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PROPOSITION 4.4. Let Q be a finite biased graph that is full and complete.
Let M be an intermediate matroid on E; that is, L(Q)< M < G(Q). Then
M= L(Q) or G(R).

Proof. Let Q be full and complete; we may assume there is one
unbalanced loop #; at each node v; and that all other edges are links. Let
M be an intermediate matroid, L= L(2), and G = G(2). Let H 5= {hi b}
and C(e;)= H; U ey, where e; denotes a link v,0,.

We show that either all H; are circuits or all C(e,) are. Suppose H,; and
H), are circuits; then by circuit exchange (and since M > L) H, is a circuit.
Suppose C(e;) and C(e;,) are circuits. By circuit exchange there is a circuit
D< {h;, ey, ey, b} containing e;;. Since D contains a lift circuit, which can
only be H,, H, itself is not a circuit in M. Therefore C(e;) is a circuit for
each link between v; and v,.

We show next that each circuit C of M is a bias or lift circuit. Suppose
a circuit C is neither a bias nor a lift circuit. Then C contains™no bias circuit,
so its components are r unbalanced unicycles Uy, U,, ..., U, and perhaps
some trees, where r>2 because M>L. Let C; be the circle in U,
v;€ N(C)), and e, € C, and let e¢: v,v, be a link. C; U C, is independent in
M, for otherwise C would be a lift circuit. The set D=C, uC,uUe, being
a bias circuit, is dependent in M, hence a circuit. By circuit exchange
between C and D, (C u e)\e, contains a circuit C’, whose cyclomatic number
is necessarily lower than that of C. Since C’ cannot be a lift circuit (because
if C’ & C,.itcontains the isthmus e} or a bias circuit, it in turn can be
modified as above. Eventually one gets a circuit with at most one circle,
but that contradicts M > L. Hence after all C must have been a bias or lift
circuit.

Suppose now that M has a circuit C which is a lift circuit but not a bias
circuit; that is, C=C,; u C,, where C, and C, are node-disjoint unbalanced
circles. Let v,e N(C;) and e, € C;. By exchange with the circuit C, U A,,
there is a circuit C'c C,u Cy U h;\e;. C’ can only be C, U k;. Exchange
with C, U h, leads to the conclusion that H,, and consequently all H; are
circuits.

On the other hand suppose M has a circuit C which is a bias but not a
lift circuit. Thus C is a loose handcuff C, U C, U P, P being a path connecting
v; € N(C,) to v, e N(C,). By circuit exchange with C; u h,, there is a bias
or lift circuit C'< Cwu hj\e, (where e, e C,), which can only be the bias
circuit C, U P U hy or the lift circuit C, U k. Actually the former obtains,
for if C,Uh, were a circuit, exchange with C;uh; would imply that
C,u C, is dependent, contradicting C’s being a circuit. By exchanging with
C, U h,, we deduce that PU h, L h2 is a circuit. Thus H, is not; it follows
that all C(e;) are circuits.

From the last two paragraphs we conclude that M equals L or G. |
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It seems that Proposition 4.4 can be generalized to full biased graphs
which are 2-connected (ignoring nonlink edges) and that if Q is full but not
2-connected one can characterize all intermediate matroids. These results
may appear elsewhere. At any rate Proposition 4.4 suffices to prove the

main result.

THEOREM 4.5. The only intermediate-matroid constructions with domain
all biased graphs are G and L.

Proof. This follows from the negative answer of Proposition4.4 to
Problem 4.3(a) in the case of full, complete biased graphs, provided we
show that every biased graph is a subgraph of a complete biased graph.

Let Q be a given biased graph and I its complementary graph, in which
nodes are adjacent precisely when they are not adjacent in . The biased
union Q11 { '] is a complete graph containing 2, as desired. |

The generalization of Proposition 4.4 mentioned earlier suggests that
little of interest will be found in answer to Problem 4.3(b) unless full biased
graphs are ruled out of the construction domain. I believe there may exist
intermediate constructions other than G and L with domain all biased
graphs having no unbalanced edges, but I do not have any examples.

5. INFINITARY ANALOGS

Klee [13] and Bean and Higgs [1, 11] have noted the existence of
infinitary matroids analogous to the usual (finitary) bicircular and graphic
matroids G(I, &) and G(I') of an infinite graph I'. Each is defined by
adding to the circuits of the finitary version infinite circuits based on rays
(one-way infinite paths) or beams (two-way infinite paths). Klee’s infinitary
bicircular matroid has two kinds of infinite circuits: a beam, and the union
of a ray and an unbalanced figure which meet only at the ray’s initial node.
In the infinitary graphic matroid G®°(I") (due to Bean [1, 11] and inde-
pendently due to Klee) the only infinite circuits are beams. In accordance
with the guiding principle (which, to be sure, must be applied selectively)
that any property of a graph should generalize to biased graphs, we should

~expect to have similar infinitary bias and lift matroids by adding

appropriate infinite circuits.

Before approaching these problems we should recall some terminology of
infinite matroids from [13]. (Bean and Higgs’ terminology differs but they
also take an -operator approach to infinite matroids.) Klee defines the
following properties of an enlarging, isotone operator f on subsets of-a set
E. We let X, Y denote subsets.of E. :

(I) fA(Y)= f(Y). (Idempotence.)
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© (B) Ifeef(Y)ande¢ f(Y\X), then x€ f((YUe)\x) for some x € X.
(Exchange.) »

(C) If ee f(Y), there is a minimal U< Y for which e€ f( U) and U
is independent. (Weak circuit closure.)

(Uis ina’ependeni if u¢ f(U\u) for every ue U.) Let € be a clutter, a class
of subsets of E of which none contains another. Let the -closure of S E
be

clos(S, €)= Su {ec E: thereis a Ce @ such thatee CcSuel.

Klee observes that clos(-, ) is an enlarging, isotone operator satisfying
(E) and (C). He defines an IEC-matroid (a special kind of matroid; Klee’s
“matroids” are very general) to be an enlarging, isotone operator satisfying
(), (E), and (C). -~ - s

We define the infinitary bias matroid G®() by its circuit class ¢E(Q2)=
{S<E: S is a bias circuit, a beam, or a union of an unbalanced figure and
a ray meeting only at the starting point of the ray}. This is the class
obtained from the definition of bias circuit (Section 2) modified by
declaring a ray to be an unbalanced figure. We define the operator closg
to be clos(-, #2(2)), leaving Q implicit. We call a component of ScE
(that is, of the subgraph (N, S)) long if it contains a one-way infinite path,
short if it does not. Let N (S) be the union of node sets of long com-
ponents of S. We also need to state the strong circuit exchange property of
a clutter €:

() If C, and C, are in 4, ee C, " Cy, and fe C,\C,, then there
exists Ce ¥ such that feC<s (Cyu Co)\e

THEOREM 5.1. Let Q be a biased graph. The operator closy defines an
[EC-matroid whose circuits are the members of €& (2). We have

clos® S=E:[No(S)UNL(S)Ju |J bel(S:B).
Beny(S)
short

Furthermore, €5 (Q) has the strong circuit exchange property.

Proof. The main step is to show that closg satisfies the stated expres-
sion. Clearly closg(S)< K=clos¥(S). Thus bel(S:B)=K if S:B is a
balanced component and E:B< K if S:B is an unbalanced component. If
S:B is a long component, any edge in S°:B forms with S a circle touching
some ray in S:B, which gives either a balanced circle or a circle-and-ray
circuit on e in Su {e}. Thus E:B< K. Now consider an edge bridging two
components of S. If either one is short and balanced, clearly e ¢ K. In the
remaining cases there is a contrabalanced handcuff, an unbalanced-figure-
and-ray, or a beam on e; thus e€ K
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(Exchange.)

(C) If ec f(Y), there is a minimal U< Y for which e f(U) and U
is independent. (Weak circuit closure.)

(U is independent if u¢ f(U\u) for every ue U.) Let € be a clutter, a class
of subsets of £ of which none contains another Let the €-closure of SS E
be

clos(S, #)=Su {ec E:thereisa Ce ¥ such thatee Cc Sue}.

Klee observes that clos(-, %) is-an enlarging, isotone operator satisfying
(E) and (C). He defines an IEC-mairoid (a special kind of matroid; Klee’s
“matroids” are very general) to be an enlargmg, isotone operator satlsfylng
(1), (E), and (C).

We define the infinitary bias matroid G () by its circuit class (5 °°(Q) =
{S< E: Sis a bias circuit, a beam, or a union of an unbalanced figure and
a ray meeting only at the starting point of the ray}. This is the class
obtained from the definition of bias circuit (Section2) modified by
declaring a ray to be an unbalanced figure. We define the operator clos
to be clos(-, €5 (£2)), leaving £ implicit. We call a component of SSE
(that is, of the subgraph (N, S)) long if it contains a one-way infinite path,
short if it does not. Let N, (S) be the union of node sets of long com-
ponents of S. We also need to state the strong circuit exchange property of
a clutter 4:

() If C, and C, are in 4, ee C;n C,;, and fe C,\C,, then there
exists Ce € such that fe C<(Cyu Cy)\e.

THEOREM 5.1. Let Q be a biased graph. The operator closy defines an
IEC-matroid whose circuits are the members of €& (). We have

cosg S=E:[Ny(S)UN(S)Tu |J bel(S:B).
Bemnp(S)
short

Furthermore, €3 (82) has- the strong circuit exchange property.

Proof. The main step is to show that closg satisfies the stated expres-
sion. Clearly closg(S)s K=closZ(S). Thus bcl(S:B)=K if S:B is a
balanced component and E:B<S K if S:B is an unbalanced component. If
S:B is a long component, any edge in S°:B forms with § a circle touching
some ray in S:B, which gives either a balanced circle or a circle-and-ray
circuit on e in Su {e}. Thus E:B< K. Now consider an edge bridging two
components of S. If either one is short and balanced, clearly e ¢ K. In the
remaining cases there is a contrabalanced handcuff, an unbalanced-figure-
and-ray, or a beam on ¢; thus ee K.
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Now idempotence is proved. Klee proved that the circuits of clos(-, %)
are the members of . He also proved that the circuits of an IEC-matroid
have strong circuit exchange [13, p. 143, Theorem 5]. ||

Note that G®([I"'])= G®(I'); so we have a bias-matroid generalization
of Klee’s and Bean’s matroids.

How to find a lift-type generalization is still a mystery. One could define
a lift analog of G®(I') by taking the circuit class % to be {lift circuits and
beams }. But the closure clos(-, %) is not idempotent, unlike that of G*(I").
Consider the biased graph € which has two components, one an
unbalanced loop and the other. a beam with one edge doubled to form an
unbalanced digon. Let S be a beam. Then T'=clos(S, ¥) is the beam with
the doubled edge added and clos(T, €)= E. This shows that clos(-, %)
disobeys Klee’s law (vwl) of very weak idempotence and therefore is not a
“matroid” even by his minimum definition. I do not think this is satis-
factory for a supposed infinitary lift matroid, especially since there is an
idempotent infinitary bias matroid. _

One might try to define infinitary lift circuits, by analogy with €g, by
declaring a ray to be an unbalanced figure. Unfortunately, since (infinitary)
lift circuits need not be connected, a disjoint pair of rays would then
form a nonminimal “circuit,” or perhaps we should say, a dependent set
containing no minimal dependent set. This seems worse than the previous
example, and certainly does not generalize G*(I').

Problem 5.2. Find a satisfactory infinitary analog of the lift matroid of
a biased graph.

One might try to generalize G(Q) differently, by merely adding beams to
the list of bias circuits. This, however, does not yield a matroid. Consider

“:a beam B with two unbalanced loops at adjacent nodes. The loops and

connecting edge e form a handcuff circuit C. Then (Bu C)\e contains no
beam or bias circuit. Thus even weak circuit exchange fails, which is not
very satisfactory in itself and also shows (by [13, Theorem 4]) that the
corresponding closure disobeys Klee’s (vwl).

We conclude by suggesting that Matthews and Oxley’s proof that
G=(I', &) has bases (that is, is a B-matroid; see [19] for definitions and
proof ) should generalize to biased graphs. ,

Problem 5.3. Prove that G®(Q) is a B-matroid for any biased gra.ph Q.

6. SEVEN DWARVES: MATROIDS OF THE BIASED K’s

- Our analysis of the seven biased graphs based on K,, Q,=Q,(K,) for
i=1,2,.., 7, continues from Section 1.7 with descriptions.of their matroids
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and their linear representability. This is a relatively simple matter, for since
" no two circles in K, are node disjoint, G(Q,) = L(£2,) for every Q,(K,).

From the end of the proof of Theorem 3.1 and the succeeding comment
we see that the matroids L(;)" are precisely the seven nonisomorphic
rank-3 one-point extensions of G(K,)*—thus of G(K,), since the latter is
self-dual by the edge permutation v;v, «> V304, V103> Uy, Uy0g <> Ua05.
The lift matroids L(f,) are dual to these extensions contracted by e,. Since
the duals have lower rank than the lift and complete lift themselves (whose
rank is 4 except for L(€,)), it is simpler to describe the duals. That we do
below. We also describe the lift matroids for use in Part III and mention
special features of some examples. We omit the proofs, which are easy.

"Besides describing the matroids we also list in Table 6.1, for comparison
with Conjecture 3.14, the fields over which they have linear representations.
We also mention where they have projectively unique representation,
meaning that any two projective representations are related by a projective
transformation. The proofs are easy, given the facts that a matroid M is
K-representable if and only if its dual is and that the representation is
projectively unique if and only if that is true for the dual. (The reason is
that if the matrix (I, 4) represents M by column vectors, then (—A47%, 1)
represents M *.) Hence in the examples one can work with Lo(2,)* and
L(Q)*.

Comparing Table 6.1 with Table 1.7.1 in light of the first sentence
following Conjecture 3.14, we see that the conjecture is valid for any biased
K,. Example 6.4 illustrates exception (iii)-

TABLE 6.1

The Fields K over which L(2;(K,)) and Ly(R,(K,)) are Linearly Representable and over
which the. Representation is Projectively Unique

Example Q,=0,(K,)

21 2 Q, Q, Qs Q Q,
Representation of L(£2;)
exists: all all ord>=3 all ord>3 -ord>4 ord=S
is unique: all all ord=3 all ord =3 none none
Representation of Lo(£2;)
exists: all all ord>3 char=2 char#2 ord>4 ord>=5
is unique: all all ord=3 char=2 char#2 ord=4 none

Note. ord means the order |K]; char means the characteristic of K.
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and their linear representability. This is a relatively simple matter, for since
no two circles in K, are node disjoint, G(Q;) = L(2,) for every Q,(Ky).

From the end of the proof of Theorem 3.1 and the succeeding comment
we see that the matroids L(Q,)" are precisely the seven nonisomorphic
rank-3 one-point extensions of G(K,) —thus of G(K,), since the latter is
self-dual by the edge permutation v;v; <> U304, U1V3 ¢ U204, DyU4 <> Uy 03.
The lift matroids L(£2,) are dual to these extensions contracted by e,. Since
the duals have lower rank than the lift and complete lift themselves (whose
rank is 4 except for L(£2;)), it is simpler to describe the duals. That we do
below. We also describe the lift matroids for use in Part III and mention
special features of some examples. We omit the proofs, which are easy.

Besides describing the matroids we also list in Table 6.1, for comparison
with Conjecture 3.14, the fields over which they have linear representations.
We also mention where they have projectively unique representation,
meaning that any two projective representations are related by a projective
transformation. The proofs are easy, given the facts that'a matroid M is
K-representable if and only if its dual is and that the representation is
projectively unique if and only if that is true for the dual. (The reason is
that if the matrix (I, 4) represents M by column vectors, then (—A7,I)
represents M 1) Hence in the examples one can work with Lo(£2,)* and
L(Q)™".

Comparing Table 6.1 with Table1.7.1 in light of the first sentence
following Conjecture 3.14, we see that the conjecture is valid for any biased
K,. Example 6.4 illustrates exception (iii).

TABLE 6.1.

The Fields K over which L(£2,(K,)) and Lo(2:(X,)) are Linearly Representable and over
which the. Representation is Projectively Unique

Example Q,=Q,(K,)

Q, ) 2, Q 3 2, Qs Q4 Q,
Representation of L(€2;)
exists: all all ord=3 all ord>3 -ord>4 ord>5
is unique: all all ord=3 all ord =3 none none
Representation of Lo(£2,)
exists: all all ord>3 char=2 char#2 ord>4 ord>S5
is unique: all all ord=3 char=2 char#2 ord=4 none

Note. ord means the order |K|; char means the characteristic of K.
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ExampiE 6.1. Here L(Q,)=G(K,) and Ly(2,)=G(K,)® (e9)1 =
G(K, v K,), hence is graphic. (The symbol w denotes disjoint union.)
Dually, L(£2,)* consists of G(K,) with e, added as a loop. L(2,)* is
G(Ky)- - -

ExXAMPLE 6.2. In the complete lift e, is in series with the exceptional
edge e. Consequently Ly(£2,)=G(I), where I'o is obtained from K, by
subdividing e into two edges called ¢ and e,. Thus Lo(2,) is graphic.
Deleting e, gives L(£2,). Dually, Lo(£2,)* = G(I'¢"), where I'§is K, with e,
added in parallel to e. L(2,)" is a 3-point line U, with two points
doubled in parallel and with one loop.

ExampLE 6.3. In the dual description, Lo(£23)* is G(K,)* with e added
to one existing 3-point line, namely the complement of the single balanced
triangle. L(2;)* is a 4-point line U, 4 with one point tripled in parallel. In
L(Q;) there is one dependent line, namely the balanced triangle. The whole
matroid consists of this line and the three remaining edges in general
position in rank 4. ’ :

EXAMPLE 6.4. The dual Ly(€,)* is the Fano matroid. L(2,)" is Us;
with every point doubled in parallel. In L(2,) the only nonspanning
dependent flats are the three balanced quadrilaterals, which are planes.

EXAMPLE 6.5. Lo(£25)* is the non-Fano matroid. To be specific, it is the
Fano matroid with one 3-point line on e, eliminated in favor of three
2-point lines. The eliminated line consists of e, and the complement of the
one unbalanced quadrilateral. L(Qs)* is U, 4 with two points doubled
in parallel. L(£25) has two nonspanning dependent flats: each balanced

“ quadrilateral is a plane.

EXAMPLE 6.6. Lo(Q¢)* is G(K4)* with e, added to one existing 2-point
line but otherwise in general position. The chosen 2-point line consists of
the two edges not contained in the sole balanced quadrilateral. L(24)" is
U, s with one point doubled in parallel. L(Q¢) has one nonspanning
dependent flat, a plane consisting of the sole balanced quadrilateral.

ExaMPLE 6.7. Since Q,= (K., &) is contrabalanced, G(£;) (=L(£24))
is the bicircular matroid of K,. This matroid of I' is transversal, presented
transversally by treating each edge as a subset of N(K,). Dually, Ly(2,)*
is G(K,)* with e, added in general position in the same plane. L(2,)" is
Us 6, 50 L(27)=Uas. ; ‘
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