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Topological hyperplane (topoplane):

Y ⊂ X such that (X, Y ) ∼= (Rn, Rn−1).



A: finite set of topoplanes.

Intersection semilattice:

L := {
⋂

S : S ⊆ A and
⋂

S 6= ∅},

partially ordered (as is customary) by reverse inclusion.

Flat : An intersection (an element of L).

Main definition:
A is an arrangement of topoplanes if:

∀ H ∈ A and ∀ Y ∈ L, either
Y ⊆ H

or
H ∩ Y = ∅

or
H ∩ Y is a topoplane in Y.

Main Examples:

• Arrangement of real hyperplanes in R
n (homogeneous or affine). (Winder,

Vergnas)
• Arrangement of affine pseudohyperplanes representing an oriented matroid.
• Intersection of a real hyperplane arrangement with a convex set. (Alexanderson

Zaslavsky)



Induced arrangement in a flat Y :

A
Y := {Y ∩ H : H ∈ A and Y 6⊆ H and Y ∩ H 6= ∅}.

Region: Connected component of complement X r
⋃

A.

Face: Region of any AY .

Theorem (Zaslavsky, 1977):

(1) # regions of A =
∑

Y ∈L

|µ(X, Y )|,

where µ is the Möbius function of L,
assuming the side condition that every region is a topological cell.

Primary Question:
Is this really new? Can we finagle it out of something ‘simpler’? Las Vergnas’s
pseudohyperplane arrangements (oriented matroids)?

I.e.: ∃A′ such that
⋃

A′ =
⋃

A and A′ is a pseudohyperplane arrangement?



Answer:

No !



Intersecting topoplanes may have the topology of two crossing hyperplanes,

(2) (X, H1, H2, H1 ∩ H2) ∼= (Rn, x1 = 0, x2 = 0, x1 = x2 = 0),

or of two noncrossing ‘flat’ topoplanes,

(3) (X, H1, H2, H1 ∩ H2) ∼= (Rn, G+, G−, x1 = x2 = 0).
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Definition: A is transsective if every intersecting pair of topoplanes crosses.

Fact: An arrangement of (affine) pseudohyperplanes is transsective.



Types of Topoplane Arrangement

Topoplane arrangements
whose regions are cells

?

Transsective topoplanes
whose regions are cells

?

Restrictions of affine
pseudohyperplanes

iiiiiiiiiiiiii
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Affine hyperplanes
in a convex set
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Affine
pseudohyperplanes

hhhhhhhhhhhhhhhh

Affine hyperplanes

Homogeneous hyperplanes



Reglueing

This means there is another arrangement, A′, that has the same faces as A:
⋃

A′ =
⋃

A.

In the Plane:

Theorem 9. For any arrangement of topolines, there is a transsective
every topoline intersection is a crossing).

(Proof by construction.)

Higher Dimensions:

Theorem 10. For a simple topoplane arrangement in which every re
there is a transsective reglueing.

(Proof by construction.)

Theorem 10′. For a nonsimple such arrangement, there need not be
reglueing.

(Proof by example.)



Proofs by Pictures

Elementary properties

(1) If A is an arrangement of topoplanes and Y is a flat, then the induced collection
an arrangement of topoplanes.

(2) For an arrangement of topoplanes, each interval in L is a geometric lattice
given by codimension.

(3) Suppose every region is a cell. Topoplanes H1 and H2 cross if and only if
each other and each of the regions they form has boundary that meets both
H2 r H1.

(4) In a topoline arrangement every face is a cell.

Lemma 4. Suppose every region is a cell. H1 and H2 cross iff they interse
region they form has boundary that meets both H1 r H2 and H2 r H1.

Proof: Easy.

Lemma 6. Suppose every region is a cell. If H1 and H2, cross, then Y ∩
cross in AY for each Y ∈ L such that Y ∩ H1, Y ∩ H2 are distinct topoplanes

Proof: Not as easy as you might think.



Reglueing in the Plane

Theorem 9. For any arrangement of topolines, there is an arrangement
same faces, and in which every intersection is a crossing.

Proof Sketch. We apply the method of descent to the number of noncrossing pairs
ing topolines. Suppose noncrossing topolines H1, H2 have intersection point Z
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A′ := {K1, K2, K3, K4}.
A′ has the same faces. Must check: A′ is an arrangement of topolines (tak

with fewer noncrossing pairs (nearly obvious).
Since there are fewer noncrossing topoline pairs in the new arrangement, by

process we get a transsective arrangement.



Reglueing Fails in Three Dimensions

Proof of Theorem 10′ by a counterexample of five topoplanes in R
3:

H1 = {x : x1 = 0},

H2 = {x : x2 = 0},

H3 = {x : x2 = |x1|},

H4 = {x : x3 = 0},

H5 = {x : x2 + x3 = 0}.

Every pair crosses except H2 and H3. The common point of all topoplanes is O

The 1-dimensional flats are:

Z := H1 ∩ H2 ∩ H3 = {x : x1 = x2 = 0},

H1 ∩ H4 = {x : x1 = x3 = 0},

H1 ∩ H5 = {x : x1 = 0, x2 + x3 = 0},

Y := H2 ∩ H4 ∩ H5 = {x : x2 = x3 = 0},

H3 ∩ H4 = {x : x2 = |x1|, x3 = 0},

H3 ∩ H5 = {x : x2 = |x1| = −x3}.

The only two 1-dimensional flats that lie in three topoplanes are Z and Y .

Fact : It is impossible to have a transsective arrangement whose regions are the
of this one.



Simple Arrangements Reglue

A is simple if every flat is the intersection of the fewest possible topoplanes.
multiple.

Theorem 10. For a simple topoplane arrangement in which every region
is an arrangement that has the same faces, and in which every topoplane
a crossing.

Proof Sketch. Similar to the planar proof: the method of descent on the number
intersecting pairs of topoplanes. The construction is the same. The complications
but not too bad.

To show that A′ is an arrangement of topoplanes we consider the intersection
H and a flat Y of the reglued arrangement A′. This is the hard part of the pro
four cases, depending mostly on whether either H or Y is a topoplane or flat
arrangment A.



Topoplanes vs. pseudohyperplanes

Projective pseudohyperplane arrangement :
A finite set P of subspaces in RP

n such that

• each (RP
n, H) ∼= (RP

n, RP
n−1),

• the intersection Y of any members of P is a RP
d, and

• for any other H , either Y ⊆ H or H ∩ Y is a pseudohyperplane in Y .

Known: Every region is an open cell and its closure is a closed cell.

Affine pseudohyperplane arrangement :

P0 := {H r H0} in R
n = RP

n
r H0.

A is projectivizable if it is homeomorphic to a P0.

Two topoplanes are parallel if they are disjoint.

Lemma 11. If a topoplane arrangement is projectivizable then it is transse
allelism is an equivalence relation on topoplanes, and every region is a cel

Proof: Easy.

Look at a transsective topoplane arrangement in which parallelism is an equiv



How to Avoid Being Projective

1. Disconnection:

A is connected if
⋃

A is connected.

Disconnected A may be a pseudohyperplane arrangement. But:

Counterexample:
Put A1 and A2 in the right and left halfspaces of R

n. Then A1 ∪ A2 is disconnected.

Proposition 12. If A1 has a pair of intersecting topoplanes, A1 ∪ A2

tivizable.

Proof: Easy.

In the Plane:

Theorem 13. A topoline arrangement is projectivizable iff it is transse
allelism is an equivalence relation.

The diagram (next) shows the construction.
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2. Connection:

Counterexample:

x1 = −1 L
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L := {x : x1x2 = 0 and x1, x2 ≥ 0}.

Parallelism is not transitive. Connected, transsective, but not projectivizable.

Question:
In higher dimensions, is intransitivity of parallelism the only obstruction?



3. Restriction to a Domain

Restriction of A to a domain:

A
D := {components of H ∩ D : H ∈ A and H ∩ D 6= ∅},

where D ⊆ R
n is a cellular domain and AD is a topoplane arrangement in D.

(Alexanderson and Wetzel, Zaslavsky)

Properties:

• AD is transsective if A is transsective.
• Parallelism could be transitive in A but not in AD.

Theorem (Las Vergnas, unpublished). Any transsective topoline arr
the restriction to a cellular domain of a projectivizable arrangement.

Question:
In higher dimensions, is failure of transsectivity the only obstruction to being the
a projectivizable arrangement?

Las Vergnas has an apparent counterexample in dimension 3, being studied
Alfonśın.



Open Questions

(1) Is the condition that every region be a cell ever superfluous?

(2) Are there simple properties that imply all intersecting topoplanes cross?
there are enough topoplanes?

(3) Complexify!
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