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ABSTRACT. The doubly indexed Whitney numbers of a finite, ranked partially 
ordered set L are (the first kind) w,, = 2{p(xf ,  x i ) :  x',  x i  E L with ranks I ,  j }  and 
(the second kind) M/;, = the number of (x ' ,  x i )  with x '  G XI .  When L has a 0 
element, the ordinary (simply indexed) Whltney numbers are w, = w,, and W,= W,, 
= W,,.Building on work of Stanley and Zaslavsky we show how to interpret the 
magnitudes of Whitney numbers of geometric lattices and semilattices arising in 
geometry and graph theory. For example: The number of regions, or of k-dimen- 
sional faces for any k ,  of an arrangement of hyperplanes in real projective or affine 
space, that do not meet an arbitrary hyperplane in general position. The number of 
vertices of a zonotope P inside the visible boundary as seen from a distant point on a 
generating line of P. The number of non-Radon partitions of a Euclidean point set 
not due to a separating hyperplane through a fixed point. The number of acyclic 
orientations of a graph (Stanley's theorem, with a new, geometrical proof); the 
number with a fixed unique source; the number whose set of increasing arcs (in a 
fixed ordering of the vertices) has exactly q sources (generalizing Renyi's enumera- 
tion of permutations with q "outstanding" elements). The number of totally cyclic 
orientatiohs of a plane graph in which there is no clockwise directed cycle. The 
number of acyclic orientations of a signed graph satisfying conditions analogous to 
an unsigned graph's having a unique source. 

Introduction. Wherever there is a finite matroid or geometric lattice, there are 
Whitney numbers. This article concerns their enumerative interpretation. 

The coefficients of the chromatic polynomial of a graph, for one example, are 
Whitney numbers of the graphic matroid. Stanley found for the sum of their 
magnitudes an unconventional interpretation: it is the number of acyclic orienta- 
tions [23]. The Whitney numbers in question are those of the first kind; for a finite 
matroid M they are defined as the coefficients of its characteristic polynomial, thus 

w , ( M ) = ( p ( 0 ,x ) :  xclosedin M , r ( x )  = j ) .  

(Here p denotes the Mobius function of M.) 
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Another example: Let M be the linear dependence matroid of a set X of 
hyperplanes arranged in Euclidean or projective space. The sum of the magnitudes 
w,' is the number of regions (d-dimensional cells) into which '3C dissects the space 
(times i if projective) [MI. Dualizing, let M be the affine dependence matroid of a 
finite set S in Euclidean space. Then Xu;+ is the number of non-Radon bipartitions 
of S: partitions into the two sides of some affine hyperplane [MI. 

Still another example: Let M be a regular ("unimodular") matroid. The sum of 
the magnitudes M;J+ is the number of row equivalence classes of totally unimodular 
representation matrices for M in whlch no minimal dependent set of columns sums 
to zero [7, Proposition 4.51. 

A generalization that includes all the examples: The sum is the number of acyclic 
orientations of an oriented matroid (defined in [4]) [15,18]. It is also the number of 
regions of an arrangement of topological hyperplanes; one can see this by combining 
with Las Vergnas' oriented matroid enumerations the correspondence between 
oriented matroids and arrangements of topological hyperplanes [12, $IV], or alterna- 
tively, independently of oriented matroids, by [26, $31 (see also [25, $21). 

Another sum of Whitney numbers is the beta invariant 

P ( M )  = ( - l ) r i M ) C J w , ( ~ )  
I 

of Crapo [lo]. This for a projective arrangement of hyperplanes equals the number 
of regions not touching a particular one of the hyperplanes [MI. This interpretation 
carries over exactly to oriented matroids, although the statement has apparently not 
appeared in the literature. It extends as well to arrangements of topological hyper- 
planes, either through their correspondence with oriented matroids, or by 126, $31, 
although no topologically complete proof on the latter line has yet been formulated 
(see the remarks in [26, p. 2761). Considering the hyperplane arrangement represent- 
ing a graph we are led to interpret P as the number of acyclic orientations in which a 
fixed node p is the only source and a fixed adjacent node q is the only sink. 
Alternatively P is the number of acyclic orientations that become totally cyclic when 
a fixed edge e is reversed-an interpretation that generalizes to oriented matroids 
[16,17]. Berman has independently obtained the same result for planar graphs 
through another approach based on internal and external activities [3], extended 
(with modifications) to oriented matroids by Las Vergnas [17,$3]. 

But the terms in these sums-the Whitney numbers themselves-have not been 
interpreted. It is our main purpose to show how to attach to each Whitney number 
magnitude wJL a geometric or graphical meaning in the several contexts of the title. 
We emphasize geometrical thlnking and obtain as many results as we can, including 
interpretations of basepointed and doubly indexed Whitney numbers of the first 
kind, the various sums, and also the Whltney numbers of the second kind W,(M), 
the number of rank j flats, whose meaning is relatively evident. We interpret the dual 
Whitney numbers of a graph in terms of totally cyclic orientations, and some of the 
Whitney invariants of a signed graph. The proofs are short because the facts are, on 
the whole, simple; what we contribute is for the most part the right viewpoint, the 
explicit statement, and the telling instance. 
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1. Abstract preparation. Whitney numbers can be defined on any ranked partially 
ordered set.' The rank function on P we denote by r; the lowest rank is 0; the rank 
of P is r ( P )  = m a x { r ( x ) :  x E P ) .  Writing x ' ,  y' for elements of P of rank i and P' 
for the set of all such elements, we define the doubly indexed Whitney numbers of the 
first kind, 

and of the second kind, 

The usual Whitney numbers are the simply indexed ones: 

If P has 0 and 1 ,  we define the Mobius invariant p ( P )  = p(0, 1 )  = wr(,,(P). 
The partially ordered sets of interest to us are first of all L ( M ) ,  the geometric 

lattice of closed sets in a matroid M ,  and secondly for any point b of M the 
semilattice 

the semilattice of the basepointed matroid ( M ,  b ) .  (We shall assume throughout that 
0 is closed in all matroids; otherwise some special definitions are necessary.) 

The beta invariant of L ( M )  was defined in the introduction. An extremely useful 
fact from [24,Proof of Theorem D] is that for any matroid of rank r 2 1 we have 

Another important fact is that the value of w , ( L ( M ,  b ) )  is independent of b. This is 
a consequence of Weisner's Theorem [22,p. 35 11, which implies that 

y,' ( L ( M 3  b ) )  = w:,, ( L ( M ) )- w,=, ( L ( M ,  6 ) ) .  

Thus we may write 

~ , " ( L ( M ) )= the common value of wJ( L ( M ,  b ) )  for all b in M .  

Consequently, 

(1.2) w,' ~ ' L , ( L ( M ) )( L ( M ) )= + w;'+ ( L ( M ) ) .  

On the other hand the quantities w l J ( L ( M ,  b ) )  for i > 0 are not in general indepen- 
dent of b. 

Some more notation: the contraction P / x  is { y  E P: y 2 x ) .  The interval [ x ,  z ]  is 
{ y  E P / x :  y G z ) .  The poset truncation operator T applied to a ranked poset 
removes the top rank; the lattice truncation operator ?removes the elements covered 
by 1 in a lattice. 

' I n  this paper all posets, sets of hyperplanes or points, graphs, etc., are finite 
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2. Fundamentals of arrangements. A Euclidean arrangement of hyperplanes is a set 
G of hyperplanes in the real affine space Ed  together with the associated dissection of 
the space into cells of various dimensions. We consider the cells to be relatively 
open, so they have no points in common. For the number of k-cells (k-dimensional 
cells) we write fk(&). 

A flat (of G) is a nonvoid intersection of members of & (including Ed = f? 0 ) .  
We write L(G) for the set of all flats ordered by reverse inclusion and a,(&) for the 
number of k-flats (k-dimensional flats). The set L(G) is a ranked poset having rank 
function 

r ( x )  = d - dim x 

and having total rank 

r (G)  = r ( L ( & ) )  = d - min dim x ;  
x t L ( G )  

it has a zero (0 = Ed), and it has Whitney numbers. It is a geometric lattice if (and 
only if) G is central, that is nG # 0 ; in general it is the semilattice of a basepointed 
matroid (see below). 

Clearly 

(2.1) ak(&) = Wd-k(L(&)). 

A more subtle link between arrangements and semilattices is 

THEOREMA [U].For a Euclidean arrangement of hyperplanes 6 in Ed  we have 
r ( 6 )  

fk(G) = 2 k , , L . 
1=d-k 

If r (&) = d, then & has vertices; thus it has bounded cells and possibly bounded 
regions. Although & cannot have any bounded cells if r (&) < d, it is true that all 
flats of maximum rank r(&)(relative vertices) are translates of each other [U,Lemma 
2D11; if we section & by any affine subspace s of dimension r(G), transverse to the 
relative vertices, we get an arrangement &, in s combinatorially isomorphic to G but 
with all dimensions reduced by d - r(&). A cell of & that becomes bounded in Gs we 
call relatively bounded. Let bk(&)be the number of relatively bounded k-cells. 

THEOREMC [24]. For a Euclidean arrangement & in Ed  we have 

Suppose we write i ( & )  for L(G) U {i), where i is a special element added on 
top. Then i ( & )  is a ranked lattice (not usually geometric) with rank r (&)  + 1. Let 
r = r(G) for brevity. Theorem C can be restated as 

(this is [24,Corollary 2.21). 
On any affine subspace s, & induces an arrangement 

G s = { h n s : h € G , h ~ s , h n s # 0 ) .  
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The restriction of & over s is the subarrangement 

& ( s )= { h  E &: h > s ) ;  

it is central if s # 0.If x is a flat, then 

L ( 6 , )  = L ( G ) / x  and L ( G ( x ) )  = [O,~ I L ( & , .  
If at the other extreme g is a subspace in (relatively) general position with respect to 
6 ,  meaning that it is parallel to the relative vertices and meets each flat in the 
smallest possible dimension (hence it meets precisely the flats x satisfying dim x > 
r ( G )  - dim g, and then dim(g n x )  = dim g - r ( x ) ) ,then 

(2.3) ~ ( 6 , )= T * * ~ ~ ~ L ( & ) .  

A projective arrangement of hyperplanes is a nonvoid set & of hyperplanes in the 
real projective space P" together with the associated dissection of Pd.The notations 
a,(&) and f k (&)  are as before, but 0 is not excluded as a flat or cell: a flat is any 
intersection of hyperplanes, so L ( & )  is always a geometric lattice with rank function 
as before. We have thus 

and the theorem: 

THEOREMB [MI.For a projective arrangement of hyperplanes in Pd and for 
k > d - r ( & )wehave 

and we have fd-,(@,(&)= 1. 

This result follows from Theorem A by regarding & as the image of a central 
arrangement &in E ~ " ;  each opposite pair of k + 1-cells of &becomes a k-cell of &, 
except for the smallest cell n&.The lattices L ( @ )  and L ( & )  are canonically 
isomorphic, whence their Whitney numbers are the same. What this construction 
means in general is that one can deduce results about @ from Euclidean arguments 
about &. 

In the other direction, any Euclidean arrangement & in Ed has a projectiuization: 
the arrangement 6, in Pd obtained by adjoining to 6 the ideal hyperplane w .  
Evidently &, and & have the same number of regions. What is more surprising is 
that the bounded regions of 6 can be counted in 6,. 

THEOREMD [MI.A Euclidean arrangement & has P(L(&,)) relatively bounded 
regions. 

Conversely we call an affinization of a projective arrangement @ any Euclidean 
arrangement obtained by regarding one of the hyperplanes in & as the infinite 
hyperplane. The semilattice of the affinization by h we denote by L ( & ,  h ) .  

A projective arrangement & induces an arrangement asand determines a restric-
tion & ( s )  for any projective subspace s; and for x E L ( & )  the lattices of these 
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arrangements are as with Euclidean arrangements. If g is a subspace in (relatively) 
general position with respect to a, meaning that g > n and g meets each flat x in 
the smallest possible dimension (which is max[dim g - r ( x ) ,dim na]),  we have 

It is worth noting that all results about cells in projective arrangements extend to 
oriented matroids and all Euclidean results extend to basepointed oriented matroids. 
(Thus they apply to arrangements of topological. hyperplanes.) The possibility of 
such extension is made clear by Las Vergnas' development of the enumeration 
theory of reorientations of an oriented matroid [IS-181. The extensions of most of 
our results have not been worked out precisely; the task is straightforward, but since 
the details tend to become quite technical, we restrict ourselves here to "real" 
situations. 

3. Euclidean arrangements. We begin by interpreting in two ways the "upper" 
Whitney numbers w,: (L(&))  of a Euclidean arrangement G.That allows us to 
interpret pf (0, x )  for any flat x E L(&)  by applying the theorems to Q x ) ,  whose 
lattice is the interval [0, x ]  in L(G). 

THEOREM3.1. Let G be a Euclidean arrangement in Ed with rank r. Let g he a 
general hyperplane with respect to 6.Then g meets all hut exactly w: ( L ( 6 ) )regions of 
G and all hut exactly ~ d + ~ , ~ (L ( 6 ) )of its k-ce1l.r. 

PROOF.Compare Theorem A for G and for 6,in the light of (2.3). 
The second theorem requires E to be .central. 

THEOREM3.2. Let & be a central arrangement in E d  with rank r.  Let g he a 
hyperplane general with respect to G. Then the induced arrangement 6,has p+ (0,  1 )  = 
w: (L(G)) relatively bounded regions and wLk3,(L(&))relatively bounded k - 1-cells. 

PROOF.Apply (2.3) to G and (2.2) to Gg. 

COROLLARY3.1. Let & be a Euclidean arrangement with rank d and let k > 0. Also 
let g be a hyperplane general with respect to h; except for containing one or more 
vertices v ,,. ..,v,. If g moves slightly parallel to itself, it meets he.rides all the k-cells it 
originally met exactly C:= ,w: k , d (  L(& ( v m ) ) )new 0ne.r. 

PROOF.The k-cells met by g correspond t o  k - I-cells ol' 1;;4. The k - I-cells that 
appear as g moves away from vm are those bounded by hyperplanes through v,,. So 
apply Theorem 3.2. That suffices if  q = 1 ;  otherwise we must know there is no 
multiple counting. But if there were, a multiply counted k-cell would have had (say) 
both vm and v ,  as vertices and the segment between them as an edge; thus g would 
have contained a line of &, contrary to generality. 

COROLLARY3.2. Let & be a Euclidean arrangement of rank d .  Let gd = E~ > gd-,  
3 . . . > go > g-, = 0 be a chain of affine subspaces of the indicated dimensions, 
general with respect to &. Then for each 1 = d ,  d - 1,... ,0, the number of k-cells of & 
that meet gl but not g,-, is equal to w&,.,(L(&)). 
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PROOF.Apply (2.3) to get L(&,)). Then apply Theorem 3.1 to &,). 

COROLLARY3.3. Let G and g, be as in Corollary 3.2. The number of k-cells of & met 
by g, is ~ , < / W ~ - ~ , , ( L ( & ) ) ;the number missed by g, is C, ,~w, f_k , , (L(&)) .  

The preceding results can serve as the basis for generalizing to higher dimensions 
the method of sweep lines and sweep planes exploited so successfully by Wetzel and 
his associates in [l,$3; 14; 2,541, etc. We plan to treat this topic fully elsewhere, but 
the next theorem and the perturbation method of Corollary 3.1 suggest the ap-
proach. 

In this theorem we carry further the term-by-term analysis of equations like 
fd(6)= x,w;(L(&)),  as in Corollary 3.2. We show how to break up the regions 
counted by each w: ( L ( 6 ) )  into blocks of sizes p+ (0 ,  x d )  for vertices xd ;  and 
similarly for cells of other dimensions. 

THEOREM3.3. Let & be an arrangement of rank d in E d .  Take a hyperplane g,, 
general with respect to 6 ,  such that all the vertices of 6 lie on one side of go and no two 
vertices are equidistant from i t ,  and number the vertices u , ,  v , , .  .. , v ,  in order of 
distance from g,. For 1 G m < q let g,, be a translate of g, lying between v,, and v,,+ ,, 
and let g, be a translate of g, lying beyond u, ( s o  v , ,  ... ,on,are the vertices between g, 
and g,,). Then for m = 1.2,. . . , q ,  p+ (0 ,  v,,,) is the number of regions and ~ d + - ~ , ~  
( [ 0 ,u,,]) is the number of k-cells met by g,,, but not by g,,,- ,. 

PROOF.When .6 is central, q = 1 and the theorem is true by Theorem 3.1: for go 
and g ,  between them meet every k-cell. 

In general the cells in question, say C, , .  .. ,C,, are just those that have v,, as a 
vertex and have no edge meeting g,,-,. If we discard all hyperplanes not in &(urn) ,  
then C , ,. . . ,C, become enlarged to cones at v,,; but they are still distinct and do not 
meet g,,-,. Moreover all other k-cells of 6 ( u n , )do meet g,,-,. SO we apply the 
central case to complete the proof. 

This theorem interprets p+(O, x )  for x E L ( & )  as follows: Fix a chain of 
subspaces as in Corollary 3.2, but chosen so in each & the relative hyperplane. 
g , ,  ,= g,._, satisfies the criteria of Theorem 3.3. Then apply Theorem 3.3 to 6,) 
with g, , ,  = gl- I and with gill,. ..g , . ,  suitable translates. 

Thus we have interpreted the Whitney numbers of the first kind. The interpreta-
tion of the second kind is relatively trivial (cf. (2.1)),but it is curious that Corollary 
3.2 for regions ( k  = d )  has an exact analog for flats obtained by changing 
w;(L(t;l)) to W,(L ( & ) ) .One wonders whether there is an interesting extension to the 
doubly indexed numbers M/;,( L ( G ) ) .  

In Corollary 3.1 we perturbed a fairly general hyperplane through v .  Now suppose 
we shift one of the hyperplanes of a central arrangement like & ( v ) .  

THEOREM3.4. Let X be a central arrangement in E d  and let h E X. Let h* be h 
perturbed by translation from its initial position and let %* be the perturbed arrange-
ment, with or without h also. Then 

b , ( X * )  = bd-,(f?C,*) = P ( L ( X ) ) ,  

regardless of the choice of h.  
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THEOREM3.5. Let & be a Euclidean arrangement in Ed ,  let g be a hyperplane in Ed,  
and let 

M =  { t ~ ~ ( & ) : t ~ g ) ,N,= { t ~ ~ ( F ) : t n g =0 ) .  
+Then g meets all but exactly Z,,,op+ (0 ,  t )  + 2 Z r E M p  (0,  t )  regions of 6 and all but 

exactly 

' 
r ?Nos t L ( 6 ) \ M  r t M  

dim s = h  

of its k-cells. 

PROOF.Let L ,  = L ( E  U { g ) )and 

c={ t  E L ( & ) \ M : ~ ~ ~ E L ( & ) ) ,N = L ( & ) \ ( M u c ) .  

Thus No C N. The number of regions of F met by g equals f,- ,(Gg),SO the number 
missed is 

by Theorem A. Now [O,  t ] , , ( , ; ,-- [ g ,  t V g],,, for t E N\No, and L l / g  = L(&,) = 
M u { t  V g: t E N \ NO).Also 

by Corollary (a) to Proposition 4 in [22,95] (as explained in [24,Corollary 4C51) and 
the deletion-contraction law pI,(O, t )  = ~ i ~ ( g ,t )  + p+ (0,  t )  (cf. [5] for instance). 
Thus (*) equals the desired expression. 

The number of k-cells missed is obtained by summing the number in each k-flat 

s ! z g .  
If 6 is central and g does not contain the center, Theorem 3.5 simplifies, for then 

M = .0. If g does contain the center, then contrariwise No = 0 .  

4. Projective arrangements. We start by observing that Corollary 3.1 has an analog 
for projective arrangements. This interprets pi (0,  v )  if we take k = d ,  q = 1, and 
p = 0. 

COROLLARY4.1. Let d be a projective arrangement in Pd  with rank d + 1 and let 
k > 0. Let g be a hyperplane that contains the vertices v ,,... ,v, but no line of &. If g is 
shifted slightly so it contains only v , ,.. . ,up (where p may be 0),  then it meets, besides 
all the original k-cells, exactly 2$,=,+, w ~ - ~ , ~ ( L ( @ ( v , , ) ) )new ones. 

PROOF.We need consider only the case p = 0;  as in the proof of Corollary 3.1 it 
suffices to treat the case q = 1. Since only local effects matter if g is moved but 
slightly, we can throw to infinity a distant hyperplane of Pd (not necessarily in &) 
and in the resulting affine space appeal to Corollary 3.1. 

Now we interpret the w: ( L ( & ) ) .  
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THEOREM4.1. Let d be a projective arrangement of rank r and let k > d - r. Let 
also g be a general hyperplane with respect to W. Then g meets all but exactly 
~d t_~ , , (L (@))of the k-cells of@. 

PROOF.The number of k-cells g meets is the number of k - 1-cellsof d,. Since g 
is general, whence L(@,) = ?L(@), that number is 

Now W~,(~ 'L)= wl,(L) if j < r - 1 and w , , , , ( ? ~ )= w,,(L) + wl, , ,  ( L )  if  i G r -
I. By Rota's sign theorem [22]we deduce 

whence g misses exactly w,f_,,,(L ( @ ) )of the k-cells. 

COROLLARY4.2. Let 6? be a projective arrangement of rank d + 1 and let 0 G k < d. 
Let g, = Pd > gd- , > . . . > go > g-, = iZI be a chain of subspaces of the indicated 
dimensions, general with respect to @. Then for each I = d,  . . . ,1,0, the number of 
k-cells of @ that meet g, but not g ,  , is equal to 

PROOF.Let us rewrite Theorem 4.1 by (1.2): the quantity there is 

The k-cells of 6? that meet g, correspond exactly to the k - ( d  - I)-cells of ti',,. The 
lattice of the latter is fd- ' (L(@)),  whose rank is I + 1. So by Theorem 4.1 the 
number we seek is 

provided d - k < 1+ 1. Then the range of x ~ - ~is L(@)d-k.Furthermore k - d + 
1 < I + 1, so the summand simplifies to wL-,+,,,+ ,(L(&)/xdPk), as desired. 

But if d - k 2 I + 1, the summand is identically 0, as required for the corollary. 

There is, of course, a refinement of Corollary 4.2 analogous to Theorem 3.3. 

COROLLARY4.3. Let 6?, k, and g, be as in Corollary 4.2. Then (with congruences 
modulo 2) the number of k-cells met by g, is 

and the number missed by g, is 



INTERPRETATION O F  WHITNEY NUMBERS 107 

PROOF.A matter of summing as suggested by the previous corollary and simplify-
ing by means of (1.2). 

The Whitney numbers of the second kind interpret by an analog of Corollary 4.2 
as with Euclidean arrangements. 

5. Zonotopes. A zonotope is the vector sum of a finite number of closed line 
segments in the real linear space Rd; it is a convex polytope. We may suppose 
without loss of generality that all the segments S,,. . . ,S,, are centered on the origin; 
then S, is the convex hull of its endpoints z, and -z,. We write Z = {z,,. . .,z,,), 
and P (Z)  = S, + . . . +S,, for the zonotope. We assume for simplicity that all 
segments are nonzero and nonparallel. We write f;(P(Z)) for the number of i-faces 
(that is, i-dimensional faces) of P (Z) ,  including P ( Z )  but not 0 ;  the faces are 
considered to be relatively open. The zone of a segment S, is the union of all faces 
parallel to it. 

We write Rd for the ambient space to stress that all subspaces are linear: they pass 
through the origin. Let F be a face. The apex of F is the linear space parallel to it: 
that is, it is aff F translated to go through 0. The (closed) cone of F is obtained by 
first translating P ( Z )  to P(Z),, in which 0 lies in the translate of F; then 

where pos means positive span. Thus apex(F) is in a sense the apex of cone(F). We 
also define the open cone: 

The lattice of flats of P ( Z )  is the set L ( Z )  of linear subspaces spanned by Z,  
ordered by inclusion. It is a geometric lattice of rank r = dim Z and is the lattice of 
the linear dependence matroid of Z. It also has the following interpretation: For a 
face F let 

Z ( F )  = {z, E 2: S,IIF); 

we take this to mean Z(V) = 0 for a vertex V and Z(P(Z))  = Z. Then P(Z(F))  is 
a translate of F; and furthermore, 

(5.1) L ( Z )  = {lin Z ( F ) :  F i s  a face of P ( Z ) ) .  

So the Whitney numbers of the second kind y ( L ( Z ) ) ,  the number of j-dimensional 
subspaces spanned by Z, have an interpretation in P(Z).  

THEOREM5.1. Let P ( Z )  be a zonotope. The number of distinct sets of intersection of 
j zones not the intersection of fewer zones is equal to y . (L (Z) ) .  

Each segment S, is dually a hyperplane ĥ ,; thus we have a central arrangement $ 
in the dual space Rd* whlch carries over to a projective arrangement & = { h , ,...,h,) 
in pd-'.(Noted by Coxeter [9]. See also [19] for this duality and references.) The 
i-faces of P ( Z )  correspond one-for-one to the d - i-cells of $ and (when i < r )  
two-for-one to the d - i - 1-cells of &. Thus one gets enumerative properties of 
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P ( Z )  by dualizing those of arrangements. That is the topic of this section. First of 
course is 

THEOREM5.2 [24,COROLLARY6.31. We have 
r 

f ; ( P ( Z ) )  = 2 w,: ( L ( Z ) ) .
/=I 

A face is in the zone of S, iff it corresponds to a cell of the induced arrangement 
@, . Thus (when i < r )  the numberf;(P(Z), S,) of i-faces not in the zone of S,, is 
twice the number of d - i - l-cells in the affinization of &by  h,. By L(Z,  z,,) we 
denote the semilattice L(Z)\(L(Z)/z,). From Theorem A we get 

THEOREM5.3. For 0 a i < r we have 
r 

f ; ( P ( Z ) ,  Srn) = 2 2 wl: ('('3 zrn)).
J='  

Because the correspondence of faces to cells preserves incidence while reversing 
order, two closed faces intersect if and only if the corresponding cells of & intersect. 
Thus a closed face corresponds to a cell bounded in the affinization of &by  h,, iff it 
does not meet the closed zone of S,. From Theorems D and C we deduce 

THEOREM5.4. If n > 0, the number of opposite pairs of vertices of P ( Z )  not in the 
closed zone of S, equals P(L(Z)). The number of opposite pairs of closed i-faces not 
meeting the closed zone of S, equals C,w,: (L(Z,  2,)). 

Another way to view Theorem 5.4 is xhis: Let v be a point on lin z, and very far 
from P ( Z ) .  Looking down from v at P(Z),  we can see one vertex of each opposite 
pair. Those inside the visible part of P ( Z )  are the ones not in the zone of S,. So 
their number is P(L(Z)).  Similarly the faces counted in Theorem 5.4 are the ones 
whose vertices are interior to the visible region of P(Z).  

A line 1in Rd corresponds to a hyperplane h(1) in Pd. The line is parallel to a facet 
iff h(1) contains the corresponding vertex. Therefore what corresponds to a general 
hyperplane with respect to W is a line parallel to no facet; we call this a general line 
with respect to P(Z) .  A vertex whose closed (or, open) cone does not contain I 
corresponds to a region (respectively, closed region) meeting h(1). Thus an i-face F) 
of P ( Z )  whose open cone does not contain I corresponds to a closed d - i - 1-cell of 
@ meeting h(1). An < such that either 1 gcone(4)  or 1 c apex(<) corresponds to a 
d - i - l-cell meeting h(1). (Notice that any 1 apex(F) is parallel to F.) We say 
that a subspace t of Rd is external to < if t n cone(<) = 0. 

Now from Corollary 4.1 we have our first new result. 

THEOREM5.5. Let P (Z)  be a zonotope, where Z spans R ~ ,and let 0 G i < d. Let I 
be a line that is parallel to facets F( ') , . ..,F(q) but not to any subfacet. Suppose I is 
perturbed so it is parallel only to F('),...,F ( P )  (where p may ,be 0) and to no subfacet. 
Then the number of i-faces 4 to which 1is external is increased by 

2 8 w , + ~ ( L ( z ( F ( ~ ) ) ) ) .  
m=p+ l 
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Remember that L(Z(F))  = [0, Z(F)]  in L ( Z )  for any face F. This gives an 
interpretation of pi (0, Z(F))  for a facet Fr-, by setting i = 0, q = 1, and F"' = F. 

COROLLARY5.1. Let F be a facet of P(Z), where Z spans Rd, and I a line parallel to 
F but to no other proper face. Suppose I is perturbed so it is parallel to no proper face. 
Then the number of vertices to which I is external is increased by 2p+ (0, Z( F)). 

From Theorem 4.1 we can interpret p+(O, 1) and the other "upper" Whitney 
numbers of L(Z). 

THEOREM5.6. Let P(Z)  be a zonotope and i < r = dim Z. Let I be a general line 
with respect to P(Z).  Then the number of opposite pairs of i-faces of P ( Z )  to which I is 
not external is exactly w,: (L(Z)).  

Another way of saying that a general line I is not external to F is to say that any 
translate of I meeting F also meets the interior of P(Z) .  

COROLLARY5.2. Let P ( Z )  be a zonotope and i < r = dim Z. Let to = 0 C t ,  C 
. . C tr = lin Z be a chain of subspaces of the indicated dimensions. Then the number 

of opposite pairs ofi-faces of P(Z)  to which t,,-,, but not t,, is external equals 

w ( L ( Z ) X )  
\.'E I . (Z)  

COROLLARY5.3. Let P(Z), i ,  and t,, be as in Corollary 5.2. With congruences 
modulo 2, the nurpber of opposite pairs of i-faces to which t ,  is external equals 

The number to ushich if,,is not external equals 

This corollary generalizes to lower-dimensional subspaces the observation that the 
translates of a general hyperplane support exactly two.opposite vertices and no 
higher faces. 

There is an appealing interpretation of P(L(Z)) deduced from Theorem 3.4. 

THEOREM5.7. Let P(Z)  be a zonotope in Rd with dim Z < d and let z ,  E Z. 
Suppose the segment S,, is rotated slightly towards the perpendicular to lin Z, into a 
new position Sz lin(S,,(lin Z)I ) .  Let P(Z*) be the zonotope generated by the 
perturbed segment set { S , ,...,Sz, ...,S,) (optionally including S, as well), and let v 
be a point on (lin Z ) l  far from P(Z).  Then the number of vertices visible from v and 
interior to the visible part of P(Z*) is equal to P(L(Z)), regardless of the segment 
chosen to be rotated. 

PROOF.Without loss of generality we may assume lin Z = {x E Rd: x d  = 0). Let 
a be the affine hyperplane a = {x E Rd:x d  = 1). 

Dualizing P (Z)  and P(Z*), we get central arrangements & and &* in R ~ .Then 
X = &, is a central Euclidean arrangement in a with rank d - 1, and h ( z z )  n a is a 
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translate of h(t , )  n a. so 'X* = a,*is the perturbed arrangement in Theorem 3.4. 
That gives the number of bounded regions in a,*. 

Let z ,  be a normal to lin Z and Z,* = Z* U {z,) .  The dual projective arrangement 
@,* with h(z , )  thrown to infinity is a Euclidean arrangement isomorphic to &,*. Now 
the remarks preceding Theorem 5.4 allow us to interpret the bounded regions of &,* 
as the opposite pairs of vertices of P(Z,*) not in the closed zone of z,; by the 
comment after Theorem 5.4 we have the theorem. 

There is a duality for zonotopes corresponding to matroid duality, under which a 
d-dimensional zonotope with n zones corresponds to an n - d-dimensional zonotope 
with the same number of zones. For this see [19 or 20, $71. The proposition dual to 
Theorem 5.2 with i = 0 is 

THEOREM5.8. The number of points Z ~ E ,z,, where all E ,  = * 1, that lie in the interior 
of P ( Z )  is equal to ZJw," ( L L( Z ) ) ,where L L  ( Z )  is the lattice of the dual of the 
matroid of Z .  

The proof is straightforward, given the zonotope duality theory in 119,201. 

6. Non-Radon partitions. A non-Radon partition of an affine set S C Ed  is a 
partition of S into the two parts on either side of a hyperplane not meeting S .  (One 
such is the partition { 0 ,  S ) . )  A partition of S into two parts not separable by a 
hyperplane is a Radon partition. A recent survey of the subject is 1111. 

One can dualize by regarding S as a subset of P d  with a distinguished hyperplane 
(called oo) that avoids s. The dual is an arrangement of hyperplanes @ in Pd; cc 
becomes a distinguished point lying in some region R,. A separating hyperplane of 
S becomes another point, in a region R say; the induced partition of S corresponds 
to the partition of @ given by h - h' iff h and h' do not separate R from R,. Thus 
the non-Radon partitions of S are in one-to-one correspondence with the regions of 
6?. Each region corresponds to an equivalence class of S-avoiding hyperplanes in Ed 
under the relation k - k' if k can be moved continuously to k '  without touching any 
point of S .  

Let L ( S )  be the lattice of affine subspaces generated by the points in S ;  it is the 
lattice of the affine dependence matroid of S.  From Theorem B we conclude: 

THEOREM6.1 ([24,COROLLARY6.21, ALSO IN [6]). Let S be a nonempty set of n 
points in E ~ .The number of non-Radon partitions of S is 

The number of Radon partitions is 2 "  ' - ZJw;'+ ( L ( S ) ) .  

Let us choose a distinguished "basepoint" b E S and regard the corresponding 
hyperplane h ( b )  as the infinite; thus @ becomes the projectivization of a Euclidean 
arrangement G = @\{h(b)). A bounded region of & corresponds to an equivalence 
class of S-avoiding hyperplanes k such that k cannot be continuously shifted into a 
position containing b without first passing through another point of S.  Let us call 
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such a k barred from b. From Theorem D we have 

THEOREM6.2. Let S C Ed and let b E S. Then the number of non-Radon partitions 
produced by hyperplanes barred from b is equal to P(L(S)). 

In order to interpret the w;'+ (L(S)) we need another definition. An affine 
subspace t has generalposition with respect to S if for every x E L(S), t and x span 
the largest possible space and are not parallel. 

THEOREM6.3. Let S span E ~ ,let b E S, and let t - ,  = 0 c to C t ,  C . - . C t ,  = Ed 
be a chain of affine subspaces in general position with respect to S. Then for 
I = 0, 1,... , d ,  the number of non-Radon partitions of S produced by hyperplanes 
k > t , _ , ,  but not by any hyperplane k > t,, is equal to w:-+l (L(S)). 

PROOF.Let g ,  , be the dual of t ,  in Pd. A region R of &, the dual arrangement 
of S, meets g,-, -, if and only if & corresponds to a separating hyperplane k > t,. 
Thus the theorem follows from Corollary 4.2. 

Answering the question of Eckhoff [ l l ,p. 1701 on interpretation of the Whitney 
numbers, we have 

COROLLARY6.1. The Whitney number w:! ,(L(S)) = p- (L(S)) equals the number 
of non-Radonpartitions of S not produced by any hyperplane through a fixedpoinr to .  

For I = 0, 1,.. . , d ,  the Whitney number wd+-/(L(S)) equals the number of non-Radon 
partitions of Sproduced by hyperplanes k > t,-,,  but not by any hyperplane k _> t,, ,. 

PROOF.From he or em 6.3 and (1.2). 
The doubly indexed Whitney numbers are harder to interpret for Radon parti-

tions. Consider an imperfectly separating hyperplane: one that meets S in a set So 
and separates the remainder into S, and S,. Thus we have an imperfect non-Radon 
partition, into three parts of which Sois distinguished: we call it the middle part. The 
interpretation of Theorem B is 

THEOREM6.4. Let S span E~ and let -1 G i < d be arbitrary. The number of 
imperfect non-Radon partitions with i-dimensional middle is 4Z J w L,,,(S). 

PROOF.Again dualize to 6? in Pd; it has rank d + 1. A hyperplane k whose middle 
S (3k has dimension i dualizes to a point in a cell of & of dimension d - ( i  + 1); 
conversely each d - ( i  + 1)-cell determines an imperfect non-Radon partition with 
middle dimension i .  Thus the theorem. 

Perhaps it would be more interesting to study "imperfect Radon partitions", that 
is tripartitions {So;S,,  S,) of S with Sodistinguished such that S n aff So= So but 
no hyperplane containing So separates S, from S,. The number of these where 
dim So= i - 1 is 

(Here T E L(S) is understood to be a matroid-closed subset of S rather than an 
affine subspace.) 
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7. Acyclic orientations of graphs. A remarkable result of Stanley suggests that 
acyclic orientations of graphs can be treated through arrangements of hyperplanes. 

THEOREM7.1 (STANLEY [23]). Let r be a graph with chromatic polynomial x(A). 
Then r has exactly I x(- 1 )  1 acyclic orientations. 

We deduce Stanley's theorem from Theorem A after establishing the notation and 
the fundamental correspondences. 

Say r has the node set N = { p , ,  p,, . . . ,pn)  and the edge set E; we write el ,  for an 
(unoriented) edge with endpoints p, and p, and (i, j )  for el ,  oriented from p, to p,. 
(There may be more than one edge el,, but that will cause no difficulty.) To el,  
corresponds a hyperplane h,, = { x  E Rn: x ,  = x,). The graphic arrangement corre-
sponding to r is 

X [ T ]  = {h,,: e l ,  E E )  

Let c = c ( r )  be the number of connected components of r .  Then 

r ( X [ T ] )  = n - c ,  

and indeed 

X [ r ]  = { x  E Rn:x ,  = constant in each component of r )  ; 

in particular if r is connected then flX [ r ]  is the line x ,  = x ,  = . . . = x,,. Further 
let L(T) be. the lattice of polygon-closed subsets of E, equivalently the lattice of 
partitions of r (partitions n of N whose blocks induce connected subgraphs). This 
lattice is naturally isomorphic to L ( X [ f  1). The Whitney numbers w, appear in the 
chromatic polynomial: 

n-c  

X ( ~ )  w,(L(r))Atl--J.= 
/ = o  

For a set S c E we count among the components of S any isolated nodes. We 
assume r has no loops; the case of loops is easily handled separately. A path is 
directed or coherent if, for each consecutive pair of arcs, one enters and the other 
leaves their common node. A coherent circle is a cycle. 

LEMMA7.1. There is a one-to-one correspondence between the acyclic orientations of 
r and the regions of %[TI, given by 

(7.2) R ( ~ )= { X  E R": xi  < x ,  i f  el ,  is oriented ( i ,  j )  in a }  

for each acyclic orientation a ,  and inversely 

(7.3) a ( ~ ) ={ ( i ,  j ) : e j j E E a n d x J > x , i f x E ~ }  

for each region R .  

PROOF. Any x E Rn\ U X[T]  defines an orientation a ( x )  by a rule like (7.3); 
clearly it is acyclic. Suppose x moves continuously in R :  since at no time does x 
cross a hyperplane h,, E %[TI, there is no time at which any edge reverses direction. 
So a( R )  is a well-defined acyclic orientation. 
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Conversely given a we can show R ( a )  # 0, whence it follows from the previous 
paragraph that R ( a )  is a region. Writingp, G, p, if ( i ,  j )  E a (extended by transitiv-
ity), and extending this partial ordering of N to a total ordering, say p,, < . . . <p,", 
we see that any x whose coordinates are ordered x , ,  < . . . < x ,  belongs to R ( a ) .  

Clearly R ( a ( R ) )= R and a ( R ( a ) )= a. 
PROOFOF STANLEY'STHEOREM.By the lemma T has f n ( X [ T ] )acyclic orientations; 

by L ( X [ T ] )- L(I ')  and Theorem A this number is C,wJf ( L ( T ) )=Ix(-1) 1 . 

LEMMA7.2. There is a one-to-one correspondence between the acyclic orientations of 
all contractions T / S  where S E L ( T )  has k components and the k-cells o f X [ T ] ,given 

by 

C ( a ,  S )  = { X  E Rn:x E h,, i fe , ,  E S ,  x ,  < x, if e l ,  is oriented ( i ,  j )  in a )  

for each acyclic orientation a of a contraction T / S ,  and inversely 

S ( C )  = {e,,: C C h , , ) ,  a ( C )  = { ( i , j ) :  x ,  < x, if x E C )  

for each cell C of X [ T ] .  

COROLLARY7.1. The number of acyclic orientations of all contractions T / S  in which 
S E L ( T )  has k components is equal to B,w,:-,,,(L(T)). 

The worth of the hyperplanar approach to acyclic orientations is that one can get 
other results by interpreting the geometry of selected regions. For instance from 
Theorem D by way of Theorem 3.4 we have Theorem 7.2. A source is a node with 
only outgoing arcs; a sink has only incoming arcs. We consider an isolated node to 
be neither a source nor a sink. 

THEOREM7.2. Let el ,  be an arbitrary edge in T .  The number of acyclic orientations of 
T in which p, is the only source and p, is the only sink equals P(L(T))-regardless of 
the choice of edge el,. 

PROOF.If T is disconnected, both quantities are 0. So assume it is connected. 
In Theorem 3.4 we set X =  %[TI ,  h = h,,, and h* =.{x  E Rn: x, = x ,  + 1). A 

region R of X [ T ]  meets h* iff a ( R )  orients el ,  as ( i ,  j ) .  It is relatively bounded in 
X,, iff the only way for any coordinate x ,  to become infinite whlle x remains in R is 
for Z x ,  to become infinite. 

Suppose a ( R )  has a source p, # p,. Then x ,  is unbounded below in R ,  so we can 
let x ,  - -aand all other x ,  - +cc while holding Z x k  constant. Therefore R is not 
relatively bounded in X,,. A similar argument applies if there is a sink besidesp,. 

On the other hand if p, is the only source and p, the only sink in a ( R ) ,  then 
x i  < x ,  < x, = x ,  + 1 for every x E R ;  therefore R is relatively bounded in X,,. 

So by Theorem 3.4 we have the desired conclusion. 

COROLLARY7.2. Let el, be a fixed edge in T .  The number of acyclic orientations of 
contractions T / S  in which e,, @ S E L ( T )  and S has k components, such that p, is the 
only source and p, is the only sink, equals 2 , w ~ ~ , , ( L ( T ,e,,)). 

PROOF.By Corollary 3.4 and arguing as in the preceding proof. 
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THEOREM7.3. Let pi be an arbitrary node of T .  The number of acyclic orientations in 
which p, is the only source is equal to wT- , (L(T))  (which is p t ( L ( T ) )  if T is 
connected, 0 otherwise)-regardless of the choice o fp , .  

PROOF.We can assume T is connected. Then the subspace s = { x :  x ,  = 0 )  
sections %[TI faithfully and g = { x :  2,,,x, = -1) is a general hyperplane with 
respect to S = IK[T], .  By Theorem 3.1 then g misses exactly w: , ( L ( T ) )regions R 
of 6. 

If p, is the sole source in a ( R ) ,  then all x ,  > x ,  = 0 in R ,  so R does not meet g. 
On the other hand if there is a source p, # p,, we can decrease x ,  at will until 
C,,,x, < 0 ,  then find a positive scalar multiple of x in g, all the while keeping x in 
R .  Thus the regions not meeting g are just those for which a ( R )  has the property of 
the theorem. 

COROLLARY7.3. The number of acyclic orientations of all contractions T / S  in which 
S E L ( T )  has k components, such that p, is the only source, equals w L k Y n p[ ( L ( T ) ) .  

Comparing Theorem 7.3 for T to Theorem 7.2 for r + p, (that is, T with an extra 
nodep, adjacent to all other nodes) leads to the conclusion 

(7.4) w L ,  ( L ( T ) )= P ( L ( T  + P O ) ) .  

For an acyclic orientation of T with its only source at p, extends uniquely to an 
acyclic orientation of T + po with its sole source and sink at p, and p,,. And an 
acyclic orientation of the latter type, restricted to T ,  has a source only at p,. 

One would expect there to be an interpretation of the other Whitney numbers 
w: ( L ( T ) )  based on Corollary 3.2, but we have not found a chain of subspaces 
whose geometry translates into graphically meaningful conditions. 

What we do have is a purely graphical interpretation of the whole set of Mobius 
functions p'(0, n )  for n E L ( T ) .  We need the nodes to be in a fixed order, say 
numerical order; and for B CN let min B denote the first member of B. Recall the 
partial order <,induced on N by an acyclic orientation a .  For each a define a 
partition n ( a )  in this way: First set r,  = T ;  let p,, be the last source in T I  (in 
numerical subscript order) and B ,  the set of all nodes p, of T I  reachable by an 
ascending path coherent in a. Next let l7, be the subgraph T : [ N  \ B , ]  induced on 
N \B,; repeat the construction on r, to get p12(the last source in T,) and B,. Let 
T3 = r : [ N\(BI U B2)] ,  and continue until all the nodes are used up: until 
B ,  U B, U . . .  U B ,  = N.Thenset 

n ( a )  = { B I ,  B2,. .. ,Bq} .  

THEOREM7.4. W e  have n ( a )  E L ( r ) ,  and each n E L ( T )  is the image of exactly 
pt (0,  n) acyclic orientations. 

Given a we have p Im= min Bm,pin, is the only source in T : Bm, and any edge with 
endpoints in different blocks B, and Bm of n ( a )  is oriented against the order of minimal 
nodes (that is,from Bm to B, i f  i ,  < i,, i.e., i f 1  > m ) .  

Conversely, given n the following construction yields its complete inverse image: 
Orient each T :  Bm acyclically so that min Bm is the only source, and orient each edge 
between blocks against the order of minimal nodes. 
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PROOF.The construction of a(&) assures that each T :  B, is connected, hence 
n(a)  E L(T). The other properties of a(&) are obvious. Thus when constructing 
orientations from a(a),  one of those constructed is a. 

Conversely, if a is given and a is constructed as described, then the source of the 
highest block B, is the highest source in a ,  whence a ( a )  has B, for the hghest block; 
stripping away blocks in succession and reasoning in the same way we see that 
n ( a )  = n. We have therefore constructed the complete inverse image of a .  

Its size follows from the observation that (by Theorem 7.3) there are p+ (T : B,,) 
ways to orient each T : B,, and, consequently, 

ways to construct a .  
We can restate the definition of the blocks B,,. Let Fa be the subgraph of 

ascending arcs of a (ascending in the fixed ordering) and let p,, ,p,,, . . .,p, be the 
sources of Ta in descending order. Then 

B,, = { p  E N: p is reachable in T, from p, but not from p,,,... , p,",-,} . 

COROLLARY7.4. Given a fixed ordering of N, the number of acyclic orientations of T 
in which Ta has exactly q sources equals w,:-,(L(T)). 

Taking T = K;, we have a property of the retreating elements of a permutation 
(a , ,  a,, ...,a,,) of {1,2,... .n), which are the a ,  such that a , ,.. . , a , ,  > a,.  We call 
a ,  a retreating element. 

COROLLARY7.5 ( R ~ N Y I[21]; cf. [8,Chapter VI, Exercise 10(3)]). The number of 
permutations of { 1.2,. ..,n) having q retreating elements equals I s(n, q )  1 , the un-
signed Stirling number of the first kind. 

Renyi stated this result in reverse, for "outstanding" elements (PKments saillants). 
Lastly we offer an interpretation of certain sums of Mobius functions that are not 

in general Whitney numbers. For P,  Q & N, let 

E ( P ,  Q )  = (e  E E :  e has one end in P and the other in Q } .  

Any bond (minimal cutset) of T has the form E(P,  PC),where PC= N \ P .  We say 
an orientation of T directs a bond if it orients every bond edge in the same sense. 

A null potential is a function f :  N + R such that f ( N )  = 0, where 

We say such a function orients bonds by majority rule: if E(P,  P C )is a bond with 
f ( P )  Z f (Pc ) ,  we orient it from the side whose value off is lower (hence negative) to 
the higher (positive) side. If f ( P )  = f(Pc) ,  we call E (P ,  P C )neutral and do not 
orient it. Clearly a bond is neutral if and only if f ( P )  = 0. A partition n E L(T) is 
neutral if f (B) = 0 for every B E n (equivalently if every bond E(P ,  P C )for which 
{P, P C )> n is neutral). The set N( f )  of neutral partitions is a nonempty modular 
filter in L(T). 
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THEOREM7.5. Let f be a null potential on I', not identically zero. The number of 
acyclic orientations of T directing no bond against its f-orientation is equal to 

zn t -N ( / )~+(0, n). 

PROOF.We apply Theorem 3.5 to X[T]  with g the hyperplane 

Since X[T]  is central and its center is not in g, M = 0. We must determine No. 
Consider the flat t corresponding to 7 E L(T). The points x E t are characterized by 
x, = xBforp, E B, SO 

g (x>  = 2 f(B)x, .  
B E T  

Evidently t meets g if and only if some f (B)  # 0. So the flats t E No are those 
corresponding to n E N( f ). 

Now pick a and suppose E (P ,  P C )is a bond directed by a from P to PCand 
oriented oppositely by f ;  thus f ( P )  > 0. Take x E R(a). If we subtract h > 0 from 
each x, corresponding to p, E P, we do not remove x from R(a), but we do decrease 
g(x) by hf ( P )  > 0. Choosing h large enough makes g(x) < 0. Then multiplying by 
a suitable scalar we obtain a point in g n R(a). 

Inversely suppose a directs no bond against its f-orientation. Equivalently in the 
partial order <, on N we have f( J )  2 0 for every order filter J .  At this point we 
need a decomposition rule for a nondecreasing function x: N -,R. Let z ,  > z ,  > 
. . > z, be the values assumed by x. The set 

J, = x-'({z, ,. . . , zk ) ) ,  for k < m, 

is a filter. Letting vk = z, - z,, , > 0 and 1, be the characteristic function of 
S c N, we have 

m- l 

(7.5) x = z, l ,  + 2 uklJk. 
k =  l 

Now since any x E R(a) is an increasing function on N, calculating g(x) by means 
of (7.5) yields 

But the right-hand side is nonnegative. So g cannot meet R(a). 
EXAMPLE7.1. Digraph degrees. Let (A, 6)  be a digraph on N and f( p )  be the net 

indegree of p in 6, that is 

Then thef-orientation of a bond Er(P,  P C )is the direction in which a majority of 
the arcs of EA(P,P C )go in 6; it is neutral if there is no majority. 

For instance let A be the star consisting of all edges at one vertex p, oriented 
outward by 6. Then N( f )  = {I,), and the acyclic orientations counted in Theorem 
7.5 are those in w h c h p  is the only source. So we have Theorem 7.3 as a corollary. 
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Or suppose A is a smaller star, consisting of all edges between p and Q c N \{p), 
directed outward by 6. Then N( f )  is the set of partitions having a block containing 
{ p )  U Q, and the enumerated acyclic orientations are those in which p, but no 
member of Q, is a source. 

EXAMPLE7.2. Flows. A flow (or real voltage) on r is a mapping rp: E - R, it being 
understood that rp(e-') = -cp(e), where e and e-' mean the same edge transversed in 
opposite directions. Its boundary arp, defined by 

arp(p) = the net inflow top ,  

is a null potential. Taking f = drp in Theorem 7.5, the f-orientation of a bond is in 
the "downhill" direction of flow. N( f ) consists of the partitions of which each block 
has no net inflow. 

One could also take rp to be a flow on a different graph A on the same node set N. 

8. Totally cyclic orientations of graphs. An orientation of a graph r is totally cyclic 
if every edge belongs to a (directed) cycle. For a connected graph this means just 
that the orientation is strongly connected. The numbers appropriate for counting 
totally cyclic orientations are the Whitney numbers of the lattice LL(T)  of the 
cographic matroid, whose closed sets are the complements of the isthmus-free 
subsets of E. We wish to treat totally cyclic orientations geometrically; for that we 
need the cographic arrangement of hyperplanes associated with T. 

We assume in this section that r has no isthmi. By complicating our definitions 
slightly we could allow isthmi, but we prefer to avoid the extra complexity. 

We start the construction in RE, whose coordinates are x(e) for e E E with the 
convention x(e- ')  = -x(e) as in Example 7.2. Let 

a x ( P )  = the net inflow to P = 2 ax(p)  for P cN. 
P E P  

The cycle space of r is u = {x E RE: ax = 0 ) .  Writing @ for the arrangement of 
coordinate hyperplanes in RE, we define the cographic arrangement of hyperplanes of 
r to be the induced arrangement, lXL[TI= d,,, and we write h(e) for the hyper-
plane corresponding to e. Notice that this arrangement is central. A fact that is in 
essence well known is that 

(8.1) L ( W  [ r ] )  = L~ ( r ) .  

Any region R of XL[TI (or for that matter of 8)determines an orientation T(R) 
of r by the rule: pick x E R and choose the direction of e that makes x(e) > 0. 

LEMMA8.1. The mapping R + T(R) is a one-to-one correspondence between the 
regions of XL[ r ]  and the totally cyclic orientations of T. 

Consider a region R. (We assume r has no isthmi.) We can orient r so all x(e) are 
positive in R. If 7(R) were not totally cyclic, there would be a bond E(P,  P C )  
directed by T(R) from P to PC.Since x E u, we would have ax(P) = 0. But all 
x(e) > 0. So there is a contradiction. 

Conversely let T be a totally cyclic orientation. Assign a positive number a(C) to 
each cycle and let x(e) = Ba(C), summed over all cycles containing e. Since ax = 0, 
we have found a region R, namely that containing x, for which T(R) = T. 
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Now from Theorem A we have 

THEOREM8.1. The number of totally cyclic orientations of an isthmus-free graph I'is 
e q u a l t o X , w , + ( ~ ~ ( I ' ) ) .  

The nullity of S C E is 

nul(S) = #S - c(N, S ) .  

We have dim u = nul(I'). 

LEMMA8.2. There is a one-to-one correspondence between the pairs (S, rS), where S 
is an isthmus-free edge set in I'of nullity k and 7, is a totally cyclic orientation of S ,  and 
the k-cells of XL[TI, given by 

C(S, rS) = {XE U:~ ( e )= Ofor e f2 S ,  x ( e )  > Ofor e E S as oriented by I-..) 

The lemma follows from (8.1) and Lemma 8.1. 

COROLLARY8.1. The number of totally cyclic orientations of all isthmus-free edge 
sets in I'of nullity nul(I') - i is equal to Z,w,T (L~ (I')). 

A circle C C E determines a vector x, E RE in the following way: Choose a 
direction around C; then (for purposes of definition) orient each e E C to agree with 
that direction and let x,(e) = 1 if e E C, x,(e) = 0 if e f2 C. We see that x, E u. 
Note that choosing the opposite direction for C would negate x,. 

If 7 is an orientation of I',we write re for the orientation obtained by reversing e. 

LEMMA8.3. The boundary hyperplanes of a region R of 3CL [I']are the hie) for 
which r(R), is totally cyclic. 

THEOREM8.2. Let e E E(T). The number of totally cyclic orientations of r in which 
e has a fixed orientation and every cycle passes through e is equal to P(LL(I')). 

FIRSTPROOF(by duality). Assume I' has more than one edge; the other case is 
easy. The orientations are in bijection via the map r - 7, with the acyclic orienta-
tions in which e has the opposite fixed orientation and its endpoints are the only 
source and sink. The latter number is P(L(I')) by Theorem 7.2, which equals 
P(LL(I')) by Crapo's duality theorem [lo,Theorem IV]. 

SECONDPROOF(by geometry). Taking e in its fixed orientation, we set h = h(e)  
and h* = {x E u: x(e) = 1) in Theorem 3.4. Then P ( L ~ ( I ' ) )counts the regions R 
such that r (R)  gives e the fixed direction and R i l  h* is bounded. If x E R n h* 
and r (R)  has a cycle C not containing e, then x + Ax, E R i l  h* for any A 2 0, so 
R n h* is unbounded. 

Suppose, conversely, that R n h* is unbounded and {x + X y: A 2 0) is a ray in 
R n h*. Thus y E u and y(e)  = 0. Since y # 0, there must be a cycle of r (  R) whose 
edges have nonzero values of y. But no such cycle contains e. So r (R)  does not fit 
the requirements of the theorem. 

To interpret y(L'(I')) we need an auxiliary item: a certain kind of orientation of 
the circles of I'. Let gobe a hyperplane through the origin of RE,general with respect 
to the coordinate arrangement &. Then g = go n u is general through the origin with 
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respect to '3CL [TI. Choose a positive side of g and let y orient each circle C in such a 
way that x, is on the positive side. (Reminder: y does not orient edges.) We call such 
a way of orienting the circles linear. An intrinsic characterization is 

PROPOSITION8.1. Let y be a circle orientation and x,, for each circle C ,  the vector 
corresponding to the orientation by y. For y to be linear it is necessary and sufficient 
that the only nonnegative linear combination Bbcxc = 0 is that with all b, = 0. 

PROOF.One can see that y is linear if and only if there is a hyperplane g* 
separating all x, from 0. The latter exists if and only if 0 is not a positive 
combination of any x,. 

Here is an open question. Acyclic and totally cyclic orientations are each char-
acterized by a simple excluded configuration (cycles, and sources or sinks, respec-
tively). To what extent can linear circle orientations be characterized in the same 
way? One forbidden configuration is a theta graph in which every two circles are 
oriented oppositely on their common path. We believe t h s  one exclusion is too weak 
for a characterization, although we have no confirming example. Is there a short 
sufficient list of forbidden configurations? 

The support of a vector x E RE is 

supp x = {e: x ( e )  # 0 ) .  

Let T(X)be the orientation of supp x that makes all x(e) 2 0. 

LEMMA8.4. Each x E u is a positive combination of uectors x, belonging to cycles in 

7(x ). 

PROOF.We induct on #supp x. By Corollary 8.1 ~ ( x )is a totally cyclic orienta-
tion of suppx. Let C be a cycle passing through an edge of minimal weight 
a =Ix(e)l# 0. Then r (x  - ax,) agrees with r (x)  where both are defined, and 
x - ax, is a positive combination of cycles. So we have the lemma. 

As a byproduct we have the well-known fact that u is the linear span u = (x,: C 
is a circle of r ) .  Another conclusion is 

LEMMA8.5. Let R be a region of '%-l[r]and z i t s  closure. Let x E u. Then x E Rif 
and only if x is a nonnegative combination of uectors x, belonging to cycles of T(R), 
and x E R if and only if also the cycles with positive coefficient bc cover E. 

PROOF.The criterion for x E R is immediate from Lemma 8.4. That for x E R 
follows by taking into account the support of x. 

A corollary is that the edges of R are the rays (xc )+  = {Axc: h > 0) for whch C 
is a cycle in T(R). 

THEOREM8.3. Let y be a linear circle orientation of I'. The number of totally cyclic 
orientations of r whose every cycle is oriented as prescribed by y equals p+ (LL(r ) ) .  

PROOF.Say y corresponds to the half space a . x  > 0. Let g be the hyperplane 
a . x  = -1, general with respect to XLII']. According to Theorem 3.1, g misses 
exactly y+ ( L ~( r ) )  regions. 
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By Lemma 8.5, g meets a closed region Rif and only if there is a point x = Zbcx, 
(summed over cycles of r ( R ) ) ,where the x c  are oriented to agree with r ( R )  and the 
bc are nonnegative, for which 

-1 = a . x = ~ b c ( a . x c ) .  

This equation has a solution precisely when some a . x c  < 0, in other words C is 
oriented oppositely by r ( R )  and y. Since g is general, it meets R under the same 
conditions. The theorem follows. 

COROLLARY8.2. Let r be a directed graph. Order the edges of T in a fixed way. The 
number of totally cyclic reorientations r of r ,such that in each cycle of r the lowest edge 
is not reoriented, is equal to p+ (L L  ( r ) ) .  

PROOF.Let the edge ordering be e l  < e ,  < . . . < e I 4 .  The appropriate circle 
orientation y is linear: it corresponds to choosing the coefficients a , ,  a,, . . . ,al,, of 
the general hyperplane g so that a ,  >> a ,  >> . . . >> aI4> 0. 

So far we have not found how to extend Theorem 8.3 to interpret the Whitney 
numbers of Mobius function values of L L  (I').This is the main outstanding problem 
in our approach to totally cyclic orientations. 

A plane graph has a natural circle orientation y ,  in which every cycle is oriented 
counterclockwise. That y is linear follows easily from Proposition 8.1. Now Theorem 
8.3 gives us 

COROLLARY'8.3. Let T be a graph embedded in the plane. The number of totally 
cyclic orientations of I'in which there is no clockwise cycle equals pt ( L I  ( T ) )  i f  T is 
isthmus free, 0 otherwise. 

The circle orientation that yields this corollary depends first of all on embedding 
I'in the sphere, then on choosing a face F i n  which to puncture the sphere. This F 
defines y and becomes the unbounded face of the plane embedding. However we 
could determine y using one face and puncture a different one. 

COROLLARY8.4. Let I'be a graph embedded in the plane and F a bounded face of 
the embedding. Consider the totally cyclic orientations of T in which each cycle that 
surrounds F is directed clockwise while each other cycle is counterclockwise. The 
number of such orientations is pt ( L L(I')) i f  T is isthmus free, 0 otherwise. 

PROOF.We regard T as embedded in the &emann sphere. Let F, be the face that 
becomes unbounded in the plane. To define y we orient each circle of r so that, 
viewed in the sphere, it wraps clockwise around F. The corollary now follows from 
Proposition 8.1 and Theorem 8.3. 

We might ask whether Theorem 7.3 on acyclic orientations would yield interesting 
results for plane graphs. It does indeed do so if one applies it to the dual graph. But 
one gets the same results more simply by combining Corollaries 8.3 and 8.4 with the 
following structural propositions. 

PROPOSITION8.2. Let I'be as in Corollary 8.3. Consider a totally cyclic orientation 
of T in which no boundary of a bounded face is directed clockwise. Such an orientation 
has no clockwise cycles. Moreover it directs the outer boundary of T counterclockwise. 
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PROPOSITION r and F be as in Corollary 8.4. Consider a totally cyclic 8.3. Let 
orientation of r in which no boundary of a bounded face other than F is directed 
clockwise and the outer boundary is not directed counterclockwise. In each such 
orientation a cycle is directed clockwise if it surrounds F, counterclockwise i f  it does not. 
Moreover the boundary of F is directed clockwise. 

PROOFS.We work through the dual graph f * by means of a standard correspon- 
dence between orientations T of T and T* of r*.  Given T ,  if e* is the edge of T* 
corresponding to e E E ( f  ), then T* orients e* so it crosses e from left to right as one 
looks along e in the forward direction. (Notice that (T*)*= 7-',the reverse of 7.) It 
is well known that T* is acyclic if (and only if) T is totally cyclic. For completeness 
we give the easy proof. Suppose T* has a cycle C*. Then the dual edge set C c E ( f )  
constitutes a cut set separating (say) X from Y = N(r) \  X such that every edge in C 
is directed from X to Y. Clearly no e E C can belong to a cycle in T .  Hence T is not 
totally cyclic. 

Let T be one of the totally cyclic orientations considered in Propositions 8.2 and 
8.3. A node p* of T* is a source if and only if the boundary of its corresponding face 
F of r is directed clockwise (for F # the unbounded face F,) or counterclockwise 
(for F = F,). Since T* is acyclic it must have a source p*, whose corresponding face 
can only be F, in Proposition 8.2, F i n  Proposition 8.3. Thus the outer boundary, or 
the boundary of F, are as described. 

Suppose T has a clockwise cycle C. Then the dual edge set C* is directed outward 
from the nodes of T* lying inside C. Since T* is acyclic, one of these nodes p* must 
be a source. Since the corresponding face is bounded, we must be in the case of 
Proposition 8.3 and the face is F. Hence C surrounds F. On the other hand suppose 
C is a counterclockwise cycle of T .  Then C* is directed into the set of nodes withln 
C ,  so there is a source p* of T* outside C. In Proposition 8.3, p* must correspond to 
F: hence C' does not surround F. C l  

9. Acyclic orientations of signed graphs. A signed graph 2,  consisting of a graph r 
and a sign labelling a: E - (21,has a matroid G(Z) and hence a geometric lattice 
of flats L ( Z ) ,  whose Whitney numbers w,f (L(Z)) count the acyclic orientations of 
Z just as for ordinary graphs. Because ordinary graphs are essentially the same as 
all-positive signed graphs, one can expect to find signed-graphic generalizations of 
the results of the two previous sections. But the generalizations are not always 
straightforward extensions, and they seem to be consistently harder to prove. We 
have only found the analog of Stanley's theorem and interpretations of the Mobius 
and beta invariants. 

To describe the matroid and lattice of 2 we need to define balance.* A circle is 
balanced if its sign product is +; an edge set is balanced if every circle in it is 
balanced. A circuit in G(Z) is either a balanced circle or a pair of unbalanced circles 
and a simple connecting path meeting each circle only at an endpoint. (If the circles 

h he material on the matroid and lattice is from [B],on orientation from 1291. Here we omit half edges 
and free loops; for our purposes they are equivalent, respectively, to negative and positive loops (cf. 
[28,291). 
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meet, they can do so only at one node; then the path has length 0.) Let b(S) be the 
number of balanced components of S c E, counting isolated nodes, and n = #N as 
usual. The rank function in G(Z) is 

rk(S) = n - b(S) .  

An edge set S is aflat if its unbalanced components form an induced subgraph of Z 
and no balanced circle has all but one edge in S. To make the empty set closed (and 
our results correct as stated here), we assume Z has no balanced loops. 

One orients Z by putting two arrows on each edge e, pointing in the same sense if 
a(e)  = +, the opposite sense otherwise. We describe an orientation v by attaching a 
sign to each end of e: v(e, p )  = + if e enters the endpoint p, - otherwise. A cycle is 
a (matroid) circuit with no terminus (source or sink). 

The signed-graphic arrangement X [ Z ]  lies in Rn.The hyperplane corresponding to 
an edge eIj is h(e,,): x, = a(e,,)x,. Then L(X[Z])  is naturally isomorphic to L(Z), 
as shown in [28,Theorem 8B.11. The generalization to signed graphs of Lemma 7.1 is 
easy to state but the proof is long, occupying the bulk of [29]. 

LEMMA9.1 129,THEOREM4.21. There is a one-to-one correspondence between the 
acyclic orientations of Z and the regions of %[XI, giuen by 

for each acyclic orientation a ,  and inversely a( R)  giuen by 

a(R)(e,, ,  P,) = sgn[x, - o(e,,)x,], i fx  E R ,  

for each region R. 

THEOREM9.1 [30,COROLLARY4.11. The number of acyclic orientations of a signed 
graph Z equals C,wT (L(Z)). 

For a geometric proof, apply Theorem A to Lemma 9.1. A graphical proof 
appears in [30]. 

For our interpretations of p and fi we need another definition. A half-cycle at 
p E N is an unbalanced circle with a simple path of length 2 0 attached to it at one 
end, oriented so that p is the only terminus. 

THEOREM9.2. In a signed graph Z, choose an edge e and give it a fixed orientation. 
The number of acyclic orientations of Z giving e the fixed orientation, having no termini 
outside the endpoints of e, and ( i f2  is unbal~nced)having a half-cycle at each endpoint 
p of e with the same direction at p as e has, is equal to P(L(Z)). 

PROOF.We rely on machinery from [29], to whch we refer for the definitions. 
If 2 is balanced, Theorem 7.2 applies after switching Z so it is all positive. If Z is 

disconnected (neglecting isolated nodes), then P = 0 and there are no suitable 
orientations. So we may assume 2 has no balanced components. 

Let pi and p, be the endpoints of e. (Possibly p, =p,.) By suitable switchng we can 
assume e is negative and extroverted. Then h(e) is the hyperplane x, + x, = 0; to 
apply Theorem 3.4 we take 

(*> h*: xi +x ,  = 1. 
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Let a be an acyclic orientation orienting e correctly. When is R(a) n h* bounded? If 
a has a source (or sink) p,, not an endpoint of e, then x, is not bounded below (or 
above) for x E R(a),  so R(a)  n h* is unbounded. Thus we suppose from now on 
that e has no termini other than p, and p,. 

Now 2 is oriented by &, the lift of a .  To have a lower bound on a coordinate x;, 
there must be an arc entering e p ,  Tracing back in a directed path as far as possible, 
we arrive at a source, which must be -p, or -p,. So every x: for k # i ,  j is bounded 
below (and similarly above) by one of x t  ,x;, x; ,and x,-. Therefore for R(a)  n h* 
to be bounded, it is necessary and sufficient that these four values be bounded in 
R ( & )  n s n h*. At this point the case pi = p, becomes trivial, so we assume p, # p, 
from now on. 

We have three equations in R(&) n s n h*: 

Other relations among these variables can only appear from directed paths among 
%piand ip , .  The possibilities are the following: 

(1) A directed path from -p, to +p, (or -pJ to +pi) gives no new constraints. 
(2) A directed path from -p, to +p, (or -pJ to +p,) forces x+ > 0, hence x,,? < 1 

(or x: > 0 and xjt < 1). 
(3) A directed path from +p, to +pJ extends, using P, to one from -pJ to +pJ, so 

it need not be considered separately. 
We conclude that R ( & )  n s n h* = R(a) f' h* is bounded if and only if both 

possibilities in (2) occur. But existence of a directed path in 2 from -pi to +p, is 
equivalent to existence of a half-cycle intop, in 2 .  Hence the theorem. 

Suppose the nodes are ordered. We call p an upward node if there is no directed 
path entering p with its other end at a hlgher node. 

THEOREM9.3. Let Z be a signed graph with no balanced components whose nodes are 
1i:zearly ordered. The number of acyclic orientations such that every upward node has an 
entering half-cycle is equal to pt (L(Z)). 

PROOF.Say the nodes are in subscript order p , ,  p,,. . .,p,,, and a , ,  a,,. .. ,a, are 
real numbers satisfying 0 < a ,  a,  << . . . a,. We apply Theorem 3.1 with g given 
by the equation X,a,x, = -1. That is, we want to characterize the acyclic orienta-
tions a such that no x E R(a) has Ziaix, < 0. 

First we observe that an acyclic orientation that misses g can have no source. For 
if, say, x E R(a) and pi were a source, then xi could be decreased to make 
2,aix,  < 0 while keeping x E R(a). Henceforth we assume a has no source. 

Suppose a has an upward node pi with no entering half-cycle. We show that Z,a,x, 
can be made negative starting from an x E R(a) by reducing xi and altering certain 
other coordinates of x to keep the vector in R(a). Consider the sets A, of nodes p, 
for which there is a coherent path P,(p,) with sign product e, enteringpi, and having 
p, for its other endpoint. (For instance pi E A+ .) We have A_#  0 because pi 
cannot be a source. In addition, A+ nA- = 0. To prove thls we first show that any 
path P,(p,) is simple. If not, let p, be the first repeated node in it and let P' be the 
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initial segment of Pe(pk)up to the first repetition of p,. Then P '  is a circle, coherent 
except perhaps at p,, with a tail of length 2 0 extending to p,. If the circle is 
balanced, it is a cycle; if unbalanced, we have a half-cycle entering pi; but neither is 
permitted. So P,(p,) must be simple. Now if A+ n A _ #  0,  there are paths P +  (p,) 
and P_(pk).Let p, be the first point at which they diverge and p, the first following 
point of P, (p,) at which it meets P_(p,). Then the segments of P + ( p , )  and 
P-(p,) from p, to p, form a circle Q. If it is balanced, we can replace the segment of 
P-( p,) from p, to p, by the segment of P+( p,) and repeat the argument. Eventually 
we must find an unbalanced circle Q, which together with the common initial 
segment up to p, forms a half-cycle entering P,. But this is a contradiction. So A +  
and A- are disjoint. 

Now we take x E R(a) and modify it to z by setting 

x, - X ifp, E A +  , 
+ X ifp, E A_, 

ifp, G A +  U A _ ,  

where A 2 0. Let E, = + 1, -1, 0 in these respective cases. Consider a constraint 
Sz, + S'z, > 0 imposed by an edge e,,. It is satisfied by x; therefore it is satisfied by 
z unless SE, + S'E, > 0. If the latter holds, then (say) S = E,, which implies that the 
coherent path entering p, with endpoint p, can be extended to p,. Hence E, # 0, 
indeed E, = u('e,,)~, = -SS'E,. But that says SE, + S'E, = 0, so z satisfies the edge 
constraint. We conclude z E R(a). 

Since p, is an upward node, a ,  >> a, for all p, E A+ UA- besides p,. So if we let 
A -. co,C,a,z, is dominated by -Xu, -,-a.Taking X sufficiently large, we get 
z E R(a) for which C,a,z, < 0. Thus if a has an upward node without an entering 
half-cycle, it does not have the geometry we want. 

The remaining task is to prove that, if a does have a half-cycle entering each 
upward node, then C,a,x, > 0 for all x E R(a). If there is a directed path in 2 from 
-p, to +p,, then x, = x: > 0 for all x E R(a). This is the case if p, has an entering 
half-cycle. If on the other hand p, has no such half-cycle, it is not an upward node. 
So there is a higher upward nodepftJ,at the end of a path enteringp,. Now consider 
a node p, with an entering half-cycle. For all j Ef -'(i) we have a, << a,. We also 
have x, > 0 and x, > +-x, (the sign depending on the path from p, enteringp,) for all 
x E R(a). SO 

Because a; >> a, for all j < i, the bracketed expression is positive. We conclude that 
Ciaix,> 0 for x E R(a). 

NOTE.The basic results here date from 1975 and were announced in [13] and [27]. 
For the delay in preparing this article the authors apologize to their readers and to 
each other. 
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