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Frame Matroids and Biased Graphs

THOMAS ZASLAVSKY

A frame matroid is any submatroid of a matroid in which cach point belongs to a line
spanned by a fixed basis. A biased graph is a graph with certain polygons called balanced, no
theta graph containing exactly two balanced polygons. We prove thal certain matroids, called
bias matroids, of biased graphs are identical to the finitary frame matroids. As an application
we deduce two simple characterizations of frame matroids and some facts about planar
forbidden minors for bias matroids.

A biased graph 2 =(V, E, @) is a graph (V, E) together with a linear subclass % of
its polygons: a subclass such that. if in a theta subgraph two polygons are in @, so is the
third. Associated to a biased graph is a matroid G(£2). its bias matroid, which is the
natural common generalization of the polygon matroid G(I') of a graph I (this being
the case in which 9 contains all polygons). the bicircular matroid (9 is empty) [4, 6].
the even-cycle matroid [1], Dowling’s geometries [2], and the matroids of networks
with gains (see, for instance. [5]). Thus it is of considerable interest to know which
matroids have the form G(£2). One answer would be a characterization by forbidden
minors (non-bias matroids the proper minors of which are bias matroids), since any
minor of a bias matroid is a bias matroid. Here we take a step in that direction by
proving that the bias matroids of a biased graph are identical to the finitary frame
matroids, a finitary frame matroid being a submatroid of a finitary matroid M in which
there is a basis V such that every point of M belongs to |J{W:W <V and |W|<2},
where W is closure in M. (That every bias matroid is a frame is trivial. The interesting
point is that nothing can happen in a finitary frame but what is expressible by a biased
graph.) From this result we draw some fairly strong conclusions about planar forbidden
minors for bias matroids of biased graphs.

To define G(£2): simplifying slightly (but not essentially), we call a subgraph or edge
set of £2 balanced if each polygon n it belongs to 3B. Letting V(S) be the set of vertices
of edges e € §, where § = F, and b(§) the number of connected components of (V(8),
§) that are balanced, we have for the rank function in G(£2) the formula
rowaS) = IV($) — b(S).

The simplification is the neglect of half and loose edges, which in matroid theory are
equivalent to unbalanced and balanced loops. For this and other information about
biased graphs, we refer the reader to [8]. For matroid theory, we refer to [7]. We
reserve the term circuit for matroid circuits. The term frame is due to [3]. The
hypothesis of finitarity could doubtless be weakened at some cost in complexity (cf. [8.
Section I1.5)].

THeoreM 1. A finitary frame matroid is the bias matroid of a biased graph and
conversely.

Proor. We do not make the usual requirement that V and £ be disjoint. Instead,
we permit overlap (essentially following [3. Section 7}). A vertex which is an edge
should be thought of as an unbalanced loop {or equivalently a half edge) at itself. If
£2=(V, E, B) is a biased graph, we write £2'=(V, EUV, %)
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The casy part is that G(£2} is a finitary frame matroid. Look at G(£2") with basis V,
noting that it is finitary by {8, Theorem 11.2.1).

Now, let M be a finitary frame matroid with respect to a basis V = E(M), the point
set of M. We may assume that M is simple. The first task is to find the right biased
graph (2 We naturally take V(£2)=V and E(Q)=E(M) (shortened to E), the
endpoints of e € E\V being the members of V(e) = C,\e, where C, is the fundamental
circuit of e with respect to V. For % we take the class of polygons C in the graph (V, E)
that are dependent in M. Hence we have a biased graph if the theta-graph condition is
satisfied. We need to prove that it is and that G(£2) = M. Note that any submatroid or
contraction of a bias matroid is a bias matroid.

We say that S E is M-balanced if SNV =8. Set by(S) equal to the number of
connected components of the graph (V(S), §) that are M-balanced. It will turn out that
M-balance is the same as balance, and that will suffice to prove the theorem. Observe
that, for W = V, W is the sct of edges induced by W.

Lemma 1. If S is a connecied subset of E and v € V(5), then SUv = V(5).

Proor. The proof is obvious, |

LemMma 2. For SCE, ry(8)=|V(8) — bu(S)

Proor. Let (V(S), §) have M-balanced components (B, §)),..., (B, S) and
M-unbalanced ones (B, §Y),..., (B;.5;). By Lemma 1, r($)={B,/—1 and
r(87) =|8]|. Therefore r(S) =2, r(5) + 2 r(5)) =V (8)| — k.

On the other hand, let v; e V(S}) and W={v,,...,v,}. Then SUW=V(S5), so
r(SUW)=|V(S5). Hence r(8)=|V(S) — r(W). But r(W)=k. |

We regard a forest as an edge set (contained in E\V'), not as a subgraph.
LEMMmA 3. A forest of 2 is independent in M.

Proor. If Fis a finite forest and W consists of one vertex from each tree of F, then
FUW=V(F) by Lemma 1. Consequently, r(F) = |V(F) — |W|=|F]. |

Lemma 4. A polygon Cin 82 is either independent, M-unbalanced and unbalanced,
or a circuit, M-balanced and balanced.

Proor. The former case applies if C = V(C). Otherwise. C N V(C) = by Lemma
1. Then C is dependent because r(C) <{|V(C)|. Any proper subset is a forest, and thus
is independent. |

LeEMMA 5. An edge set is M-balanced iff it is balanced.

ProoF. By Lemma 4, an M-balanced set is balanced.

Let § be balanced. but suppose that there is a vertex v € SN V. Then there is a
circuit D €8 Uv such that ve D. Let B=D\w B cannot contain an unbalanced
polygon because B < S, nor a balanced polygon because that would be a circuit (by
Lemma 4). Thus B is a forest. Let B, ..., B; be its trees.

Since v € B, v lies in some V(B,), say. V(B,). It follows that the components of the
graph (V{(D), D) have edge sets B, Uv, B,, ..., B,. Of these, the first is certainly not
M-balanced, so by Lemma 2 r(D)={V(D) — by{D)>|V(D)| — k. On the other hand,
H(BY=|B|=|V(B) — %, since B is a forest. But V(D)= V(B) and r{D)=r{B). This
yields a contradiction. So no D c¢an exist. |

Lemma 6. 9B is a linear subclass.

Proor. Consider a theta graph €, U C,, where C, and €, are balanced polygons.
Let C; be the third polygon in C, U C,. Take e, e C\C,; and e, € C,\C,. The set
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T=C,UC\e,, e} is a tree, and hence independent by Lemma 3, and T=C, U C,
because C, and C, are circuits by Lemma 4. But T is M-balanced, and hence so is T,
and then by Lemma 5 T is balanced. Consequently C5 is balanced. ]

We now have everything that we need to prove the theorem. £2is a biased graph, so
M and G(£2) are finitary matroids on the same set with the same rank function,
r(5)=|V(8)| — b(S) by Lemma 5. Therefore they are the same. O

Two simple characterizations of frame matroids are corollaries of the graphical
representation. Here are the necessary definitions. A finitary basic marroid (M, V) is a
matroid M together with a finitary matroid M UV, of which V is a basis. (V may
overlap with E(M).) For § = E(M) we let

V(S)=SUlU{Cere e S\V],

which is the smallest subset of V the closure of which contains S. We call § basically
connected if § is contained in one matroid component of S U V. We let by, +(S) be the
number of matroid components T of SUV(S) for which SN TNV = Evidently,
biavy= by when (M, V) is a frame.

CororLLARY 1. Given a finitary basic matroid (M, V'), the following statemenis are
equivalent:
(i} M is a frame matroid with respect 1o the basis V.
(ii) For every basically connected set S € E(M), § NV is empty or spans §.
(iti) For every finite S S E(M), ry(S) = [V(S) — biarvi(S).

Proor. That (i) = (ii}, (iii} follows from Theorem 1, Lemma 5 (whence b, = by),
and a few simple observations that we leave to the reader.

Ta prove the inverse implications we assume that M is not a frame with respect to V.
Choose a point ¢ for which |V{e) > 2.

To disprove (ii) take S={e}. Then b \(S5)=1, so [V(S)—bmv(S)=2>
ru(8) =1, in contradiction to (ii).

To disprove (iii) take S ={e, v}, where v e V(e). S is obviously basically connected.
If there were w e (S N V)\{v}, then {v, w} would contain e, so V(e) < {v, w}, contrary
to assumption. Therefore § N V = {v}, contradicting (iii). O

Theorem 1 makes it easy in principle to find all the planar forbidden minors for bias
matroids, because a planar matroid is a frame iff it has a covering by three
non-concurrent lines (a frame cover). Although, unfortunately, there are too many
planar forbidden minors to be readily enumerated, we can still give a fairly strong
result.

Let A; denote a six-point matroid consisting of the vertices and midpeints of a
triangle. Let A, be A, together with a point lying on the line connecting one vertex to
the opposite midpoint. Let I, consist of A, and two points added in planar general
position, and let Il,, consist of A; with one more point in planar general position. By
I, ,; we mean any planar matroid which is the union of three concurrent lines of four,
four and three points each and which does not contain F, the Fano plane. IT,,, is
G (K,) with a point added in general position to cach of the four three-point lines. g,
consists of a triangle of four-point lines /,, /> and /5, with a tenth point z and the
non-vertex points x;, ¥; € /; forming lines x;zy;.,, the subscripts taken modulo 3.
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THEOREM 2. The planar matroids which are forbidden minors for the class of bias
mairoids of biased graphs are the seven-point planes U, , and F,, the eight-point planes
Iy, and Iy, and other planar matroids of nine and ten points, such as several matroids
of type Il 4 5 and I, and Iy,

Proor. First we find the forbidden minors for the planar matroids which can be
covered by two lines.

LEMMA 7. A planar matroid can be covered by two lines iff it does not contain any of
U3'5, G(K4) and Af,.

Proor. A minimal two-line-uncoverable planar matroid N has at least five points.
The complement of any line f must be a non-collinear set. Choose / to have maximum
length and take a basis S of its complement. If N2 U, 5, the three lines determined by
S must cover { or all but one point of /. Then N 2 G(K,) or 4, respectively. ]

A long line is a line of length four or more; a trivial line has only two points. In a
matroid which has a three-line cover, every long line must belong to the cover.

Lemma 8. For a planar matroid M which can be covered by three lines to have no
frame cover, it is necessary and sufficient that M contains F; or a I1, , ».

Proor. Let M be covered by three concurrent lings. If one is trivial, M has a frame
cover. If two are long and the third is non-trivial, the three-line covering is unique and
M contains a [I1, 45 or £. If two are not long, but none is trivial, let / be the third line.
The complement of / must be U, ,. It follows that M 2 F. |

Now let M be a minimal planar, non-bias matroid, / a line in M, and § the
complement of /. M obviously has at least seven points. If 5 has a two-line cover, by
Lemma 8 M is F5 or I, 4; Otherwise, by Lemma 7, § contains §' = L5 5, G(K,) or 4.

If M has a long line, let { be long. We can discard all but four of its points and all of
S\S’. Thus we have a non-bias submatroid of at most ten points, so |E{(M)i = 10.

It is clear that all the examples mentioned in the theorem are minimal non-bias
matroids. We need to show that the list is complete for seven and eight points. What
prevents a planar M from having a frame cover is that, for any line /, its complement §
contains Us 5, G(K,) or Aq. So if |E(M)| =7 and M # U, ,, any non-trivial ! belongs to a
frame cover unless M = F. If [E(M)| =8, the difficult case is where the longest line
length in M is three and M is a minimal non-bias matroid. Let / be a three-point line.
Then §=Us;s Since M2 U,,, at least two points of / belong to non-trivial lines
extending into S, say, /| and £,. For M to be non-bias, /, and [, must meet. One can now
easily show that M must be T, or [T, ]

Not wanting to leave the impression that all forbidden minors for bias matroids are
planar, we mention that the dual of 55 is a forbidden minor. It is non-bias by [9,
Proposition 3A], while it is well known that F5 /point = G(K,) and Fy\point = G(K; ;).
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