$ = the number of combinatorial types of configuration. The hyperplanes are given by a matrix:

$$M_P := \begin{bmatrix} \mu_1^{\perp} \\ \mu_2^{\perp} \\ \vdots \end{bmatrix},$$

one line for each basic move, and $D(K_n)$.

Period p? (Needed for computer calculation.) Hard!

A bound p' for $p \implies$ the quasipolynomial by computer calculation of all polynomial constituents of all $E_{\mathbf{P}^{\circ}\cap u}(t)$ in Theorem 3 using LattE.

 \therefore Task: To bound p for every q.

An upper bound is d.

 \therefore Task: To bound d for every q. Hard!

The period

For the chess problem we need:

lcmd(A) := least common multiple of all subdeterminants of A.

Kronecker product: $A \otimes B := \begin{bmatrix} a_{11}B & a_{12}B & \dots \\ \vdots & \vdots & \ddots \end{bmatrix}$.

Proposition 4 (Hanusa & Zaslavsky). Let A be a 2×2 matrix, not identically zero, and $q \ge 1$. The least common multiple of all square minor determinants of $A \otimes D(K_q)$ is

$$\operatorname{lcmd}\left(A \otimes D(K_q)\right) = \operatorname{lcm}\left(\left(\operatorname{lcmd} A\right)^{q-1}, \operatorname{LCM}_{p=2}^{\lfloor q/2 \rfloor} \left(\left(a_{11}a_{22}\right)^p - \left(a_{12}a_{21}\right)^p\right)^{\lfloor q/2p \rfloor}\right).$$

For a chess piece, $B = D(K_q)$. For the bishop or queen,

$$A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \text{ or } \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & -1 \end{pmatrix} \text{ from } (M_P)^T.$$

Apply Proposition 4, using lcmd(A) = 2. We get

lemd
$$(A \otimes D(K_q)) = 2^{q-1},$$

an upper bound on d, hence on the period p, for q bishops or queens.

THE BISHOP

$$M_B = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad \operatorname{lcmd}(M_B) = 2.$$

For two bishops,

$$N_B(2;n) = \frac{n(n-1)(3n^2 - n + 2)}{6} = \frac{n}{6} (3n^3 - 4n^2 + 3n - 2).$$

For 3 and more bishops we haven't yet done the computer work.

THE QUEEN

$$M_Q = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad \text{lcmd}(M_Q) = 2.$$

For two queens,

$$N_Q(2;n) = \frac{n(n-1)(3n^2 - 7n + 2)}{6} = \frac{n}{6} (3n^3 - 10n^2 + 9n - 2).$$

For 3 or more queens we'll need computer work.

READING ASSIGNMENT

Ehrhart theory.

* Matthias Beck and Sinai Robins, Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra. Undergraduate Texts in Mathematics. Springer, New York, 2007.

Matthias Beck and Thomas Zaslavsky, Inside-out polytopes. *Advances in Math.* **205** (2006), no. 1, 134–162.

Other.

Seth Chaiken, Christopher R.H. Hanusa, and Thomas Zaslavsky, Aq-queens problem. (In preparation.)

Christopher R.H. Hanusa and Thomas Zaslavsky, Determinants in the Kronecker product of matrices: The incidence

Determinants in the Kronecker product of matrices: The incidence matrix of a complete graph. (In preparation.)