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Abstract. A signed graph is a graph whose edges are signed. In a vertex-signed
graph the vertices are signed. The latter is called consistent if the product of signs
in every circle is positive. The line graph of a signed graph is naturally vertex-
signed. Based on a characterization by Acharya, Acharya, and Sinha in 2009, we
give constructions for the signed simple graphs whose naturally vertex-signed line
graph is consistent.
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1. Introduction

A signed graph Σ = (Γ, σ) consists of a graph Γ = (V,E), called its underlying graph, and
a sign function σ : E → {+1,−1}. The most essential question about a signed graph is
whether it is balanced, that is, the product of the edge signs in every circle (cycle, polygon,
circuit) is positive. Signed graphs were introduced by Harary [3]. The vertex analog is a
vertex-signed graph (often called a marked graph) in which the vertices are signed; the vertex
analog of balance is consistency, the property that in every circle the product of vertex signs
is positive. These analogs were introduced by Beineke and Harary [2].

As the edges of a simple graph Γ become the vertices of its line graph, if Γ is signed by σ
then L(Γ) naturally has its vertices signed by σ; it is a vertex-signed graph, which we call
the naturally vertex-signed line graph of Σ and denote by Λσ(Σ). The natural question is
then to find a characterization of signed graphs whose naturally vertex-signed line graphs
are consistent in the sense of Beineke and Harary. (Then Σ may be called line consistent
[5].) This question was taken up by Acharya, Acharya, and Sinha in 2009 [1]; their solution
was the following theorem, which they proved by means of the characterization of consistent
vertex-signed graphs due to Hoede [4]. (Slilaty and Zaslavsky [5] simplify the theorem and
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give a short proof.) The degree of a vertex is d(v); the negative degree d−(v) is the number
of incident negative edges.

Theorem 1 (Characterization from [1, Theorem 2.1]). Assume Σ is a signed simple graph.
Then Λσ(Σ) is consistent if and only if Σ satisfies both the following conditions:

Property 1. Σ is balanced.
Property 2. For each vertex v ∈ V ,

(a) if d(v) > 3, then d−(v) = 0;
(b) if d(v) = 3, then d−(v) = 0 or 2;
(c) if d−(v) = 2 and v lies on a circle, then both negative edges at v belong to

that circle.

One interprets Property 2(c) to mean that the two negative edges lie on every circle
through v; thus (as observed in [5]) the third edge at v (if it exists) is positive and is an
isthmus of Σ.

Theorem 1 is surprisingly simple when applied to signed blocks.

Corollary 2 ([6]). Let Σ be a signed simple, 2-connected graph. Then Λσ(Σ) is consistent
if and only if Σ is balanced and all endpoints of negative edges have degree at most 2.

In this paper we build upon Theorem 1 by providing constructive characterizations of
signed graphs that satisfy Property 2 and thereby of those signed simple graphs that are line
consistent.

2. Definitions

We need definitions about graphs, some of which are unusual. We denote an edge with
endpoints u and v by uv, even if there exist other edges with the same endpoint. (We can
do that here because we do not treat parallel edges explicitly.) A loop contributes 2 to the
degree of its vertex. A block of a graph is a maximal subgraph B such that any two edges
in B belong to a circle together. (An isolated vertex, an isthmus, and a loop are blocks.)
A nontrivial block is a block that contains a circle; if the graph is simple it is a block of
order three or more. A megablock of a graph is a maximal connected union of one or more
nontrivial blocks.

A path may be open or closed (unlike the usual definition that excludes closed paths); it
joins two termini, which are equal in the case of a closed path. An open path may have
length 0; it is nontrivial if it has positive length. A closed path must have positive length.
The internal vertices of a path are the vertices other than its termini. The terminal edges
of a path are its edges that are incident with its termini. A circle is the graph of a closed
path; the difference between a closed path and a circle is that a closed path has a terminus;
a circle has no terminus and all its vertices are internal.

For a subgraph Γ′ ⊆ Γ define a Γ′-divalent path or circle to be a nontrivial path or circle
in Γ′ whose internal vertices have dΓ′(v) = 2.

In a signed graph the sign of a path or circle is the product of the signs of its edges.
The negative subgraph of Σ is the (unsigned) graph Σ− that has all the vertices and all the
negative edges of Σ.

By suppressing a divalent vertex v in a graph, we mean replacing v and its incident edges
uv, vw by a single edge uw. When we suppress a divalent vertex in a signed graph, we give
the new edge uw the sign σ(uw) := σ(uv)σ(vw). It is clear that, when suppressing several
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divalent vertices in a path or circle, the order in which we suppress them does not affect the
result. There is one kind of divalent vertex that cannot be suppressed: a divalent vertex that
supports a loop. By suppressing all possible divalent vertices we mean suppressing divalent
vertices until the only ones remaining are those that support loops.

Property 1, balance, is well characterized by the first theorem of signed graph theory. A
cut is the set of edges with one endpoint in some subset X ⊂ V and the other endpoint in
V \X, provided there is at least one such edge (since the empty set is not a cut).

Theorem 3 (Harary [3]). A signed graph is balanced if and only if its set of negative edges
is empty or a cut.

3. Constructions

We present four (more precisely, two and two halves) constructions that enforce Property
2. The first construction is the simplest. The second has a smaller initial graph and reveals
more about line-graph consistency. The third is a variant of the second in which the signs
are chosen late rather than early, and the fourth is a special case of the second in which
balance is assured through the process of construction.

Construction A. Let Γ be a graph. Choose any set A of pairwise disjoint paths and circles
in Γ such that for each one, P , either

(i) P is a B-divalent path in a nontrivial block B of Γ, every vertex of P has dΓ(v) ≤ 3,
and its termini have dΓ(v) = 2 (note that no vertex of P can be a cutpoint of a
megablock subgraph as any such cutpoint has degree at least 4; also, the third edge at
each trivalent vertex in P will be an isthmus of Γ); or

(ii) P is a path consisting of isthmi, every vertex of P has dΓ(v) ≤ 3, and its termini have
dΓ(v) ≤ 2 (note that all edges adjacent to P are isthmi; for if such an edge uv, with
u in P but not an terminus, belonged to a nontrivial block B, u would have degree at
least 2 in B and 2 in P , thereby having dΓ(u) ≥ 4; similarly, a terminus u would have
dΓ(u) ≥ 3); or

(iii) P is a megablock of Γ that is a circle and every vertex of P has dΓ(v) ≤ 3 (note that
any third edge will be an isthmus).

Make the edges of the chosen paths and circles negative and the remaining edges positive.

The purpose of Construction B is to clarify the structure of a line-consistent signed graph
by starting with a smaller graph which is signed and enlarged so as to satisfy Property 2.

Construction B. Let Γ′ be a graph with no divalent vertices except those, if any, that
support a loop. Subdividing an edge means replacing it by a nontrivial path with the same
termini or (if it is a loop) a circle; in particular, retaining the edge is considered a subdivision
of that edge. We construct a graph Γ by subdividing Γ′ and then we sign the edges of Γ to
get Σ.

Step 1. Sign Γ′ arbitrarily. Call this signed graph Σ′.
Step 2. Choose a subset F ′ of edges in Γ′ such that F ′ ⊇ E−(Γ′).
Step 3. Partition the edges of F ′ into nontrivial paths P ′ and circles C ′, so that

(a) each path or circle has internal vertices of degree at most 3,
(b) the third edge at each trivalent internal vertex is an isthmus,
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(c) each open path is either contained within a nontrivial block or composed entirely
of isthmi (note that a closed path or a circle can only lie within a nontrivial
block), and

(d) no terminus is divalent in Γ′.
Let D′ be the set of these paths and circles. This partitioning can always be done;
at worst, each edge is its own path, or circle if a loop component. (Note that (d)
only forces a loop component in F ′ to be a circle in D′.)

Step 4. Subdivide each edge e′ ∈ E ′ into a path Pe′ . The resulting graph is Γ. Write P for
the path or circle that results from subdividing the edges of P ′ ∈ D′ and let D be
the set of paths and circles P derived from all P ′ ∈ D′.

Step 5. Sign Pe′ all positive if e′ /∈ F ′.
Step 6. For each path or circle P ′ ∈ D′, sign the edges of P so that for each edge f ′ in P ′,

(a) σ(Pf ′) = σ′(f ′),
(b) Pf ′ is not all positive,
(c) a terminal edge of P that is incident with a non-univalent terminus is positive,

and
(d) any edge of P that is incident to a trivalent internal vertex is negative.

It is sufficient in Step 6(b) to assume that P is not all positive. (If some Pf ′ ⊂ P were all
positive, it would be impossible to satisfy Step 6(d) at both termini of Pf ′ .)

Construction C is a variant of Construction B in which the signs of the initial graph Γ′

are not specified until the end.

Construction C. Carry out Construction B but omit Steps 1 and 6(a); also, in Step 2 the
choice of F ′ is arbitrary. After the construction of Σ, form Σ′ by defining σ′(e′) := σ(Pe′) for
each edge e′ ∈ E ′. (Note that since Γ in Construction C is the same as in Construction B,
it follows that Σ′ in Construction C is the same as in Construction B.)

Construction D differs from B by inserting balance at the beginning; thus its constructs
necessarily have Properties 1 and 2, though they need not be simple graphs.

Construction D. This is the same as Construction B except that in Step 1, each nontrivial
block of Γ′ is signed so it is balanced (but otherwise arbitrarily). By Theorem 3, to do that
either make all edges in the block positive or choose a cut in the block and make it negative,
the other edges being positive.

4. Results

Here is our theorem.

Theorem 4 (Constructive Characterization). Assume Σ is a signed graph, not necessarily
simple.

(a) The following properties of a signed graph Σ are equivalent:
(i) Σ satisfies Property 2.

(ii) Σ is constructed by Construction A.
(iii) Σ is constructed by Construction B.
(iv) Σ is constructed by Construction C.

(b) The following properties of a signed simple graph Σ are equivalent:
(i) Λσ(Σ) is consistent.

(ii) Σ is constructed by Construction A (or B or C) and is balanced.
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(iii) Σ is constructed by Construction D.

The proof will appear after some preliminary results.

Lemma 5. (a) A signed graph Σ is balanced if and only if the signed graph resulting from it
by suppressing all possible divalent vertices is balanced.

(b) In particular, a signed graph resulting from Construction A is balanced if and only if,
in each nontrivial block B of Σ, when all possible divalent vertices (with degrees measured in
B, not in Σ) are suppressed, the negative edge set becomes empty or a cut.

(c) In Construction D, Σ is balanced.

Proof. For part (a), let Σ′ be the result of suppressing all possible divalent vertices in Σ.
Note that a Σ-divalent path P (in Σ) and the single edge e it becomes in Σ′ have the same
sign and belong to the same circles, if we identify circles in Σ with the circles in Σ′ that
result after suppression. Those observations make the first assertion obvious. Part (c) is a
special case.

For (b), it is clear that Σ, resulting from Construction A, is balanced if and only if each
block B is balanced. A trivial block is always balanced. Let B′ be the signed graph resulting
from suppression applied to B. By (a), B is balanced if and only if B′ is balanced. Balance
of B′ is determined using Harary’s theorem. �

Note that the suppression in Lemma 5(a) can produce a graph that is not simple even if
Σ is simple.

Lemma 6. Property 2 of a signed graph Σ is equivalent to:

Property 3. For each vertex v ∈ V ,
(a) d−(v) = 0, or
(b) 1 ≤ d−(v) ≤ d(v) ≤ 2, or
(c) d−(v) = 2, d(v) = 3, and the positive edge at v is an isthmus.

Proof. Considering all possible cases for v in Property 2, d−(v) is at most 2 and when
d−(v) > 0 then d(v) ≤ d−(v) + 1. If d−(v) = 2, Property 2(c) entails that a third edge at v
must be an isthmus.

It is easy to check that Property 3 implies each part of Property 2. �

Lemma 7 (Uniqueness). The initial graph Γ′ in Construction B is determined (up to iso-
morphism) by the resulting unsigned graph Γ.

A signed graph can be constructed by Construction B in only one way. That is, Σ′, F ′,
and the list D′ are determined by the resulting signed graph Σ.

Proof. Both Γ′ and Σ′ are obtained by suppressing all possible divalent vertices in Γ and
Σ, respectively. Similarly, F ′ consists of all edges of Σ′ that after subdivision are not all
positive.

To see how those edges associate to form D′, consider distinct edges e and f in Σ incident
to a vertex v of Σ′. Let e′ and f ′ be the edges of Σ′ such that e ∈ Pe′ and f ∈ Pf ′ and
assume first that e′ 6= f ′, so dΣ(v) ≥ 3. The only way e and f can be in the same path or
circle of D is when both are negative; and if that is the case, then neither can be a terminal
edge so they must be in the same path or circle. Now assume that e′ = f ′; then that edge
is a loop in Σ′ and P ′ is a closed path or a circle consisting of that loop and its supporting
vertex v.
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If the graph of P is a circle, we need to decide whether P is a closed path or a circle.
It must be a circle if it has only divalent vertices. Otherwise, only a vertex of P that is
trivalent and at which the incident edges of P are both positive can be a terminus. Thus, P
is a closed path or a circle according as such a vertex in P exists or does not.

Since the elements of D′ are determined by Σ, the proposition is proved. �

Proof of Theorem 4(a). We may substitute Property 3 for Property 2 in (i).
(i) =⇒ (ii): Suppose Σ is a signed graph that satisfies Property 3. Since d−(v) ≤ 2 for

every vertex, the components of Σ− are paths (possibly trivial) and circles.
In a circle component P of Σ−, every vertex has dΓ(v) ≤ 3 and, by Property 3(c), if

there is a third edge at v, it is an isthmus. Hence P is a megablock, so it is an instance of
Construction A(iii).

Take a path or circle component P of Σ− that has an edge f in a nontrivial block B.
Consider (if one exists) an edge g of P that is adjacent to f , say at vertex v. Since dΓ(v) ≤ 3
by Property 3(b, c), either dΓ(v) = 2 and both edges at v are in B, or dΓ(v) = 3. In the
latter case the third edge, h, is an isthmus by Property 3(c). Then g cannot be an isthmus;
it must be in B. It follows that all edges of P are in B and P is B-divalent. The termini of
P have dΓ(v) ≤ 2 by Property 3(b), and they must be divalent because no edge of P is an
isthmus. That is, P satisfies Construction A(i).

Finally, consider P that is a path consisting of isthmi. Its internal vertices have dΓ(v) ≤ 3,
and by Property 3(b) its termini have dΓ(v) ≤ 2. Hence, it satisfies Construction A(ii).

(ii) =⇒ (iii): Let ΣA result from Construction A. To obtain it from Construction B we
begin with Σ′ and Γ′ obtained by suppressing all possible divalent vertices in ΣA and its
underlying graph ΓA. By Lemma 7 those are the proper initial graph and signed graph to
get ΣA from Construction B. As in the proof of that lemma, F ′ is the set of edges e′ ∈ E ′
such that Pe′ is not all positive. We also define D and D′ as in the proof of Lemma 7; that
is possible because the terminus of a negative path N ∈ A cannot have degree greater than
2, so if it has degree 2 the negative path N can be continued with a positive edge before
a vertex of degree greater than 2 is reached. We need only to verify that D′ satisfies the
assumptions of Construction B.

Clearly, D′ partitions F ′ into nontrivial paths and circles. Let P ′ be one such path or
circle, corresponding to P ∈ D, and let v be an internal vertex of P ′. The edges e, f ∈ P
incident with v are both negative, by the construction of D. Hence, they belong to a path
PA in Construction A and therefore dΓ′(v) = dΓA

(v) ≤ 3 and a third edge, if there is one, is
an isthmus of ΓA, thus of Γ′. Moreover, e and f are both isthmi or both contained within a
nontrivial block of ΓA. Finally, no terminus is divalent in Γ′ by the construction of Γ′ and
D′. Therefore, the requirements of Step 3 are satisfied.

The requirements of Step 5 and Step 6(a, b) are satisfied by the definition of F ′. Those
of Step 6(c, d) is satisfied due to the way we constructed D.

It follows that the signed graph Σ resulting from Construction B given the initial data
can be made to agree with ΣA; i.e., ΣA is constructible by Construction B.

(iii) =⇒ (i): Let Σ result from Construction B. We show it has Property 3. A new vertex
of Σ is one that results from subdividing edges of Σ′; any other vertex is an original vertex.

Suppose e is a negative edge in some path or circle P ∈ D and is incident with vertex v.
If dΓ(v) ≤ 2, v satisfies Property 3. Suppose, therefore, that dΓ(v) ≥ 3. Since e is negative,
by Step 6(c) v cannot be a terminus of P . Hence dΓ(v) ≤ 3 by Step 3(a) and the third edge
f incident with v is an isthmus by Step 3(b). The two edges of P at v are negative by Step
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6(d), so d−(v) ≥ 2. The edge f is either terminal in a path P1 ∈ D, hence positive by Step
6(c), or in a subdivision path Pf ′ of an edge f ′ /∈ F ′, hence positive by Step 5. Either way,
d−Σ(v) ≤ 2. Thus, Σ satisfies Property 3.

(iii)⇐⇒ (iv): The note in Construction C explains why Constructions B and C yield the
same signed graphs. �

Proof of Theorem 4(b). The equivalence of (ii) and (iii) follows from (a)[(ii) ⇐⇒ (iii)] and
the fact that Σ resulting from Construction D is balanced by Lemma 5(c).

As for (i), it is equivalent to Σ’s having Property 2 and being balanced, which is equivalent
by (a)[(i)⇐⇒ (ii)] to Σ’s resulting from Construction A and being balanced, i.e., (ii). �
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