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ABSTRACT

The possible classes of balanced circles of a signed graph are characterized in
two ways.

A signed graph is a graph with arcs signed + or —; a circle is balanced if the
product of its arc signs is +. I give here two characterizations of the possible
classes of balanced circles of a signed graph: an elementary one of the
balanced portion of an arbitrary subclass of circles, and a stronger one of the
entire balanced circle class. The latter characterizes signed graphs among
biased graphs (explained in [9]).
Terminology. A signed graph X consists of an ordinary graph I (finite or
infinite) with node set N and arc set F, and a mapping o: E — {+, —}, the
sign labeling. Loops and multiple arcs are allowed (but we omit the half arcs
and free loops needed in other parts of signed graph theory [8]). A path has a
value obtained by multiplying the signs of its constituent arcs; a circle whose
value is + is called balanced. An arc set is called balanced when every circle
in it is balanced. The class of circles of I" is denoted €{I); the class of circles
balanced in X is written % (X). (Signed graphs and balance were first
conceived by Harary [3].) See Figure 1 for illustrations of signed graphs.
First Characterization.  When is a class of circles equal to & (X) for some
Z? A generalization: given a certain class & of circles of I', when is a
subclass Z equal to the balanced subclass of Z in some sign labeling of I'?
To solve the problem we look first at the binary vector space & of all
subsets of E(T'), whose addition is the symmetric difference A. If.Z C & we
can speak of independent and spanning subsets of Z (“spanning” means
spanning Z). To say a subset Z is additive in 2 means that whenever
CC,...,C,EDandC=C/A -+ AC,,then C EZ if and only if an
even number of Cy,..., C, are not in #. This is equivalent to saying that

- & equals either Z or the intersection of Z with a hyperplane (codimension
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FIGURE 1. A signed graph and all members of its switching class. Solid lines are
negative arcs, dashed lines are positive. The original graph Z is in the upper [eft. Under
each graph is a switching function by means of which it is obtained from X, displayed
as an ordered quadruple V{1)¥(2)¥(3)v(4). (The function —v will also do.) The balanced
circle class () consists only of the triangle v, vyv,.

1) of #; in other words that&Z is the kernel of a homomorphism on 2 , a map
6: 2 — {+, —} for which

cC,...,C,ED :
= §(C) = .
C= . A ---AC,} (C)=8(C)) -+ 8(C,)

The first lemma is now straightforward.

Lemma 1. LetT be a graph, 2 C £(I), and 8: 9 — {+, —}.

(a) d extends to a homomorphism on4I) if and only if it is a homomor-
phism on Z. It extends uniquely if and only if & spans </(T).

(b) For there to be a signed graph X = (T, o) such that ¢| 2 =4, it is
necessary and sufficient that § be a homomorphism on.Z.

By setting § equal to the signed characteristic function of % in 9, the
mapping : Z — {+, —} defined by B(C)=+if CEZ, p(C)=—if C&
&, we obtain a solution of the characterization problem.

Theorem 2. Let I' be a graph andZ C 9 C £/(T'). For there to be a signed
graph X on I' such that & =% (Z) N, it is necessary and sufficient that
% be additive in 7. The class Z () is uniquely determined if, and only if,
9 spans €(I).

It follows that if ¥ is a signed graph and 9 is a spanning subset of £(Z),
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then % (Z) is determined even if we only know #(£) N 9. If D is a basis for
€(I’), then any subset & determines a signed graph X such that & =
#HB(Z) N7, and the class Z(Z) is unique.
In dealing with two-graphs (cf. [5]) and generalizations it is helpful to have
- criteria for additivity. Call a set of circles {C,D,,...,D,} a generating
relation for C in @' if all D, € 9" and the set has sum @.

Lemma 3. LetI' be a graph andlet#' C 9' C 9 C £(T), where Z' spans

9 and A’ is additive in.2’. Choose a fixed generating relation in. 2’ for each

CEINYD . Define ZL Dby BND' =FH'and CED\D'is in B if

and only if an even number of members of its chosen generating relation are
ing'\ #'. Then % is additive in .

Proof. Suppose C; A - -+ A C,= @, where C; €. Taking the chosen
generating relation for each C;, C;isasum D;; A - - - A D, where the D;; are
in 9’ and by hypothesis B(C;) = IL,B(D;). Respectively summing and
multiplying, we have

2D, = ¢, IIp(Cc) = I1p(Dy).
H i, J

LJ

That a sum of basis elements equals @ implies that each one appears an even
number of times; hence the double product is +, which implies & is
additive. B

It may be that all the chosen generating relations have in some sense the
same form. Then one can throw into the hypotheses the assumption that all
relations inZ of that form contain an even number of nonmembers of Z . For
instance let us say 7' k-generates 9 if every C €9 \ 9’ has a generating
relation in 2’ of size k or less. Call# k-additive in 2 if it is additive for
sums C=C A +-- AC. wherer<k.

Corollary 4. Let 2’ C 9 C £(T'), where 9’ k-generates Z. Suppose & is
k-additive ing and% N 2"’ is additive in2’. Then# is additive in.Z,

Proof. Let #' =% NP’ and choose a k-generating relation for each
CEF N\ 2'. Then apply Lemma 3. B

Second Characterization. A characterization of all possible Z(Z) follows
from Theorem 2 by setting.Z = 4'(I'). But a stronger result is a consequence
of Lemma 5. Say & C £(T) is circle additive if, whenever C; and C, are

circles for which C; U C, is a § graph and C, and C, are both in % or both
notin%,then C; AC, € Z.
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Lemma 5. A class & C 4(I') is additive in £(I) if and only if it is circle
additive. 4

Proof. Inthe proof of the “if”’ half (the converse is trivial) we may confine
ourselves to the finite case because any counterexample would necessarily be
finite. Thus‘'we can assume that any graph smaller than I satisfies the lemma.

Let us suppose there were a counterexample inT; thatis, C; A - -+ AC, =
@ but an odd number of the circles Ci,...,C, arenotin. Let e be an arc in
C, U - - UC.,. The number of Cy,. .., C. which contain e is even, so we can
pair them off. We shall prove that each pair, say C and C’, can be replaced in
the sum by several circles Dy,..., D, not containing e, such that

"Dy A -++ AD,= CA C' and the parity of the number of D; not in# equals
that of the number among C, C ' which are not in % . Thus we can reduce the
presumed counterexample to one in which no circle contains e. As
# NE(I \ e) is circle additive, this contradicts the induction assumption.

So let C, C’ be two circles among C,, ..., C, which contain e. By Tutte’s
path theorem (cf. [7], 4.34, or the dual form in [2], Section 15, Theorem 1),
there is a chain of circles

C=D,D,,....D,=C'

such that e©€ Dy,...,D;; and all D/, UD] are 6 graphs. Thus
Di=D; ADisacircleinI'\ e,and D, A --- AD,=CA C’. Circle
additivity implies that S(D;) = B(D;-,)B(D;). Hence B(D,) --- BD,) =
B(C)B(C "), which is the parity condition we needed. Thus D,,..., D, exist
as we required for the proof. &

From Lemma 5 applied to Theorem 2 with & =€ (I') we have a strong
solution to the characterization problem for balanced circles.

Theorem 6. LetT be a graph and# C £(T). There is a signed graph = onT'
such that # () =4 if and only if # is circle additive.

Switching. Suppose v: N — {+, —} is any sign function. Switching = by v
means forming the switched graph X£” = (T, ¢¥), whose underlying graph is
the same but whose sign function is defined on an arc e: vw by

g’(e) = v(v)a(e)v(w).
This is the signed-graphic version of the graph switching originated by van

Lint and Seidel [4]. Adapting Seidel’s terminology (cf. [5]) we call £, and =,
switching equivalent if there is a switching function v such that &, = 2%. The
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equivalence class of X is called its switching class. Figure 1 shows a
switching class of signed graphs. An easy theorem (proved in [8], Theorem
3.2)is

Theorem 7. Two signed graphs on the same underlying graph are switching
equivalent if and only if they have the same list of balanced circles. B

A corollary of Theorem 2 by way of Theorem 7 is useful in connection
with the combinatorics of two-graphs.

Corollary 8. Let Z be a spanning subset of €'(I'). There is a one-to-one
correspondence between switching classes of signed graphs on I' and additive
subsets of 7. Two signed graphs on I, X, and %,, are switching equivalent if
and only f B () NI =B(Z,) N G.

Incidentally, the method of Cameron ([1], Sec. 8; or see [6], Sec. 2)
establishes the equality for each finite graph I" of the numbers of switching
classes of signed graphs on I' and of Eulerian subgraphs of I'. (Eulerian
graphs here are graphs with even degree, not necessarily connected. The
statement is true for labeled graphs, and also for I'-automorphism equiv-
alence classes.)
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