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Abstract

Given a graph I = (V,E), ∅ 6= D ⊆ V, and an arbitrary nonempty set X,
an injective function f : V → 2X \ {∅} is an interference of D with respect
to I, if for every vertex u ∈ V \D there exists a neighbor v ∈ D such that
f(u) ∩ f(v) 6= ∅. We initiate a study of interference in graphs. We study
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2 Interference in Graphs

special cases of the difficult problem of finding a smallest possible set X, and
we decide when, given a graph G = (V,E(G)) (resp., its line graph L(G) )
the open neighborhood function NG : V → 2V (resp., NL(G) : E → 2E ) or
its complementary function is an interference with respect to the complete
graph I = Kn.
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line graph, distance-pattern distinguishing set.

1 Interference of subsets of vertices in a graph

For terminology and notation in graph theory, we refer the reader to F. Harary [6].
The graphs considered in this paper are finite and simple.

We are interested in injective labelings of the vertices of a graph by sets (that is,
injective ‘vertex set-valuations’, or ‘set-labelings’; see [1]) of a new kind, such that
the sets labeling a certain subset of the vertices interfere with those of all other
vertices, in the sense captured by the following definition.

Definition 1.1. Let there be given a graph I = (V,E(I)) (the interference graph).
An injective function f : V → 2X \ {∅}, where X is an arbitrary nonempty set
(the ground set), is an interference of a set ∅ 6= D ⊆ V with respect to I, if for
every vertex u ∈ V \D there exists a vertex v ∈ D ∩N(u) such that

f(u) ∩ f(v) 6= ∅.

Here N(u) denotes, as usual, the (open) neighborhood of u, i.e., N(u) := {v ∈ V :
v is adjacent to u}.

Given a family P of nonempty subsets of V, we say f is a P -interference with
respect to I if it is an interference for every set D ∈ P. �

We apply the name ‘interference’ because we think of overlapping sets f(u) and
f(v) as ‘interfering’ with each other if u and v are adjacent in I.

We are interested in three main problems. First, we want a common interference
function of every dominating set of vertices in the interference graph I; we call
this a ‘universal interference with respect to I. ’ It is easy to show that such a
function exists. Next, we want to know the smallest size of a ground set for which
that is possible. Third, we study two kinds of example; we want to know when
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the labeling N that assigns to a vertex its neighborhood in a graph G—we call
this ‘neighborhood interference’—or the labeling N̄ that assigns the complement of
the neighborhood is an interference, if the interference graph is the complete graph,
I = Kn. We also ask the same question for the line graph L(G). We treat a number
of illustrative examples. We conclude with a brief look at a more abstract example,
where the ground set X is a set of numbers associated with distance in a graph G,
again in the special case where I is a complete graph; and with open problems.

2 Basic properties of interference

A nonempty set D of vertices in a graph I is called a dominating set of I if every
vertex in I is either in D or adjacent to a vertex in D [7]. We write n for the
order of I.

Lemma 2.1. Given an interference graph I, a set D ⊆ V has an interference only
if it is a dominating set of I.

Proof. If D is not a dominating set, there is a vertex u ∈ V \ D which has no
neighbor in D. Therefore, no vertex v ∈ D can satisfy v ∈ D ∩ N(u). It follows
that D cannot have an interference.

Lemma 2.1 demonstrates that we cannot have an interference of a non-dominating
set. The most we can expect of a function f : V → 2V \ {∅} is that it be an
interference of every dominating set.

Definition 2.2. We say a function f : V → 2V \ {∅} is universal with respect to I
if it is an interference of every dominating subset of vertices in I. If f is universal
with respect to the complete graph on vertex set V, that is, if f(u) ∩ f(v) 6= ∅ for
any pair u, v of distinct vertices, we simply call it a complete interference (for V ).
�

Theorem 2.3. Every interference graph I possesses a universal interference. In
particular, a complete interference for V is a universal interference for every inter-
ference graph on vertex set V.

Proof. The second statement is obvious. For the first, we present a complete in-
terference for V such that |X| = 1 + dlog2 ne. In any such X, choose an element
x0 ∈ X and define f : V → 2X \ {∅} by letting f(v), v ∈ V, be any n subsets
of X that contain x0. Then the sets f(v), v ∈ V, form an intersecting family and
therefore define a complete interference.
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Theorem 2.4. Given an interference graph I, a set D ⊆ V has an interference if
and only if it is a dominating set of I.

Proof. If D is a dominating set, a complete interference for V is an interference of
D with respect to any interference graph I. For the other direction we have Lemma
2.1.

Proposition 2.5. Given an interference graph I, an injective function f : V →
2X\{∅} is a universal interference with respect to I if and only if it is an interference
of every minimal dominating set in I.

Proof. Assume the latter. Let D be any dominating set in I and choose a minimal
D′ ⊆ D. Then for every u /∈ D, there is v ∈ D′ ⊆ D such that f(u)∩f(v) 6= ∅.

We note that in the complete graph, a minimal dominating set is a singleton set
{v}, v ∈ V.

3 Interference index

We proved in Theorem 2.4 that a class P ⊆ 2X \{∅} has an interference if and only
if it contains a dominating set in I. It is natural to ask, given I and P, for the size
of a smallest ground set that admits an interference of P with respect to I. We call
this size the interference index of P with respect to I, written i(I,P). (When P

contains a single set D, we write i(I,D). ) The universal interference index with
respect to I, denoted by i(I), is the interference index of P = 2V \ {∅}.

We define n := |V |. A notation that is useful is, for D ⊆ V, to define f(D) :=⋃
u∈D f(v). The condition that f(u)∩ f(v) 6= ∅ for some v ∈ D can be restated as

f(u) ∩ f(D) 6= ∅.

Lemma 3.1. For any interference graph I and for any interference f : V →
2X \ {∅}, we have |X| ≥ dlog2(n+ 1)e.

Proof. The set X has a total of 2|X| − 1 nonempty subsets. Since f is injective,
n ≤ 2|X|−1; therefore 2|X| ≥ n+1, hence |X| ≥ log2(n+1). |X| being an integer,
|X| ≥ dlog2(n+ 1)e.

Theorem 3.2. For any interference graph I with |V | = n and for any class P of
nonempty subsets of V that contains a dominating set of I, the interference index
satisfies dlog2(n+ 1)e ≤ i(I,P) ≤ dlog2(2n)e.

The universal interference index with respect to I = Kn is i(Kn) = dlog2(2n)e.
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Proof. Lemma 3.1 implies the lower bound in the first part.

We recall from extremal set theory (see [2]) that an intersecting family of sets is
a family of sets, no two of which have empty intersection, and that the largest size
of an intersecting family of subsets of a k -element set is 2k−1. For the universal
interference index when I = Kn, let u, v ∈ V and u 6= v. Because {v} ∈ P, we
must have f(u) ∩ f(v) 6= ∅. That is, f is a universal interference with respect to
I if and only if the family {f(u) : u ∈ V } is an intersecting family. The largest
size of an intersecting family, 2|X|−1, must be at least n; that is, n ≤ 2|X|−1, or
|X| ≥ 1 + log2 n. As |X| is an integer, |X| ≥ 1 + dlog2 ne.

The construction of Theorem 2.3 defines a complete interference with |X| =
dlog2 ne+1. Thus, i(Kn) = dlog2 ne+1. The existence of this complete interference
implies the upper bound in the first part.

The bounds of Theorem 3.2 show that the value of an interference index has the
form dlog2(n + k)e where 1 ≤ k ≤ n. In any one example there may be several
possible values of k, but for a family of examples we hope to find a single value of
k that gives the index for the entire family. The next few results illustrate this.

Corollary 3.3. Suppose n = 2m. Then, for any interference graph I with |V | = n
and for any class P of nonempty subsets of V that contains a dominating set of I,
i(I,P) = m+ 1.

Proposition 3.4. Given an interference graph I, let D ⊆ V be nonempty and
such that every vertex in D is adjacent in I to every vertex in V \ D. Then the
interference index of D with respect to I is i(I,D) = dlog2(n+ 1)e.

Proof. The requirement on an interference for D is that f(w) ∩ f(D) 6= ∅ for all
w /∈ D. It does not matter how the elements of f(D) are distributed among the
vertices in D. Thus, we may ignore X \ f(D) and simply assume f(D) = X; then
the requirement is that the s sets f(w), w /∈ D, are nonempty. For instance, we
may choose u0 ∈ D, set f(u0) = X, and let all other sets f(v) be distinct nonempty
proper subsets of X. Thus, we find that X in our construction need only satisfy
|X| ≥ dlog2(n+1)e, implying that i(I,D) ≤ dlog2(n+1)e. The opposite inequality
is from Theorem 3.2.

For instance, i(I, {u}) = dlog2(n+ 1)e for a dominating vertex u in the interfer-
ence graph.

The proof of Theorem 3.2 shows that interference index leads to extremal set
theory. Here is another example. Let br(m) be the largest number s for which
there exist r + s distinct subsets of an m -element set X, such that every one of
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the first r subsets intersects every one of the last s subsets. (The values of br(m)
are not known, except for small values of r. )

Theorem 3.5. For the interference graph I = Kr,s, of order n = s + r, with
r ≤ s, the universal interference index satisfies i(Kr,s) ≤ dlog2(n + r)e. Equality
holds when r ≤ 4. In general, i(Kr,s) = the smallest m such that s ≤ br(m).

If the vertex bipartition of Kr,s is V = U ∪W, then i(Kr,s, U) = i(Kr,s,W ) =
dlog2(n+1)e. Furthermore, the interference index of any class P that contains every
pair {u,w}, u ∈ U and w ∈ W, is i(Kr,s,P) = i(Kr,s).

Proof. Let the two sides of the vertex set be U and W with |U | = r and |W | = s.
The requirements for an interference f are that f(u) ∩ f(W ) 6= ∅, u ∈ U, and
f(w) ∩ f(U) 6= ∅, w ∈ W.

We prove the general inequality by describing an interference with |X| = dlog2(n+
r)e. Choose f(U) ⊂ 2X to be an order filter; that is, if Y ∈ f(U), then every
Z ⊆ X such that Y ⊂ Z is also in f(U). In particular, then X ∈ f(U). Let
f(U) := {X \Y : Y ∈ f(U)}. For w ∈ W, we must have f(w)∩ f(u) 6= ∅ for every
u ∈ U. Equivalently, f(w) /∈ f(U). Since f(w) /∈ f(U) by injectivity of f, we may
choose f(W ) ⊆ 2X \

(
f(U)∪ f(U)

)
, which is a class of size not less than 2|X|− 2r.

Therefore, if s ≤ 2|X|−2r, an interference exists with ground set X. This sufficient
condition can be rewritten as 2|X| ≥ n + r or, equivalently, |X| ≥ dlog2(n + r)e.
The minimum possible |X| therefore satisfies i(Kr,s) ≤ dlog2(n+ r)e.

The equality for r = 1 follows from Theorem 3.2.

Now let r ≥ 2. The only minimal dominating sets in Kr,s other than U, W
are the pairs {u,w} with u ∈ U and w ∈ W. If f is an interference for all pairs
{u,w}, it follows that f(u) ∩ f(W ) 6= ∅, u ∈ U, and f(w) ∩ f(U) 6= ∅, w ∈ W ;
hence, f is a universal interference with respect to I = Kr,s. We deduce that
i(Kr,s,P) = i(Kr,s) for any class P as described in the theorem.

To prove that i(Kr,s) = the smallest m such that s ≤ br(m), consider a
universal interference f with respect to Kr,s having ground set X of size m.
Note that the dominating set {u1, w1}, u1 ∈ U and w1 ∈ W, implies that f
must satisfy f(u) ∩ f(w1) 6= ∅ for all u ∈ U \ {u1} and f(u1) ∩ f(w) 6= ∅
for all w ∈ W \ {w1}. Since r, s ≥ 2, we conclude that all intersections
f(u) ∩ f(w) are nonempty. Let U = {u1, . . . , ur} and W = {w1, . . . , ws}. The
sets f(u1), . . . , f(ur), f(w1), . . . , f(ws) are r + s sets as in the definition of br(m).
Hence, s ≤ br(m). Taking the smallest possible X, that is with m = i(Kr,s), we
see that i(Kr,s) must satisfy s ≤ br(i(Kr,s)). Conversely, if s ≤ br(m) and we have
sets X1, . . . , Xr, Xr+1, . . . , Xr+s ⊆ X as in the definition, then defining f(ui) = Xi

and f(wj) = Xr+j gives an interference with ground set X of size m, whence
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i(Kr,s) ≤ m for any m such that s ≤ br(m). It follows that i(Kr,s) = the smallest
m such that s ≤ br(m).

For r = 2 let f(U) =
{
X,X \ {a}

}
, where a is any one element of X. The

sets f(w) should be any sets Y ⊆ X, different from X and X \ {a}, that are
not contained in {a}. There are 2m − 4 such sets; therefore, s ≤ 2m − 4 and
n ≤ 2m − 2. We deduce that |X| ≥ log2(n+ 2) and that |X| = dlog2(n+ 2)e does
give a universal interference. Thus, i(K2,s) = dlog2(n+ 2)e.

The proof of equality for r = 3, 4 is more complicated and is omitted.

For the values of i(Kr,s, U) and i(Kr,s,W ) we apply Proposition 3.4.

4 Neighborhood-based interference

If we have a graph G = (V,E) on the same vertex set V as the interference graph I,
then the fact that NG(u) is defined for every u ∈ V makes NG a function V → 2V .
In this section we consider the interference character of the neighborhood function
N defined by N(u) := NG(u), and the complemented neighborhood function N̄
defined by N̄(u) := N̄G(u) := V \NG(u). We assume throughout this section that
the interference graph I is the complete graph Kn; thus, a universal interference
with respect to I means a complete interference.

We write 〈X〉G for the induced subgraph of G on X ⊆ V. We call G point-
determining if N is injective (cf. [8]). The distance between u and v, d(u, v), is
the length of a shortest path between them in G; if there is no such path d(u, v) =
∞. The distance from u to a nonempty set D ⊆ V (G) is defined as d(u,D) =
minv∈D d(u, v).

Lemma 4.1. Each of the functions N and N̄ is injective if and only if the graph
G on which they are defined is point-determining.

Proof. It is clear that N is injective if and only if G is point-determining. For
u 6= v, N(u) = N(v) ⇔ V \ N(u) = V \ N(v) ⇔ N̄(u) = N̄(v). Therefore, N is
injective if and only if N̄ is injective.

Lemma 4.2. The empty set is not a value of N if and only if G has no isolated
vertices. It is never a value of N̄ .

4.1 Neighborhood interference

In this section we let D be a nonempty subset of V and we characterize the graphs
G such that N is an interference of D.
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We define N2(u) := {w ∈ V : d(u,w) = 2}.

Theorem 4.3. Let G be a graph and ∅ 6= D ⊆ V. The neighborhood function N
is an interference of D if and only if G is point-determining and has no isolated
vertices and, for every u ∈ V \D,

(a) d(u,D) ≤ 2 and

(b) if N2(u)∩D = ∅, then there exists v ∈ D ∩N(u) such that u, v are contained
in a triangle; equivalently, not all members of D ∩ N(u) are isolated in the
induced subgraph 〈N(u)〉G.

Proof. If d(u,D) > 2, then for every v ∈ D, N(u) and N(v) do not overlap; thus
N is not an interference. Assume now that d(u,D) ≤ 2 for every u /∈ D.

If there is v ∈ D such that d(u, v) = 2, then N(u) ∩N(v) is nonempty.

If N2(u) ∩D = ∅, then D ∩N(u) 6= ∅. For N to be an interference there must
exist v ∈ D such that N(v) ∩ N(u) is nonempty. Thus d(u, v) ≤ 2 and since
nothing in D has distance 2 from u, v ∈ N(u).

Now let v ∈ D ∩ N(u). If v is not isolated in 〈N(u)〉G, there is an edge vw ∈
E(〈N(u)〉G) and w ∈ N(u) ∩ N(v), so the overlap requirement on u is satisfied.
If every v is isolated, then N(v) ∩ N(u) is empty for every v, thus, the overlap
requirement on u is not satisfied, and N is not an interference.

A vertex v ∈ N(u) is not isolated in 〈N(u)〉G if and only if u and v have a
common neighbor; equivalently, the edge uv lies in a triangle.

Corollary 4.4. Let v ∈ V (G). The neighborhood function N is an interference of
{v} if and only if G is point-determining, |V | ≥ 2, d(u, v) ≤ 2 for every u ∈ V,
and 〈N(v)〉G has no isolated vertices.

Proof. The overlap condition from Theorem 4.3 is that d(u, v) ≤ 2 for every u ∈
V \ v and, if d(u, v) 6= 2, then v is not isolated in 〈N(u)〉G. The latter condition
is that, if u ∈ N(v), then u and v have a common neighbor; that is, u is not
isolated in 〈N(v)〉G.

Corollary 4.5. The neighborhood function N is a complete interference if and only
if G is point-determining, |V | ≥ 2, G has diameter at most 2, and every edge
belongs to a triangle.

Proof. By Proposition 2.5, Corollary 4.4 must apply to every v ∈ V. The condition
of that corollary is that if u, v are neighbors, then there is a vertex adjacent to
both.
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Corollary 4.6. Assume G is connected, let v ∈ V, and let D = V \ {v}. Then N
is an interference of D if and only if G is point-determining and has no isolated
vertices and v is adjacent to a vertex having degree at least two.

Proof. For a point-determining graph G without isolated vertices, N is an inter-
ference of D = V \ {v}, if and only if N(v) ∩ N(D) 6= ∅. That is, if and only if
N(v) ∩ N(u) 6= ∅ for some u ∈ V \ {v}. That is, if and only if there is a vertex
w adjacent to both u and v for some u ∈ V \ {v}. That is, if and only if v is
adjacent to a vertex having degree at least two.

The classes of graphs in the following examples illustrate Theorem 4.3.

Example 4.7 (Wheel). The wheel Wn, n ≥ 3, is the graph obtained by taking a
cycle Cn and adjoining a vertex (the center) adjacent to all cycle vertices. For the
wheel graph, N is a complete interference.

Proof. Since n ≥ 3, every edge belongs to a triangle, and Wn has diameter 2. By
Corollary 4.5, N is a complete interference.

Example 4.8 (Windmill). The windmill graph D
(m)
n , n ≥ 3, is the graph obtained

by taking m copies of the complete graph Kn, all the copies sharing exactly one
vertex in common. For the windmill, N is a complete interference.

Proof. Since n ≥ 3, every edge of D
(m)
n belongs to a triangle and D

(m)
n has diameter

2. By Corollary 4.5, N is a complete interference.

Example 4.9 (Husimi Trees of Diameter Two). In particular, the windmill Dm
3 of

Example 4.8 is well known as the ‘Friendship Graph’. In general, the argument in
the proof of Example 4.8 can be extended to show that for the Husimi tree F (m) of
diameter two, which consists of m ≥ 2 complete blocks of arbitrary orders sharing
exactly one common cut-vertex, N is a complete interference.

Example 4.10 (Star Polygon). A star n -gon is a graph obtained by replacing each
edge of the cycle Cn, n ≥ 3, by a triangle (see [5]). For the star n -gon, N is an
interference of V (G) \ V (Cn) and of V (Cn).

Proof. The star n -gon is point-determining and has no isolated vertices. For every
u ∈ V, d(u,D) ≤ 1, where D = V (Cn) or V (G)\V (Cn). Also, for every u ∈ V \D,
N2(u)∩D 6= ∅. Hence by Theorem 4.3, N is an interference of V (G) \ V (Cn) and
of V (Cn).
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Example 4.11 (Helm and Crown). The helm Hn is the graph obtained from the
wheel Wn by attaching a pendant edge at each vertex of the n -cycle. The crown
Cn ◦K1 is the graph obtained from a cycle Cn by attaching a pendant edge to each
vertex of the cycle.

Let the graph H be any of the graphs Hn or Cn◦K1. Then N is an interference
of V (Cn) ⊂ V (H) as well as of the set of pendant vertices of H.

Proof. The graph H is point-determining and has no isolated vertices. Let D =
V (Cn) or the set of pendant vertices of H. For every u ∈ V \D, d(u,D) ≤ 2.

For Hn, if N2(u)∩D = ∅ then D = Cn and u is the center of the wheel. Then
for every v ∈ D, uv is contained in a triangle. For Cn ◦K1, N

2(u) ∩D 6= ∅.
Hence by Theorem 4.3, N is an interference of V (Cn) as well as of the set of

pendant vertices of H.

A graph is said to be 2 -path-complete if every two distinct vertices are joined by
a path of length two. For instance, for any graph H, the join Kr + H, r ≥ 2, is
2 -path complete.

Example 4.12 ( 2 -Path-Complete Graphs). The neighborhood function of every
2 -path-complete graph is a complete interference.

Proof. Assume G is 2 -path complete. Every pair of distinct vertices are joined
by a 2 -path and hence, in particular, for any edge uv ∈ E(G) there exists w ∈
N(u) ∩N(v). It follows that N is a complete interference.

4.2 Complemented neighborhood interference

Now we discuss the interference properties of the complemented neighborhood func-
tion N̄ .

Theorem 4.13. Let G be a graph and let ∅ 6= D ⊆ V. Then N̄ is an interference
of D if and only if G is point-determining and every vertex u /∈ D that is adjacent
to all vertices in D has a nonneighbor that is not adjacent to all vertices in D
(equivalently, u ∈

[⋂
v∈DN(v)

]
\D implies N̄(u) 6⊆

⋂
v∈DN(v) ).

Proof. The intersection N̄(u)∩ N̄(v) = V \ [N(u)∪N(v)], so it is nonempty if and
only if N(u) ∪N(v) ⊂ V.

If uv /∈ E(G) (and u 6= v ), then N(u)∪N(v) ⊆ V \ {u, v} so the nonemptiness
condition is satisfied. If uv ∈ E(G), then N(u)∪N(v) = V if and only if u, v are
the centers of a spanning double star subgraph, or in other words, d(x, {u, v}) ≤ 1
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for every x ∈ V, or in still other words, N({u, v}) = V, or yet again, {u, v} is a
dominating set for G.

Thus, in order that N satisfy the overlap condition, either D 6⊆ N(u), or D ⊆
N(u) and there is v ∈ D that is not a dominating vertex of G \ [N(u) \ v]. In
other words, for any vertex u /∈ D, either D 6⊆ N(u) or else G does not contain
the complete bipartite graph KD,V \N(u) with bipartition {D, V \N(u)}.

The statement D ⊆ N(u) is equivalent to the statement that u ∈
⋂

v∈DN(v).
Thus, the overlap condition is equivalent to the property that, for every u ∈[⋂

v∈DN(v)
]
\ D, G does not contain KD,V \N(u). The latter property can be re-

stated as that V \N(u) 6⊆
⋂

v∈DN(v).

Corollary 4.14. Given G and v ∈ V, N̄ is an interference of {v} if and only if
G is point-determining and, for every u ∈ N(v), we have N(u) ∪N(v) 6= V.

Proof. The property that N̄(u) 6⊆ N(v) is equivalent to N(u) ∪N(v) 6= V.

Corollary 4.15. The neighborhood function N̄ is a complete interference if and
only if G is point-determining and, for every edge uv, N(u) ∪N(v) 6= V.

Proof. By Proposition 2.5, N̄ is universal if and only if it is an interference of every
singleton vertex set. The result follows by Corollary 4.14.

The following example illustrates Theorem 4.13.

Example 4.16 (Cycle Graph). The neighborhood function N̄ is a complete inter-
ference of Cn if and only if n ≥ 5.

Proof. The cycle Cn is point-determining for n = 3 and every n ≥ 5, but not for
n = 4. If n ≥ 5, N(u) ∪ N(v) 6= V for every edge uv because |N(u) ∪ N(v)| ≤
4 < n. If n < 5 and uv is an edge, then N(u) ∪ N(v) = V. Hence by Corollary
4.15, the result follows.

Corollary 4.17. Suppose G is point-determining. Then N̄ is a complete interfer-
ence if

1. G is regular of degree k and n > 2k, or

2. the sum of any two degrees in G is < n, or

3. the sum of degrees of any two vertices at distance 2 is ≤ n and the sum of
degrees of any two other vertices is < n.
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The conditions are listed in order of decreasing simplicity and increasing general-
ity.

Proof. Clearly, (1) ⇒ (2) ⇒ (3).

Suppose (3) holds. Then |N(u) ∪ N(v)| ≤ d(u) + d(v) < n if d(u, v) 6= 2. If
d(u, v) = 2, then |N(u) ∪ N(v)| ≤ d(u) + d(v) − 1 ≤ n, since u and v have a
common neighbor. In either case, the union of neighborhoods is smaller than V.

As examples of Corollary 4.17 (1), N̄ is a complete interference if G = Cn where
n ≥ 5 or if G is cubic of order n > 6.

4.3 Line graphs

In this section, we deal with graphs G having no isolated vertices. We use the
notation L(G) for the line graph of G, Mk for a matching of k edges, and Pn for
a path of order n.

The notations NL and N̄L denote the neighborhood and complemented neigh-
borhood functions for L(G), i.e., NL(e) := NL(G)(e) and N̄L(e) := E \ NL(G)(e)
for e ∈ E.

Lemma 4.18. For a graph G, NL, and also N̄L, is injective if and only if G has
at most one isolated edge and no component G′ of G satisfies P4 ⊆ G′ ⊆ K4.

Proof. Assume that G is connected and NL is not injective. Then there exist
edges e1 and e2 such that NL(e1) = NL(e2). Then e1 and e2 are not adjacent.
For, if e1 and e2 are adjacent, e1 ∈ NL(e2) and e1 6∈ NL(e1), a contradiction.
|NL(e1)| = |NL(e2)| is the number of edges in G adjacent to both e1 and e2.
Hence, 0 ≤ |NL(e1)| = |NL(e2)| ≤ 4. If |NL(e1)| = 0, G ∼= M2, which is not
connected. If |NL(e1)| = 1, G ∼= P4. If |NL(e1)| = 2, G ∼= C4 or K3 with a
pendant edge. If |NL(e1)| = 3, G ∼= K4 − e. If |NL(e1)| = 4, G ∼= K4. Hence
P4 ⊆ G ⊆ K4.

For the converse, let P4 ⊆ G ⊆ K4. Then for any two nonadjacent vertices e1
and e2 of L(G), NL(e1) = NL(e2). Therefore, NL is not injective.

If G is disconnected, then only the existence of two isolated edges or a component
G′ such that P4 ⊆ G′ ⊆ K4 can produce two edges with the same neighborhood.

The function N̄L is injective if and only if NL is injective. Therefore, N̄L is not
injective if and only if P4 ⊆ G ⊆ K4.
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Lemma 4.19. For a disconnected graph G, NL, and also N̄L, is injective in L(G)
if and only if it is injective in the line graph of each component of G and no two
components of G are K2.

Proof. Suppose NL is injective on each component. Let G′ be the component that
contains edge e. Then NL(e) is contained in E(G′), which is disjoint from the
edge set of any other component. The only way for NL(e) to equal NL(f) is for
e, f to be in different components and have no neighboring edges, but then the two
components are single edges.

Theorem 4.3(b) simplifies for line graphs. Let dL(·, ·) be the distance function
in L(G), that is, the distance between edges or edge sets in G. Let dL(e) be the
degree in L(G), i.e., the degree of an edge in G, and let d(u) be the degree of a
vertex in G.

Theorem 4.20. Let G be a graph with nonempty edge set and let ∅ 6= D ⊆ E(G).
Then NL is an interference of D in L(G) if and only if no component G′ of G
is K2 or satisfies P4 ⊆ G′ ⊆ K4 and, for every e = uv ∈ E(G) \D, at least one
neighboring edge of e has a neighboring edge in D.

For instance, Theorem 4.20 applies if G is connected with order ≥ 5.

Proof. First, suppose NL is an interference of D. Then we may assume G is
connected (by Lemma 4.19), does not satisfy P4 ⊆ G ⊆ K4 (by Lemma 4.18), and
has order n ≥ 3, since if G = K2, NL(e) = ∅.

If G = K3 or K1,3, L(G) = K3 and NL is a complete interference by Corollary
4.5. Thus, we may assume G has order n ≥ 5.

By Theorem 4.3, NL is an interference of D if and only if, for every e = uv ∈
E(G) \ D, (a) dL(e,D) ≤ 2 and (b) if N2

L(e) ∩ D = ∅, there is an edge f ∈ D
such that e and f are contained in a triangle or a star in G. The conditions (a)
and (b) together are equivalent to stating that some neighboring edge of e has a
neighboring edge in D.

Now, suppose no component G′ of G is K2 or satisfies P4 ⊆ G′ ⊆ K4 and, for
every e = uv ∈ E(G)\D, at least one neighboring edge of e has a neighboring edge
in D. By Lemmas 4.18 and 4.19, NL is injective. By assumption, d(e,D) ≤ 2. If
no edge of D has distance 2 from e, then every such edge is a neighbor of e. Let
f be a neighbor of e that has a neighbor d ∈ D. Then d is a neighbor of e as well,
so d, e, f form a triangle in L(G). Hence, (a) and (b) of Theorem 4.3 are satisfied
and NL is an interference of D in the line graph.
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Corollary 4.21. For any graph G (without isolated vertices), NL is an interference
of {f} in L(G) if and only if G is connected and has at least two edges, G does
not satisfy P4 ⊆ G ⊆ K4, and every edge is a neighbor of a neighbor of f.

Proof. This follows by applying Theorem 4.20 to D = {f}. The assumption about
neighboring edges implies that G is connected and, by applying it to f itself, G
has at least one edge other than f.

Corollary 4.22. Let G be a connected graph of order at least 3. Then NL is a
complete interference for E(G) if and only if G does not satisfy P4 ⊆ G ⊆ K4,
L(G) has diameter at most 2, every pendant edge in G has an endpoint of degree
at least 3, and every edge in G with endpoints of degree w belongs to a triangle.

A more complete result would follow upon characterizing graphs whose line graphs
have diameter at most 2. An equivalent condition is that G has no induced 2 -edge
matching. A full characterization is an unsolved problem.

Proof. This follows by simplifying Corollary 4.5 applied to L(G). The assumptions
about pendant edges and triangles imply that G has no isolated edges.

Corollary 4.23. Let G be a connected graph of order n ≥ 5, and let ∅ 6= D ⊆
E(G). Then N̄L is an interference of D if, and only if, for every edge e /∈ D that
is adjacent to all edges in D, there exists an edge f, not adjacent to e, such that
D is not composed solely of edges with one end vertex in V (e) and the other in
V (f).

Proof. The first hypotheses ensure that N̄L is an interference of D if and only if,
for every edge e /∈ D that is adjacent to all edges in D, there is an edge f, not
adjacent to e, such that f is not adjacent to all edges in D. That is the statement
of the corollary.

Corollary 4.24. Let G be a connected graph of order n ≥ 5, and let ∅ 6= D ⊆ E(G)
consist of at least five edges. Then either N̄L is an interference of D, or there is
an edge e /∈ D that is adjacent to every other edge in G.

We want a criterion for when a general line graph L(G) has vertices e, f whose
neighborhood union is the entire vertex set, VL = E(G). This means that in G
every edge has a vertex in common with e or f. Deleting V ({e, f}) leaves an
independent set in G. Therefore:

Proposition 4.25. If G is a connected graph of order n whose independence num-
ber α(G) < n− 4, then N̄L is a complete interference for E(G).
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Proof. Since α(G) > 0, we have n ≥ 6; therefore by Lemma 4.18 N̄L is injective.
As explained before the statement, N̄L(e) ∪ N̄L(f) 6= E(G) for any two edges e, f.
Thus, N̄L is a complete interference.

Suppose G is k -regular where k > 1. The degree dL(e) = 2(k − 1), so by
Corollary 4.17 and Lemma 4.18, N̄L is a complete interference if nL = |V (L(G)| =
|E(G)| > 2 · 2(k − 1). We know nL = 1

2
nk, so we have the following result:

Corollary 4.26. Let G be a regular, connected graph of order n ≥ 8. Then E(G)
has the complete interference N̄L.

Proof. Connectedness implies k ≥ 2 and therefore L(G) has degree 2(k − 1) ≥ 2.
The inequality nL = 1

2
nk > 2 · 2(k− 1) has the solution n > 8(k− 1)/k, or n ≥ 8.

Since n > 4 and G is connected, by Lemma 4.18 L(G) is point-determining. Thus,
by Corollary 4.17(1), N̄L is a complete interference.

5 Distance-pattern distinguishing sets

We continue to assume that the interference graph I is complete and that G is
another graph on vertex set V. Given an arbitrary nonempty subset M of vertices
in G, each vertex u is associated with the set fM(u) = {d(u, v) : v ∈ M}. The
function fM is called the M -distance pattern of G.

Definition 5.1 ([3, 4]). If, for a subset M of vertices in a graph G, fM is injective,
then the set M is called a distance-pattern distinguishing set (DPD-set in short) of
G. �

Lemma 5.2. For a graph G of order at least 2, the M -distance pattern fM is
not an interference of any set of cardinality one.

Proof. Let M = {v}. Assume that fM is an interference of the set M = {v}. Then
fM(u) = {d(u, v)} and therefore if u /∈M exists, fM(u)∩fM(v) = ∅, contradicting
the definition of interference.

For D ⊆ V, define d(u,D) = minv∈D d(u, v) for each vertex u ∈ V ; this is the
distance from u to D.

Theorem 5.3. For a path Pn = (v1, v2, . . . , vn), n ≥ 4, the M -distance pattern
is an interference of the set M = {v1, v2, v4, v7, . . . , v1+r(r−1)/2}, where r = |M | =⌈
1+
√
8n−7
2

⌉
.
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Proof. The set M is a DPD-set of Pn (see [4]). The distance between the (j− 1)th

and jth elements of M is j − 1. Therefore, fM(M) = {1, 2, 3, . . . , r − 1}. For
any w /∈ M, d(w,M) ≤ r − 1, hence, fM(w) ∩ fM(M) 6= ∅. Therefore, fM is an

interference of M. Also, 1 + r(r−1)
2
≤ n, which implies r =

⌈
1+
√
8n−7
2

⌉
.

6 Conclusion

We conclude with open questions about interference.

6.1 Interference index

As we mentioned in Section 3, although the interference index, or universal inter-
ference index, is always of the form dlog2(n + r)e for 1 ≤ r ≤ n, we do not know
the appropriate value of r for many families of graphs, including several examples
in Section 4. We have partial results for complete bipartite graphs, which depend
on solving a new problem of extremal set theory. It seems likely that the behavior
of complete multipartite graphs is similar; that is, partial results can be obtained
but exact answers depend on finding new results in extremal set theory. It would
be interesting to see what these problems are and try to answer them. They appear
to be difficult.

6.2 Neighborhood-based interference

We somewhat arbitrarily chose to study neighborhood-based interference with re-
spect only to the complete interference graph, I = Kn. How do the interference
properties of N and N̄ change if we choose G = I ? Or, if we choose other inter-
ference graphs? Or, if we take specific graphs like the n -cube Qn, the rectangular
lattice grid Pm × Pn, or any one of the polyhedral graphs for interference graphs?
Or, if we take only a planar (or, outerplanar) graph for an interference graph?

6.3 Other interference functions

We found that the neighborhood function and its complement have interesting in-
terference properties. What other natural graph functions are similarly interesting?
For instance, Steven Hedetniemi mentioned (in private correspondence) that the
closed neighborhood function f(u) := NG[u] := NG(u)∪{u} is a universal interfer-
ence with respect to the interference graph I = G. What happens if the interference
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graph is complete?
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