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A biased graph Q consists of a graph I" and a class & of circles (simple, closed
paths) in I, called balanced circles, such that tio theta subgraph contains exactly
two balanced circles. The bias matroid G(R2) is a finitary matroid on the edge set
E of 2 whose circuits are the balanced circles and the minimal connected edge sets
of cyclomatic number two containing no balanced circle. We prove that these
circuits define a matroid and we establish cryptomorphic definitions and other
properties. Another finitary matroid on E, the lift matroid L(L), and its one-point
extension the complete lift matroid Lo(2), are obtained from the abstract matroid
lift construction applied to the graphic matroid G(I') and the class #. The circuits
of L(£2) are the balanced circles and the minimal edge sets of cyclomatic number
two (not necessarily connected) containing no balanced circle. We develop crypto-
morphisms and other properties of Ly(2) and L(2). There is no completely general

~construction rule, besides the bias and lift constructions, which assigns to each
biased graph a matroid intermediate (in the sense of independent sets) between G
and 'L and which respects subgraphs. G(2) has an infinitary analog for infinite
graphs generalizing Klee’s infinitary bicircular matroid and the Bean-Higgs
infinitary graphic matroid. Whether L(2) has an’ infinitary analog is unclear.
© 1991 Academic Press, Inc. ’ o

INTRODUCTION

A biased graph Q = (I', $) consists of an underlying graph I'= ||Q| and
a subclass % = 2(Q) of the class € of circles of I" (edge sets of closed, sim-
ple walks) which is a linear subclass: that is, if C,, C,€ % and their union
is a theta graph, the third circle in C; U C, also belongs to 4.! A circle in
4 is called balanced. In this article we establish the existence and elemen-
tary properties of two finitary matroids on the edge set of a biased graph,
which we call the bias matroid G() and the lift matroid L(R), and a

* Research substantially assisted by grants from the National Sciencé Foundation: in
1976-1977- (for Section 2; the research was done while I was at the Massachusetts Institute of
Technology) and DMS-8407102 in 1984-1985 (Sections 3 and 4; most of the work was done
while I was visiting the University of Evansville, whose hospitality was most agreeable).

! The different definition given in the introduction of [32] is erroneous.
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BIASED GRAPHS. II. MATROIDS 47

matroid Ly(£2), the complete lift matroid, which is a canonical one-point
extension of L(£2). The circuits of the bias matroid are the balanced circles
and the minimal connected edge sets with cyclomatic number two that do
not contain a balanced circle. Those of the lift matroid are the same except
that the circuits of the second kind are not required to be connected. The
- lift matroid is the result of the general matroid elementary-lift construction
[4, 5, 16] applied to the graphic matroid G(I'); the bias matroid, on the
contrary, depends on the graph itself and does not generalize to abstract
matroids, and this is one reason to think it is interesting. (There are other
means of generalizing it but that is outside our scope here.)

The bias matroid generalizes several previously known matroids on the
edge set of a graph. The familiar graphic or polygon matroid is G(I, %).
The bicircular matroid. of I, introduced by Simdes-Pereira [22, 23] and by
Klee [13] in an infinitary version, is G(I, &f); it has been further studied
in [17,28]. The even-cycle matroid employed by Doob [7] is G(I', %),
where %, is the class of even-length circles (Example 1.6.3).> The bias
matroids of graphs with signed edges appeared in [27]; biased graphs
were invented as a natural generalization. The optimization matroids of
networks with gains are still another example; they are the bias matroids
of graphs with real (or real-positive) multipliers or “gains” on their edges;
here a circle is balanced if its gain product is 1. (One of many references
for networks with gains is [20]. For the bias determined by group gains
see Section 1.5.) Matthews’ two matroids on directed graphs [187] are bias
matroids of ‘graphs with particular gains (Examples 1.6.5 and 1.6.6).
Dowling’s lattices of a-group ([9], foreshadowed in [8]), which are the
geometric lattices of the bias matroids of the maximal gain graphs of each
number of nodes over the particular group, were indirectly the inspiration
for this entire project. (They are also in a sense “universal” matroids, in
company with the projective geometries, as Kahn and Kung showed in
[12].)

The lift matroid has been less often discovered, as far as I am aware.
L(I, €) is the graphic matroid. The lift matroid of a sign-biased graph is
‘a subject of Shih’s thesis [21] and was the main tool employed by Lovasz
and Schrijver in their work on disjoint unbalanced circles in signed graphs
[15]. C

Our principal aim is to present eleven cryptomorphic definitions of the
bias matroid (in Section 2) and the lift and complete lift (Section 3), to
show what' operations on the biased graph correspond to matroid restric-
tion (take a subgraph) and contraction (contract the biased graph, for the
bias matroid; contract the graph and sometimes forget the bias, in the lift

2 Citations in the style 1.6.3, IV.2.4, etc., refer to [29, 30, 3171, which are Parts I, III, and IV
of this series. :
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matroid L(£2), the complete lift matroid, which is a canonical one-point

extension of L(Q). The circuits of the bias matroid are the balanced circles .

and the minimal connected edge sets with cyclomatic number two that do
not contain a balanced circle. Those of the lift matroid are the same except
that the circuits of the second kind are not required to be connected. The
lift matroid is the result of the general matroid elementary-lift construction
[4,5,16] applied to the graphic matroid G(I'); the bias matroid, on the
contrary, depends on the graph itself and does not generalize to abstract
matroids, and this is one reason to think it is interesting. (There are other
means of generalizing it but that is outside our scope here.)

The bias matroid generalizes several previously known matroids on the
edge set of a graph. The familiar graphic or polygon matroid is G(I, %).
The bicircular matroid of I', introduced by Simdes-Pereira [22, 23] and by
Klee [13] in an infinitary version, is G(I, &); it has been further studied
in [17,28]. The even-cycle matroid employed by Doob [7] is G(I, 4,),
where 4, is the class of even-léngth circles (Examplé1.6.3).? The bias
matroids of graphs with signed edges appeared in [27]; biased graphs
were invented as a natural generalization. The optimization matroids of
networks with gains are still another example; they are the bias matroids
of graphs with real (or real-positive) multipliers or “gains” on their edges;
here a circle is balanced if its gain product is 1. (One of many references
for networks with gains is [20]. For the bias determined by group gains
see Section I.5.) Matthews’ two matroids on directed graphs [ 18] are bias
matroids of graphs with particular gains (Examples 1.6.5 and 1.6.6).
Dowling’s lattices of a group ([9], foreshadowed in [87]), which are the
geometric lattices of the bias matroids of the maximal gain graphs of each
number of nodes over the particular group, were indirectly the inspiration
for this entire project. (They are also in a sense “universal” matroids, in
company with the projective geometries, as Kahn and Kung showed in
[12].)

The lift matroid has been less often discovered, as far as I am aware.
L(I', ¥) is the graphic matroid. The lift matroid of a sign-biased graph is
a subject of Shil’s thesis [21] and was the main tool employed by Lovasz
and Schrijver in their work on disjoint unbalanced circles in signed graphs
[15].

Our principal aim is to present eleven cryptomorphic definitions of the
bias matroid (in Section 2) and the lift and complete lift (Section 3), to
show what operations on the biased graph correspond to matroid restric-
tion (take a subgraph) and contraction (contract the biased graph, for the
bias matroid; contract the graph and sometimes forget the bias, in the lift

2 Citations in the style 1.6.3, IV24 etc., refer to [29, 30, 317, which are Parts I, III, and IV
of this series.

48 THOMAS ZASLAVSKY

case), and to locate the minimal separators of the matroids. These tasks are
performed in Sections 2 and 3. One naturally thinks of the twin problems
of characterizing intrinsically the matroids that are bias, or (complete) lift,
matroids of biased graphs and of finding all the biased graphs having a

particular matroid for their bias matroid or (complete) lift matroid. These

problems are unsolved although there has recently been some progress on
the latter [24, 34].

In Section 4 we compare the blas and lift matroids. The former is weaker
than the latter (in the sense of independent sets), so one might wonder
whether there are intermediate matroids associated with Q in a systematic
way. We show that there are no such matroids defined over all biased
graphs and compatible with restriction to subgraphs. It remains possible,
however, that systematic intermediate constructions do exist over most
biased graphs. This problem is potentially interesting because one would
like to axiomatize the relationship between G(£2) and L(£2), which so
clearly depends on connectedness, and because of the interesting geometric
lattices which can be derived from bias and lift matroids of particular
biased graphs [35] and which one might hope to generalize.

We conclude with remarks on possible infinitary analogs of the bias and
lift matroids. The latter continues to be a puzzle but the former can be
defined by imitating Klee’s infinitary bicircular matroid. This infinitary bias
matroid G*(£2) generalizes both Klee’s matroid and the Bean-Higgs
infinitary graphic matroid [1, 11, 13].

This article is the sequel to Part I [29]; we assume the reader is familiar
with the definitions therein. In Parts IIT and TV [30, 31], we continue the
series with an investigation of curious reduction formulas for the chromatic
and dichromatic invariants of the bias and (complete) lift matroids and
with a study of geometrical and logical realizations of the matroids.

1. PRELIMINARIES -

By Q we always mean a biased graph with underlying graph
I'=(N, E)= 2|, whose node set is N, edge set is E, and order is n= #N,
not necessarily finite. The class of circles of I' is ¥ =%(I") and that of
balanced circles of Q is # = #(Q). The cyclomatic number of a graph I' is
the number of independent circles in it, which equals #(E\T), where T is
a maximal forest. Loose and half edges count as loops in this computation.
(In the matroid theory, as will be seen, loose and half edges can be treated
as balanced and unbalanced loops, respectively.) A cutset in I" is a non-
empty edge set consisting of all the edges with one endpoint in some node
set X and the other in X° A unmicycle is a connected edge set with
cyclomatic number 1: that is, a tree T plus one edge (not loose) whose
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nodes lie in N(7). The union of an edge set and a singleton edge, say
Su {e}, we usually abbreviate by Sue.

We assume the reader is acquainted with matroid theory as presented in
6, 25,26]. Our notation for the contraction of a matroid M by a point
set A is M/A; this is Welsh’s M.(E\A), where E is the ground set of M.
A bond is the complement of a copoint. The closure is clos,,; the lattice of
flats is Lat M; the rank function is rk,,; the dual matroid is M*. The
graphic (or “circuit” “polygon”) matroid of an ordinary graph I' is
denoted by G(I'); recall that an ordinary graph is an unbiased. graph with
no loose or half edges. If I is not ordinary, loose edges should be treated
like ordinary loops; half edges should be treated as links to an extra node
vy, not in I. Then G(I') is defined to be the. graphic matroid of this
fictitious adapted I. We write clos and rk for the closure and rank in
G(I'). A uniform matroid of rank r on » points is written U, ,; if its point
set is {e} it may be denoted by (e),.

For a biased graph Q we define

Lat’ Q = {Sg E: §Sis balanced and balance-closed }.
If 4 is a balanced edge set, we define
(Lat® 2)/A={S\A: Selat’ Qand S2 4}.

A balancmg node of Q is a node ve N(Q) such that Q\v is balanced
although Q is not.

2. THE B1as MATROID

The first theorem characterizes the bias matroid G(). Recall that a bias
circuit is (the edge set of ) a balanced circle, or the union of two unbalanced
figures which meet at just one node (a contrabalanced tight handcuff), or
the union of two node-disjoint unbalanced figures and a path meeting each
figure at one endpoint and nowhere else (a contrabalanced loose handcuff),
or a contrabalanced theta graph. An alternate definition is that a bias
circuit is a balanced circle or a minimal edge set that is connected and
contrabalanced and has cyclomatic number two.

THEOREM 2.1. Let Q be a biased graph. There is a matroid G(L2), whose
points are the edges of Q, which is determined by any of the following
equivalent definitions (a)—(k). The matroid.is finitary.

(a) The closure of an edge set S is
€losgoy(S) = bel(S) L E:Ny(S).
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nodes lie in N(T). The union of an edge set and a singleton edge, say
Su {e}, we usually abbreviate by SuUe.

We assume the reader is acquainted with matroid theory as presented in
[6, 25, 26]. Our notation for the contraction of a matroid M by a point
set A is M/A; this is Welsh’s M.(E\A), where E is the ground set of M.
A bond is the complement of a copoint. The closure is clos,,; the lattice of
flats is Lat M; the rank function is rk,,; the dual matroid is M L. The
graphic (or “circuit” or “polygon”) matroid of an ordinary graph I is
denoted by G(I'); recall that an ordinary graph is an unbiased graph with
no loose or half edges. If I" is not ordinary, loose edges should be treated
like ordinary loops; half edges should be treated as links to an extra node
vg, not in I. Then G(I') is defined to be the. graphic matroid of this
fictitious adapted I. We write clos, and rk, for the closure and rank in
G(I'). A uniform matroid of rank r on n points is written U, ,; if its point
set is {e} it may be denoted by (e),. -

For a biased graph 2 we define

Lat® Q = {S< E: Sis balanced and balance-closed }.
If 4 is a balanced edge set, we define
(Lat’ 2)/4={S\4: SeLat®Qand S2.4}.

A balancing node of Q is a node ve N(2) such that Q\v is balanced
although Q is not.

2. THE BI1AS MATROID

The first theorem characterizes the bias matroid G(Q). Recall that a bias
circuit is (the edge set of) a balanced circle, or the union of two unbalanced
figures which meet at just one node (a contrabalanced tight handcuff), or
the union of two node-disjoint unbalanced figures and a path meeting each
figure at one endpoint and nowhere else (a contrabalanced loose handcuff),
or a contrabalanced theta graph. An alternate definition is that a bias
circuit is a balanced circle or a minimal edge set that is connected and
contrabalanced and has cyclomatic number two.

THEOREM 2.1. Let Q be a biased graph. There is a matroid G(R2), whose
points are the edges of 2, which is determined by any of the following
equivalent definitions (a)-(k). The matroid. is finitary.

(a) The closure of an edge set S is
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(b) An edge set A is closed < it is the union of E:X, where X is some
set of nodes (possibly &), a balanced and balance-closed subset of E:X¢, and
the loose edges of Q.

(c) An edge set is independent < it has no loose edges and each
component is a tree or an unbalanced unicycle.

(d) An edge set S is dependent <> it contains a balanced circle, two
unbalanced figures connected within S, or a loose edge. '

(e) An edge set is a matroid circuit <> it is a bias circuit of 8.

(f) An edge set S spans G(2) <> it connects the nodes of each
balanced component of Q, and each other component of (N, S) contains an
unbalanced figure.

(g) An edge set S is a basis <> it consists of a spanning tree in each
balanced component of Q, each other component of (N, S) is an unbalanced
unicycle, and S contains no loose edges.

(h) An edge set H is a copoint < H has the form A E:X°® where
ASEX, J#X<S Yen(Q); and either Q:Y is balanced, A = E:X, and both
Q:X and Q:(Y\X) are nonnull and connected, or else Q:Y is unbalanced and
so is every component of Q:(Y\X), and (X, A) is connected, balanced, and
balance-closed.

(i) An edge set is a bond of G(Q) < it is a minimal set whose deletion
increases the number of balanced components of 2.

(G) The rank of an edge set S is

rkG(g,(S)—|N0(S)|+ > (BI-1)
Bemy(S)
and if n is finite it is
1K G(2)(S) = n— b(S).
(k) The corank of an edge set S Z;S

b(S:N(@)+ 3. (b(S:B)—1),

Benp(2)
which equals b(S)— b(Q) if b(82) is finite.

This - theorem (without (k)) was stated for signed graphs in [27,
Theorem 5.17] with a partial proof. Unfortunately, parts (f) and (g) were
stated incorrectly.

In [27] we proved that rkg, is a Whitney rank function and we
deduced (e) from (d), leaving the remainder to the reader. The proofs given
in [27] are valid for gain-biased graphs with obvious slight changes. They
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are also valid for biased graphs except for the argument in the last case of
case (4) in [27, p. 557, which requires Corollary 1.3.8 for full generality.

A proof of (¢) may be based on Simdes-Pereira [22], whose Lemma 3
states, in essence, that the union of two unbalanced bias circuits, less one
common edge, contains a handcuff or theta graph. It therefore contains a
bias circuit. One can deduce that the bias circuits are the circuits of a
matroid.

Proofs of parts (e) and (g) for real-multiplicative gain graphs have
appeared in the literature of “generalized networks” or “networks with
gains.”

Proof. We give a complete proof based on (a) and (b). We use the
observation:

LEMMA 22. If Q is balanced, then G(2) equals the graphic matroid
G(ien. 1

Proof of (a) and (b). We may ignore any loose edges. We show first that
clos =closgg, is a closure operator and its closed sets are the closed sets
of (b). Let S be a union. of balanced components S; and unbalanced
components. Evidently, '

clos S= E:Ny(S)u | bel S,.
: J

Thus any set of the form clos S is (b)-closed. It is obvious from the defini-
tions that S < clos S and that, for balanced sets B and B’, where B< B', we
have becl Bebel B, Since bel B is balanced and balance-closed if B is
balanced (Propositions 1.3.1 and 1.3.5), clos®* S=clos S and any (b)-closed
set equals its own closure. If S< T, then Ny(S) S No(T) and every S, is
contained either in E:N,(T) or in some balanced component T; in either
case we have bclS;<[bel T, < Jclos T. Thus (a) and (b) describe a
closure operator and its closed sets.

We still have to prove the exchange property of clos. Let 4 be closed (in
the equivalent senses of (b) or that clos 4 =4), Aq=E:Ny(A4), e¢ 4, A'=
clos(4Aue), and fe A'\A. There are three cases.

If e connects two balanced components of 4, say B, and B,, then
B,uB,ue is still balanced and feC, where C is a balanced circle in
B, U B, uUeu f. Clearly f too connects B, and B, and ee clos(B, L B, U f).

If e links No(4) to a balanced component B, then clos(dow Bue)=
E:[No(A4) UN(B)], call it B, for short, and fe Bo\(4ou B). If f also
connects No(4) to B, then clos(4:No(4)u By f)= By The only other
possibility is that fe E:N(B); but since B (being a component of 4) is
closed and f¢B, Buf cannot be balanced. Therefore No(4u f)=
No(4)u N(B), which entails clos(4ou f)=By>e.
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are also valid for biased graphs except for the argument in the last case of
case (4) in [27, p. 55], which requires Corollary 1.3.8 for full generality.

A proof of (e) may be based on Simdes-Pereira [22], whose Lemma 3
states, in essence, that the union of two unbalanced bias circuits, less one
common edge, contains a handcuff or theta graph. It therefore contains a
bias circuit. One can deduce that the bias circuits are the circuits of a
matroid. ‘

Proofs of parts (e) and (g) for real-multiplicative gain graphs have
appeared in the literature of “generalized networks” or “networks with
gains.”

Proof. We give a complete proof based on (a) and (b). We use the
observation:

Lemma 2.2, If Q is balanced, then G(Q) equals the graphic matroid
G(ieln). ‘ =

Proof of (a) and (b). We may ignore any loose edges. We show first that
clos = clos gy is. a closure operator and its closed sets are the closed sets
of (b). Let S be a union. of balanced components S; and unbalanced
components. Evidently, '

clos S=E:Ny(S)u | bl S,.

J

Thus any set of the form clos S is (b)-closed. It is obvious from the defini-
tions that S < clos § and that, for balanced sets B and B’, where B< B’, we
have bcl B bel B’ Since bel B is balanced and balance-closed if B is
balanced (Propositions 1.3.1 and 1.3.5), clos® S =clos S and any (b)-closed
set equals its own closure. If S 7, then Ny(S) S No(T) and every S; is
contained either in E:Ny(T) or in some balanced component T ; in either
case we have bcl S;=[bcl T, Jclos T. Thus (a) and (b) describe a
closure operator and its closed sets.

We still have to prove the exchange property of clos. Let A be closed (in
the equivalent senses of (b) or that clos A =A4), 4g=E:Ny(A), e¢ A, A' =
clos(4 we), and fe A'\A. There are three cases.

If e connects two balanced components of 4, say B, and B,, then
B,uB,ue is still balanced and feC, where C is a balanced circle in
B, uB,ueu f. Clearly f'too connects B, and B, and eeclos(B, u B, uU f).

If e links Ny(4) to a balanced component B, then clos(A4,u Bu e)=
E:[Ny(A4) U N(B)], call it B, for short, and fe Bo\(4dou B). If f also
connects Ny(A4) to B, then clos(4:No(4)u Bu f)=B,- The only -other
possibility is that fe E:N(B); but since B (being a component of A4) is
closed and f¢B, Buf cannot be balanced. Therefore Ny(4u f)=
Ny(4)u N(B), which entails clos(4qv f)=Byze. ~ =
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The third case is N(e) <= N(B), for some balanced component B of
A. Since B is closed and ‘e¢ B, it is impossible that Bue could be
balanced. Therefore Ny(Aue)=NyA4)u N(B), and clos(4d,uBue)=
E:[Ny(A) U N(B)]. There are two possibilities for f: either f links Ny(A4) to
B, or fe E:N(B). These can be disposed of as under the second case of e,
above. : : -

This completes the proof that (a) and (b) describe the closure operator
and the closed sets of a matroid G = G(£).

G is finitary because of two facts: since all balanced circles are finite, bcl
is finitary; since connection is by finite paths, each edge in E:Ny(S) is
joined to an unbalanced figure F by a finite path P, hence lies in the closure
of FUP.

Parts (¢) and (d) are complementary. A loose edge or a balanced circle,
or two connected unbalanced figures, are obviously dependent (from (a)).
A tree is equally obviously independent (cf. Lemma 2.2, for instance). A
tree T with one extra edge that makes an unbalanced figure FS T'ue is
independent because deleting an edge fe F leaves a balanced set, whose
closure does not contain F, and deleting an edge outside F disconnects
Tue into a balanced and an unbalanced part. Thus (c) and (d) are
proved.

For part (e) we have to prove every (matroid) circuit is a bias circuit.
(The converse is obvious.) A balanced circuit is clearly a circle. Let S be
an unbalanced matroid circuit—thus, S is connected and contrabalanced
and has no univalent nodes. We may treat any half edges as unbalanced
loops. Since S contains two circles, removing an edge e from one circle
leaves an independent set I that consists of a tree and one more edge
forming a circle. I has at most two univalent nodes, which are endpoints

-.of e. Thus, adding back e creates a theta graph or a handcuff.

The next step is to prove (j). For a balanced set B, (j) follows from
Lemma 2.2 applied to Q| B. If A is connected and unbalanced, take a span-
ning tree T< A4 and let A'=clos T=0bcl 7. By Proposition1.3.1, 4" is
balanced; thus its rank is 3 N(A4)— 1. Because A4 is not balanced, 4" 4;
therefore rk A> #N(4). On the other hand, let eeA\A’; then
clos(4've)=A by part (a), so tk A< #N(4). ‘

Now consider a set S< E. Since the closure operator by its definition
acts independently on components of S, the rank of S equals the sum of the
ranks of its components. This is (j). (We have elided the infinite case. Here
#N(A4)= #N(4)—1 so the argument simplifies slightly.) '

In proving (k), we may consider each component of & separately. In a
balanced component, (k) reduces to a well-known property of the graphic
matroid. In an unbalanced component 2:U of Q, let S have b balanced
components.S; and one union of unbalanced components 4. Consider I:U
with each S; and 4 contracted to a point. This graph is connected so it has
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a spanning tree T, which as an edge set in  connects the S; and 4 and
which has b edges. Adding the edges of T'to S:U one at a time and taking
closures at each step gives a chain of closed sets from S:U to clos(T'w S:U).
If S:U is unbalanced, the latter set has corank zero; if S:U is balanced it
has corank one, as shown under the proof of (j). Thus (k) is proved. (We
have neglected technicalities about infinities of different sizes—which can
easily be supplied by the reader—because our main interest is when the
corank is finite.)

Part (f) follows from (k). S is characterized by having corank zero.
Equivalently, 7n,(S)=n,(£2), from which (f) follows Part (g) is immediate
from (c) and (f).

Part (h) follows from (k) since H is characterized by having corank 1.
One possibility is that H is obtained from E by removing a minimal cutset
in a balanced component; this is the case of part (h) in which :Y is
balanced. Another possibility is that H is obtained by removing a cutset in
an unbalanced component such that one side of the cutset is connected, call
it Q:X, and taking a maximal balanced subset A of E:X. This is the case
in which ©:Y is unbalanced and X # Y. The third possibility is simply to
take a maximal balanced subset 4 in an unbalanced component of Q. This
is the case in which Q:Y is unbalanced and X =Y.

Part (i) is immediate from- (k).

That concludes the proof. - §

The argument, based. on.(a), that the matroid can be treated com-
ponentwise should be stated formally.

ProPOSITION 2.3." If Q is a biased graph with components Q,, then G(L2)
is the direct sum of the G(Q)). 1

We can now extend Lemma 2.2 to cover all unbiased graphs, even those
with half edges.
ProrosITION 2.4. Let I' be an unbiased graph. Then G(I')=G([I']).

Proof. One can verify by inspection that G([I']) and G(I") have the
same circuits. This example was discussed in [27, Sect. 7TA]. ||

Any minor of a graphic matroid G(I) is the graphic matroid of a minor
of I'. The definitions of biased restriction and contraction (Section 1.4) were
chosen to make this true for the bias matroid as well.

THEOREM 2.5. Let Q be a biased graph; let A and S<E. Then
G(R2|8)=G(2)|S and G(2/A4) = G(Q)/A.

Proof. The closure of T&S in G(QIS) is clearly .equal to
(closg(g) T) N S, which is the closure in G(2)|S.
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a spanning tree 7, which as an edge set in © connects the S; and 4 and
which has b edges. Adding the edges of T to S:U one at a tlme and taking
closures at each step gives a chain of closed sets from S:U to clos(T'u S:U).
If S:U is unbalanced, the latter set has corank zero; if S:U is balanced it
has corank one, as shown under the proof of (j). Thus (k) is proved. (We
have neglected technicalities about infinities of different sizes—which can
easily be supplied by the reader—because our main interest is when the
corank is finite.)

Part (f) follows from (k). S is characterized by having corank zero.
Equivalently, 7,(S)=n,(£2), from which (f) follows. Part (g) is immediate
from (c) and (f). '

Part (h) follows from (k) since H is characterized by having corank 1.
One possibility is that H is obtained from E by removing a minimal cutset
in a balanced component; this is the case of part (h) in which Q:Y is
balanced. Another possibility is that H is obtained by removing a cutset in
an unbalanced component such-that one side of the cutset is connected, call
it 2:X, and taking a maximal balanced subset 4 of E:X. This is the case
in which Q:Y is unbalanced and X # Y. The third possibility is simply to
take a maximal balanced subset 4 in an unbalanced component of . This
is the case in which ©:Y is unbalanced and X =Y.

Part (i) is immediate from- (k).

That concludes the proof. - }

The argument, based on (a), that the matroid can be treated com-
ponentwise should be stated formally.

PRrOPOSITION 2.3." If Q is a biased graph with components Q,, then G(Q)
is the direct sum of the G(R,). |}

We can now extend Lemma 2.2 to cover all unbiased graphs, even those
with half edges.
ProrosiTiON 2.4.  Let I' be an unbiased graph. Then G(I')y= G([I']).

Proof. One can verify by inspection that G([I']) and G(I") have the
same circuits. This example was discussed in [27, Sect. 7A]. |

Any minor of a graphic matroid G(I') is the graphic matroid of a minor
of I'. The definitions of biased restriction and contraction (Section 1.4) were
chosen to make this true for the bias matroid as well.

THEOREM 2.5. Let Q be a biased graph; let A and S<E. Then
G(R]8)=G(R)|S and G(Q/4)=G(Q)/A.

Proof. The closure of T<S in G(2|S) is -clearly .equal to
(closgiy T) 'S, which is the closure in G(2)]S.

54 . THOMAS ZASLAVSKY -

To prove G(R/4)=G(Q)/4, let SSE\A, X=Nyo(SuAd), and Y=
No(S; 2/A4). Then Su A has balanced part (SuAd):X (the union of all
balanced components). So

closgiaya S = [closgo (S A)]\4
=[E:No(Sud)ubcly{Su 4):X]\4
=[A%Ny(Su A)Ju [belg((Su Ad):X)\A4]
=[A°:No(S; 2/A4)] L bclg(S:Y)

by Lemma L.4.4 for A°:No(S U A) and the same plus Proposition 1.4.6 for
the balance closure,

ZCIOSG(Q/A) S,
as we wanted. |
COROLLARY 2.6. The class of bias matroids of biased graphs is a minor-

closed class.

The contraction identity G(R2/4)=G(R2)/4, or in lattice form
Lat G(22/4) = (Lat G(2))/4, has a counterpart for balanced flats.

PROPOSITION 2.7. Let Q be a biased graph, A S E, and X = Ny(A4)°. The
natural isomorphism (via the identity map on A°) of Lat G(Q/A) with
Lat G(Q)/A is an isomorphism of Lat®’(Q/4) with (Lat® Q:X)/(4:X). If in
particular A is balanced, Lat®(Q/A4) = (Lat® Q)/A.

Proof. We first have to show that Lat?(2/4) = Lat®((2:X)/(4:X)). The

- only difference between 2/4 and (2:X)/(4:X) is that the former has addi-
“tional half edges corresponding to the links between X and Ny(A4) in Q.

These do not alter the balanced sets.
Now we need only consider A:X, which is balanced. The proposition
follows from Lemma 1.4.3 and Theorem 2.5. |

Corollary 5.8 in [27] is this proposition for the case where Q is sign-
biased and A is balanced. (There is an error in its statement: I neglected to
specify that A be balanced.)

Recall that, by the definition in Part I, a one-node graph is a block, and
s0 is a loop or loose or half edge. An inner block of Q2 is a block that is
unbalanced or lies on a path between two unbalanced blocks in the block/
cutpoint graph (equivalently, it has an edge that lies in an unbalanced bias
circuit). Any other block having an edge is outer. The core of a component
of Q is the union of all inner blocks; it is a connected subgraph. A plain
necklace is a biased graph of the form @, uQ,u --- LUQ,, where each Q,
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is a block graph and is balanced and 2, Q; is a pair of nodes if /=2 and
i#, a single node if />3 and i=j+1 (mod!), and the null graph if
i—j#0, +1 (mod /).

THEOREM 2.8. Let Q be a biased graph. The irreducible separators of
G(R2) are (the edge sets of ) the outer blocks and the cores of the unbalanced
components, except that if a core is an unbalanced plain necklace then each
block in the necklace is individually an irreducible separator.

Proof. The proof of [27, Theorem 5.97, which is Theorem 2.8 for sign-
biased graphs, is valid in general. One slight change is necessary: each time
a subgraph is found to be “a circuit of G(Z') or a completely unbalanced
[i.e., contrabalanced] theta graph” (in the case of a signed graph X), we
should read “a circuit of G(2)” (which may be a contrabalanced theta
graph).

Another proof is based on Theorem 3.8: see the remark following that
theorem. |}

COROLLARY 2.9. If Q is a full biased graph, the minimal separators of
G(Q) are the loose edges and balanced loops and the connected components
of the remainder of Q. '

The existence and properties of the bias matroid raise several questions.

Problem 2.10. 'Which matroids are bias matroids of biased graphs? In
particular, find the minor-minimal matroids not of the form G(£2) for some
biased graph Q. , ‘

We shall call such matroids (minor-)minimal nonbias matroids. Two of
them are the Fano and dual Fano matroids, by [32, Theorem 3] and [33,
Proposition 3A7]. A third is the uniform matroid of rank 3 on 7 elements.

ProposiTiON 2.11. U, is a minor-minimal nonbias matroid.

In the proof we employ a lemma.

LemMa 2.12. G(Q)=Uss if and only if Q=(Q2K;, &). Also,
G(R2)=U,;s if and only if Q= (I's,, &) or (I'sy, &), where I's, = 2K, \edge
and s, is K; with a doubled edge and a loop at the opposite node.

Proof. Suppose G(R)=Us;, where k= 5. Then  is unbalanced so its
order is three. It is contrabalanced because it has no circuit of size three or
less. It has no triple edges. If Q contains no triangle, it must contain a path
of two edges, say e, and e,;, one of which must be doubled (say e,,) since
there .cannot be loops at adjacent nodes. Then a loop can appear only at
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is a block graph and is balanced and 2, £, is a pair of nodes if /=2 and
i#j, a single node if />3 and i=j+1 (mod/), and the null graph if
i—j#0, +1 (mod /).

THEOREM 2.8. Let Q be a biased graph. The irreducible separators of
G(2) are (the edge sets of ) the outer blocks and the cores of the unbalanced
components, except that if a core is an unbalanced plain necklace then each
block in the necklace is individually an irreducible separator.

Proof. The proof of {27, Theorem 5.97, which is Theorem 2.8 for sign-
biased graphs, is valid in general. One slight change is necessary: each time
a subgraph is found to be “a circuit of G(X') or a completely unbalanced
[ie., contrabalanced] theta graph” (in the case of a signed graph X), we
should read “a circuit of G(2)” (which may be a contrabalanced theta
graph).

Another proof is based on Theorem 3.8: see the remark-following that
theorem. |

COROLLARY 2.9. If Q is a full biased graph, the minimal separators of
G(£2) are the loose edges and balanced loops and the connected components
of the remainder of Q.

The existence and properties of the bias matroid raise several questions.

Problem 2.10. Which matroids are bias matroids of biased graphs? In
particular, find the minor-minimal matroids not of the form G(£2) for some
biased graph Q.

We shall call such matroids (minor-)minimal nonbias matroids. Two of
them are the Fano and dual Fano matroids, by [32, Theorem 3] and [33,
Proposition 3A7. A third is the uniform matroid of rank 3 on 7 elements.

PrOPOSITION 2.11. U, is a minor-minimal nonbias matroid.

In the proof we employ a lemma.

LemMa 2.12. G(R2)=Uss if and only if Q2=2K5, ). Also,
G(Q)=U, s if and only if Q= (I's,, &) or (I'sy, &), where I's,=2K;\edge
and I's;, is K5 with a doubled edge and a loop at the opposite node.

Proof. Suppose G(Q)="Us,, where k> 5. Then £ is unbalanced so its
order is three. It is contrabalanced because it has no circuit of size three or
less. It has no triple edges. If 2 contains no triangle, it must contain a path
of two edges, say e, and e,;, one of which must be doubled (say e,,) since
there .cannot be loops at adjacent nodes. Then a loop can appear only at
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v3, and Q cannot have both a.loop and a second doubled edge. So there
is no room for five edges. '
If Q contains a triangle it can have at most one loop, so it must have a
doubled edge. This leaves open the two possibilities of the lemma for Us s.
It is easy to see that deleting any edge leaves a circuit; thus G(I's,, &) and

‘G(I'sy, &) are indeed equal to U, 5. Only (I's,, (&) allows a sixth edge; this

gives (2K3, ). Its bias matroid is clearly Us¢. |

Proof of Proposition 2.11. Obviously no edge can be added to (2K;, &)
while keeping the bias matroid uniform of rank three. So Us ; is not a bias
matroid. U, ¢ is, as we have seen. Also, U, ¢ = G(6K,, ). |

Problem 2.13. Characterize biased graphs having the same bias
matroid.

Problem 2.14. Characterize the biased graphs whose bias matroids are
of particular types (e.g., binary, ternary, graphic, cographic).

Problem 2.13 has been solved in large part for the bicircular matroid,
that is for biased graphs of the form (I, &), in [24], and for full biased
graphs in [34] (this case is trivial). The biased graphs whose matroids are
binary have been partially characterized in [32], where the problem is
reduced to the determination of all sign-biased graphs having no two node-
disjoint unbalanced circles. Lovasz and Schrijver have found a solution to
the latter problem [157]. The biased graphs, other than sign-biased ones,
whose matroids are graphic, or cographic, or in other binary classes are
also implicitly characterized by [32]; the solution for sign-biased graphs
was found by Lovasz and Schrijver and some of it is implicit in [21]. For
ternary and other bias matroids I offer

Conjecture 2.15. Let K be a field and Q a biased graph. If G(£2) is
linearly representable over K, then either 2 is gain-biased with gain group
K*, the multiplicative group of X, or G(2) = L(Q).

It is known that, if Q is K*-biased, then G(Q) is linearly representable
over K; this is clear from the literature on networks with (real) gains (e.g.,
[20]) and is proved in Part IV. The conjecture is a proposed converse. It
is true for full biased graphs (those having an unbalanced edge at every
node) by Proposition IV.2.4. Exceptions, if any, should occur only when
nonisomorphic biased graphs have isomorphic bias matroids. For more on
the case where G(2) = L(2) see Conjecture 3.14.

3. THE LirT AND COMPLETE LIFT MATROIDS

The operation of (elementary) lifting constructs from a matroid M a new
one of rank one greater. Each linear class 4 of circuits of M. gives rise to
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a different lift L(M, #). One way to define L(M, #) is through duality. Let
ML be the Whitney (orthogonal) dual of M and #*= {E\C: Ce %},
where E is the ground set of M. Since #* is a linear class of copoints of
M, it defines a strong map M* — N. (N is the result of adjoining a point
e, to- M+ with respect to 2%, then contracting by the point.) The /ift of M
along B is L(M, )= N*. The complete lift of M along & is (M~ Ueg)t.

The Lift L(M, %) has rank rk(M)+1 except when % = {all circuits of
M}. This is just like the relationship which G(I', #) bears to G(I).
Nevertheless the lift L(I, #) of G(I') along 4 is, in general, different from
G(I, #). The lifts instead demonstrate the essentially graphic character of
bias matroids; indeed it would be fair to call the latter “connected lifts” of
G(I') since they are in a sense determined by lifting with the further
requirement that circuits be connected subgraphs. (See Section 4.)

Recall that a lift circuit is a balanced circle, a contrabalanced theta
graph, or a union of two unbalanced figures having at most one common
node. Bquivalently, it is a balanced circle or a minimal contrabalanced
edge set of cyclomatic number two. We want to characterize analogously
to Theorem 2.1(a)—(k) both the lift L(2)= L(I', B) of G(I') along % and
the complete lift Lo(2). The ground set of the former is E; that of the latter
is Eue,, where e, called the extra point, -is not in €. Then L(Q)=
Lo(R)|E. We call aset SSEve balanced if it is a balanced edge set (thus

eo¢S) -

THEOREM 3.1. Let Q be a biased graph with underlying graph I' = (N, E).
Assume Q has no half edges.

_(A) The complete lift Lo(Q) on the point set Eue,, where ey is an

extra point, is given by the following equivalent properties (a)-(k). The
matroid is finitary. Let S denote any subset of Ev eq.

(a) The closure of S is

bel,(S) if S is balanced,

clos 1e)(S) = {ClOSnQ[](S\eO) e,  otherwise.

(b) S is closed <> it is balanced and balance-closed or else it
contains e, and S\e, is closed in G(|121).

(c) S is independent <> it contains at most eq or one unbalanced
figure but not both, and no balanced circle. ' '

(d) S is dependent < it contains a balanced circle, or two
unbalanced figures, or ey and an unbalanced figure.

(e) S is a matroid circuit of Lo(R2) <> it is a lift circuit or the union
of eo and an unbalanced figure.
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a different lift L(M, #). One way to define L(M, #) is through duality. Let
M* be the Whitney (orthogonal) dual of M and %#*={E\C:CeA},
where E is the ground set of M. Since #* is a linear class of copoints of
M*, it defines a strong map M+ — N. (N is the result of adjoining a point
e, to- M~ with respect to £*, then contracting by the point.) The lift of M
along B is L(M, #)= N*. The complete lift of M along & is (M* U ey)™.

The lift L(M, ) has rank rk(M)+ 1 except when % = {all circuits of
M}. This is just like the relationship which G(I', #) bears to G(I').
Nevertheless the lift L(I', ) of G(I") along % is, in general, different from
G(I', #). The lifts instead demonstrate the essentially graphic character of
bias matroids; indeed it would be fair to call the latter “connected lifts” of
G(I') since they are in a sense determined by lifting with the further
requirement that circuits be connected subgraphs. (See Section 4.)

Recall that a lift circuit is a balanced circle, a contrabalanced theta
graph, or a union of two unbalanced figures having at most one common
node. Equivalently, it is a balanced circle or a minimal contrabalanced
edge set of cyclomatic number two. We want to characterize analogously
to Theorem 2.1(a)—(k) both the. lift L(Q2)= L(I', #) of G(I'} along # and
the complete lift Lo(L2). The ground set of the former is E; that of the latter
is Eue,, where ey, called the extra point,-is not in Q. Then L(Q2)=
Ly(£2)| E. We call a set S< Euey balanced if it is a balanced edge set (thus

e ¢ S). -

THeOREM 3.1. Let 2 be a biased graph with underlying graph I'= (N, E).
Assume  has no half edges.

(A) The complete lift Lo(Q) on the point set E ey, where ey is an
extra point, is given by the following equivalent properties (a)-(k). The
matroid is finitary. Let S denote any subset of E U e.

(@) The closure of S is

bel(S) if S is balanced,

clos 1,(a)(S) = {doS”Q”( S\eo)ue,  otherwise.

(b) S is closed <> it is balanced and balance-closed or else it
contains eq and S\e, is closed in G(||82}]).

(¢c) S is independent <> it contains at most ey or one unbalanced
figure but not both, and no balanced circle. : '

(d) S is dependent < it contains a balanced circle, or two
unbalanced figures, or ey, and an unbalanced figure.

(e) S is a matroid circuit of Lo(82) < it is a lift circuit or the union
of ey and an unbalanced figure. : ‘
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(£) S spans Ly(R2) <> it is unbalanced and contains a maximal forest
of Rl

(g8) S is a basis <> it consists of a maximal forest F of ||Q| together
with one more element, either ey or an edge e forming an unbalanced figure
in Fue.

(h) S is a copoint < it is a maximal balanced edge set or else eq€ S
and S\eq is a copoint in the graphic matroid G(||2|).

(i) S is a bond of Ly(R2) < its complement is a copoint.

(3) The rank of S is

tk; ) (8)= Y (¥B—1)+e=rk g (S)+s

Ben(S)

where ¢ =0 if S is balanced, 1 otherwise. If n is finite,

n—c(S) if S is balanced,

1k 1 0)(S) = {n +1—¢(S\eg) otherwise.

(k) The corank of S is

Y [e(S:B)—11+3,
Ben(Q2)
where 6=1 if S is balanced, 0 otherwise; if c¢(I') is finite this equals
e(S)—c(IN) +9.

(B) If Q is balanced, then L(Q)= G(|2|). Otherwise, the properties
of L(R2) are like those of Ly(Q2) with obvious modifications, except for:

(b)) S is closed in L(Q) <> it is balanced and balance-closed or it
is polygon-closed.

(h,) S is a copoint of L(Q) <> it is a maximal balanced set in Q or
it is unbalanced and a copoint of G(|L2]).

Remark on Half Edges. In some results on the lift matroid, such as
Theorems 3.1 and 3.6, half edges create a technical difficulty because they
are unbalanced in ||Q|. Perhaps the best way to handle them is to replace
them by unbalanced loops, so that in || they are balanced loops.

Indications of Proof. Since L(I', ) and L(I', #) are special cases of
general matroid constructions which have been discussed in [5, 10, 16, 4],
although not from the viewpoint of balance defined by a linear class of
circuits, rather than a full proof we just give the general definition and
explain how one can obtain our result from more familiar parts of matroid
theory.
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Let M be a finitary matroid with point set E. A linear class of circuits of
M is a class # of circuits (called “balanced”) such that, if C, and C, are
balanced circuits for which |C, u C,| =1k(C, U C,)+ 2 and C'is a circuit in
C,UC,, then C is balanced. A set of points is balanced if every circuit in
it is balanced. The class # = {S< E: S is balanced} is what Dowling and
Kelly [10] call ‘a modular ideal (of sets) in M. (See also [4, Proposi-
tion 7.4.15 et seq.].) Their Proposition 6.4 gives the rank function of the lift
L(M, %), which they call the #-preimage of M (and is elsewhere called an
“elementary lift” or “elementary coextension”). Their Proposition 6.6 gives
the flats of the lift, but some extra argument is required to obtain our
description. v

The class #* defined above is what Crapo and Rota [6] call a linear
subclass of copoints of M+. The complete lift L,(M, #) is then the dual of
the extension M* e, determined by #* and L(M, %) is the dual of
(M~ Ueg)/e,. Thus characterizations of the lift and complete lift can be
obtained by dualizing descriptions of one-point extensions. ||

It is worth noting that the biased graphs based on a particular graph I”
correspond one-to-one with the rank-preserving one-point extensions of
G(I')*. Moreover, the isomorphism types of biased graphs correspond with
the isomorphism types of extensions. (Extensions. M Ue; and M uUe, of M
are isomorphic when there is a matroid 1somorph1sm Mue, ->Mue,
which carries e, to e,.)

COROLLARY 3.2. Suppose the components of £-are Q, for i€ l, an index
set. Then Ly(Q2) is the parallel connection of the Ly(£2;) at the extra point.

Proof. For the parallel connection see [3] or [4]. The corollary
is immediate from:the description of closed sets (Theorem 3.1(b)), for
instance. ||

COROLLARY 3.3. If I' is an ordinary graph, L([f])z G(I).

COROLLARY 3.4. L(Q)=G(RQ) if and only if Q has no two node-disjoint
unbalanced circles.

Problem 3.5. Characterize the biased graphs having no two node-
disjoint unbalanced circles.

This problem has been solved only for contrabalanced graphs ([14] see
[2]) and sign-biased graphs [157].

THEOREM 3.6. Let Q be a biased graph with underlying graph I havmg
no half edges. Then Ly(2)|S = LO(QIS) and
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Let M be a finitary matroid with point set E. A linear class of circuits of
M is a class # of circuits (called “balanced”) such that, if C, and C, are
balanced circuits for which |C; u C,| =rk(C, U C;) + 2 and C is a circuit in
C,u C,, then C is balanced. A set of points is balanced if every circuit in
it is balanced. The class # = {S< E: S is balanced} is what Dowling and
Kelly [10] call a modular ideal (of sets) in M. (See also [4, Proposi-
tion 7.4.15 et seq.].) Their Proposition 6.4 gives the rank function of the lift
L(M, #), which they call the #-preimage of M (and is elsewhere called an
“elementary lift” or “elementary coextension”). Their Proposition 6.6 gives
the flats of the lift, but some extra argument is required to obtain our
description.

The class #* defined above is what Crapo and Rota [6] call a linear
subclass of copoints of M*. The complete lift Ly(M, %) is then the dual of
the extension M* ue, determined by %* and L(M, %) is the dual of
(M* Ueg)/e,. Thus characterizations of the lift and complete, lift can be
obtained by dualizing descriptions of one-point extensions. |

It is worth noting that the biased graphs based on a particular graph I’
correspond one-to-one with the rank-preserving one-point extensions of
G(I')*. Moreover, the isomorphism types of biased graphs correspond with
the isomorphism types of extensions. (Extensions.M ue, and Mue, of M
are isomorphic when there is a matroid 1somorphlsm Mue, - Mue,
which carries e; to e,.)

COROLLARY 3.2. Suppose the components of Q-are Q; for icl, an index
set. Then Ly(R2) is the parallel connection of the Lo(2;) at the extra point.

Proof. For the parallel connection see [3] or [4]. The corollary
is immediate from the description of closed sets (Theorem 3.1(b)), for
instance. |

COROLLARY 3.3. If I' is an ordinary graph, L([T']) = G(T").

CoroLLARY 3.4. L(2)=G(2) if and only if Q has no two node-disjoint
unbalanced circles.

Problem 3.5. Characterize the biased graphs having no two node-
disjoint unbalanced circles.

This problem has been solved only for contrabalanced graphs ([14], see
[27]) and sign-biased graphs [15].

THEOREM 3.6. Let Q be a biased graph with underlying graph I havzng
no half edges Then Ly(Q)|S=Ly(2|S) and

S inl——d
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Ly(£2/8) if S is balanced,
Lo(@)/S={ G(I/(S\ey))  if €€,
GI/S) v (eg)s if eq ¢ S and S is unbalanced.

{Here (ey), denotes ey as a matroid loop.)

Proof. There are three cases. We can assume S is closed since if it is
not, it is clear from the definitions that we only have Ly(£2)/(clos S) with
extra matroid loops. Let Ly = Ly(2) and G = G(Q).

Suppose S is an unbalanced flat; let T= S\e,. Then

clos,s(A4) =clos; (AU S\S = clos (4 U T\T = clos r;r(4),

as claimed.
Suppose 4 U S is balanced in . Then

clos;,/s(A)=clos, (4 U SN\S=closg(4 U SN\S
since both equal belg(4 U SIS,
=closgs(A4) = closgqs)(A4) =belgs(A)
since A is balanced in Q/S (Lemma 1.4.3)
=clos ;ya/s5)(A4)-
But suppose S is balanced in 2 and 4 U S is not. Then
clos,,s(4)=clos, (4 U SN\S=(clos (AU S) U {e}\S
=clos ys(A) v {ey} = closgs(4) U {eo}
because [|2/S] =]2]|/S if S is balanced, |
=clos o/s)(A4)

since A is unbalanced in /S (Lemma 1.4.3). This concludes the proof. ||

CoOROLLARY 3.7. The class of lift matroids of biased graphs is a minor-
closed class.

TueoreM 3.8. Let Q be a biased graph. The irreducible separators
of Lo(R) are the individual balanced blocks and the union of e, and all
unbalanced blocks.

Those of L(82) are the individual balanced blocks and, in general, the union
of all unbalanced blocks, the exception being that when there is only one
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unbalanced block in Q and it is an unbalanced plain necklace of blocks Q,,
then each Q; is an irreducible separator of L(Q).

- Proof. We rely on the circuit definition of irreducible separators of a
matroid, according to which they are the equivalence classes of edges under
the relation of belonging to a common circuit, and thus on Theorem 3.1(e).
It is clear that a balanced block is a separator and is irreducible, so let us
assume there are no such blocks. We also assume E is not null.

In Ly(2) the circuits on e, connect the unbalanced blocks (by Proposi-
tion I.3.9), so we are done there.

In L(Q), if there are two or more unbalanced blocks, then their
unbalanced circuits connect them into an irreducible separator (by
Proposition 1.3.9). Suppose then that  is a single unbalanced block and
that it has a nontrivial irreducible separator S.

We first show that S is balanced. If it were not, say it had an unbalanced
circle C in a block S, of 2[S. Let ee S°. By Menger’s theorem there exist
disjoint paths from the ends of e to distinct points on C. Since the theta
graph so formed meets S and its complement, it cannot be a lift circuit. But
neither can either of its circles through e. This is an absurdity. So there can
be no such C.

We may conclude that S is connected, indeed a block graph. We show
that S° is also connected. If it had components T, and T, let Q, be a path
in. T; between two points of attachment v, and w;, and let P be a tree in
S whose end nodes are v,, w;, v,, w,. Then either PUQ,uUQ, is a lift
circuit, or it contains a lift circuit composed of two circles containing Q,
and @, and edges in P, or it contains a balanced circle composed of a Q;
and edges in P. Every one of these possibilities contradicts the character of
S as’a separator. So S° is connected.

If S and S° have three (or more) nodes of attachment, then there is a
theta graph through those nodes which contains edges of S and S° in every
circle. This again contradicts the separateness of S.

Since there are exactly two nodes v and w at which S meets S° and since
I is 2-connected, the block/cutpoint graph of S must be an open path
with v in one end block and w in the other, neither being a cutpoint of S°.
Each of the blocks Q,, 25, .., 2, of §¢ is then balanced (by the same con-
struction used to show balance of S, since we now know that any circle not
contained in an Q; must include an edge of Sj, hence an irreducible
separator of S°. We have found the irreducible separators of L(£2): they are
S =0, and the other ;. (Since £ is unbalanced, the unbalanced circles are
exactly the “long” circles that pass through every 2,.) 1§

Suppose Q is connected. Then every lift circuit lies in a bias circuit and
every bias circuit contains a lift circuit. Therefore, the separators of G(Q)
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unbalanced block in Q and it is an unbalanced plain necklace of blocks 8,
then each Q; is an irreducible separator of L(8).

Proof. We rely on the circuit definition of irreducible separators of a
matroid, according to which they are the equivalence classes of edges under
the relation of belonging to a common circuit, and thus on Theorem 3.1(e).
It is clear that a balanced block is a separator and is irreducible, so let us
assume there are no such blocks. We also assume E is not null.

In Ly(£2) the circuits on e, connect the unbalanced blocks (by Proposi-
tion 1.3.9), so we are done there.

In L(£2), if there are two or more unbalanced blocks, then their
unbalanced circuits connect them into an irreducible separator (by
Proposition 1.3.9). Suppose then that Q is a single unbalanced block and
that it has a nontrivial irreducible separator S.

We first show that S is balanced. If it were not, say it had an unbalanced
circle C in a block S, of 2|S. Let ee §¢. By Menger’s theoréem there exist
disjoint paths from the ends of e to distinct points on C. Since the theta
graph so formed meets S and its complement, it cannot be a lift circuit. But
neither can either of its circles through e. This is an absurdity. So there can
be no such C.

We may conclude that S is connected, indeed a block graph. We show
that S¢ is also connected. If it had components T, and T, let Q, be a path
in T; between two points of attachment v; and w;, and let P be a tree in
S whose end nodes are v,, w, v,, w,. Then either PUQ, U Q, is a lift
circuit, or it contains a lift circuit composed of two circles containing Q,
and Q, and edges in P, or it contains a balanced circle composed of a Q,
and edges in P. Every one of these possibilities contradicts the character of
S as’'a separator. So S¢ is connected.

If S and S°¢ have three (or more) nodes of attachment, then there is a
theta graph through those nodes which contains edges of S and S° in every
circle. This again contradicts the separateness of S.

Since there are exactly two nodes v and w at which S meets S and since
I' is 2-connected, the block/cutpoint graph of S¢ must be an open path
with v in one end block and w in the other, neither being a cutpoint of S*.
Each of the blocks 2,, 25, ..., 2, of S¢ is then balanced (by the same con-
struction used to show balance of S, since we now know that any circle not
contained in an £, must include an edge of S}, hence an irreducible
separator of S°. We have found the irreducible separators of L(£2): they are
S=, and the other Q,. (Since 2 is unbalanced, the unbalanced circles are
exactly the “long” circles that pass through every Q,.) |

Suppose 2 is connected. Then every lift circuit lies in a bias circuit and
every bias circuit contains a lift circuit. Therefore, the separators of G(Q)

62 THOMAS ZASLAVSKY

are unions of separators of L(£2). This observation permits us to deduce
Theorem 2.8 from 3.8.

The lift and complete lift matroids of a biased graph pose questions like
those raised for the bias matroid in the previous section.

Problem 3.9. (a)Determine the minor-minimal matroids not of the

“form L(R) for some biased graph Q. (b) Determine those not of the form

Ly(2) for some Q.

Let us call these minor-minimal nonlift and complete nonlift matroids. For
part (a) we have U, ; again.

PrOPOSITION 3.10. Us  is a minor-minimal nonlift matroid.

Proof. Suppose L(£2)= U, ,. Then R is unbalanced, so has order 3 and
is contrabalanced. If it has no two node-disjoint circles, then L(£2)= G(82)
and Proposition 2.11 applies. Otherwise it has a loop and Proposition 3.11
applies. 1

We mention that L(Q)=U, < Q=(2K;, &) and L(Q)=U; ;= Q2=
(s, &); these facts too follow from Propositions 2.11 and 3.11 and the
observation that, if £ has no loops (and L(Q)=Us, for k=5), then
L(Q)=G(Q).

For part (b) we have two examples. The Bixby—Seymour matroid R, is
the linear dependence matroid of the ten S-dimensional binary vectors
having exactly three ones. It equals L{— K;) [33, Sect. 6].

PROPOSITION 3.11. Uss and Ry, are minor-minimal complete nonlift
matroids.

Proof. Suppose Ly(£2) = Us 5. Then G(||2]) = Lo(£2)/eo = U, 4, Which is
impossible. On the other hand, U; o= Lo(K3, &) and U, 4= Ly(3K,, &).

‘That Ly(Q)=R,, is impossible is the conjunction of [32, Theorem 1]
and [33, Proposition 6A]. On the other hand, R,,\point = G(Kj; 3), which
is graphic, and R,o/point=G(K;;)*, the dual, which is signed-graphic
[33, Proposition SA]. ]

Problem 3.12. Characterize the biased graphs having the same lift or
complete lift matroid.

This problem has been solved for the complete lift matroid [34] but is
otherwise open.

Problem 3.13. Characterize the biased graphs whose (complete) Ilift
matroids are of various types, €.g., binary, ternary, regular, graphic.

The solution for binary type is given in [32]. For regular, graphic, or
cographic type, [32] reduces the problem to the sign-biased case solved by
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Shih [21] (for graphic type only) and by Lovasz and Schrljver [15] To
cover ternary type and more, I propose

Conjecture 3.14. Let K be a field and Q a biased graph. If L(Q) is
linearly representable over K, then (i) Lo(2) is representable, or (ii) Q2
is decomposable into balanced pieces, or (iil) 2 is indecomposable, L(£2) is
graphic, and £ has no node v such that Q\v is balanced.

It is known that L,(£2) is representable over K if and only if Q is
K *-biased (Proposition IV.4.3).

The method of decomposition in (ii) I leave intentionally vague. In
[32] it is shown that when K= GF(2), Q satisfies either (i) or (ii). The
decomposable cases for K= GF(2) are unbalanced 2-sums of balanced
graphs. This description of case (ii) may well carry over to larger fields. I
expect at least that any exception 2 to (i) has L(€) isomorphic to L(£2,),
where 2, % Q and Ly(Q,) is K-representable.

In Theorems 2.1 and 3.1 it is necessary that # be a linear class.
Otherwise G and L will not be matroids. We state this for two crypto-
morphisms.

ProOPOSITION 3.15. Let I' be a graph and B<%(I"); # need not be a
linear subclass. If either G(I', B) or L(I', B) [as defined by (e) or (])] is a
matroid, then % is a linear class.

Proof. Suppose that (e) defines the circuits of a matroid. Let C;, C;, C5
be the circles of a theta subgraph. If C,, C,e 4%, they are circuits. Let
ee C,;n C,; then (C,u C,)\e is dependent (by circuit exchange), and this
requires that C; be balanced.

Supposing that (j) defines a matroid, we can proceed similarly. [

4. BETWEEN THE BIAS AND LIFT MATROIDS

Comparing the set Lat® Q of balanced flats and the lattices of flats of the
various matroids associated with Q and its underlying graph, we see that
Lat®? Q is an order ideal and a meet subsemilattice of all three matroid
lattices of . We also have the relations given by

COROLLARY 4.1. For a biased graph Q without half edges we have
Lat® @ = Lat G(Q) n Lat Lo(22),
Lat L(Q) = Lat®(Q) u Lat G(||]),
Lat L,(2) 2~ Lat®(Q) v Lat G(]|2]]),
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Shih [217 (for graphic type only) and by Lovasz and SChI‘lJVCI‘ [15]. To
cover ternary type and more, I propose

Con]ecture 3.14. Let K be a field and Q ‘a biased graph. If L(Q2) is
linearly representable over K, then (i) L,(£2) is representable, or (ii)Q
is decomposable into balanced pieces, or (iii) £ is indecomposable, L(2) is
graphic, and Q has no node v such that Q\v is balanced.

It is known that L,(Q2) is representable over K if and only if Q is
K *-biased (Proposition IV.4.3).

The method of decomposition in (ii) I leave intentionally vague. In
[32] it is shown that when K= GF(2), Q2 satisfies either (i) or (ii). The
decomposable cases for K= GF(2) are unbalanced 2-sums of balanced
graphs. This description of case (ii) may well carry over to larger fields. I
expect at least that any exception Q to (i) has L(2) isomorphic to L(Q2,),
where 2, £ Q2 and Ly(Q,) is K-representable
Otherwise G and L will not be matroids. We state thlS for two crypto-
morphisms.

PrROPOSITION 3.15. Let I' be a graph and B<=%(I"); B need not be a
linear subclass. If either G(I', B or L(I', #) [as defined by (e) or (])] is a
matroid, then # is a linear class.

Proof. Suppose that (e) defines the circuits of a matroid. Let C,, C,, C,
be the circles of a theta subgraph. If C,, C,e %, they are circuits. Let
ee C;n Cy; then (C; U C,)\e is dependent (by circuit exchange), and this
requires that C,; be balanced.

Supposing that (j) defines a matroid, we can proceed similarly. J

4. BETWEEN THE BIAS AND LIFT MATROIDS

Comparing the set Lat®  of balanced flats and the lattices of flats of the
various matroids associated with € and its underlying graph, we see that
Lat’ Q is an order ideal and a meet subsemilattice of all three matroid
lattices of Q2. We also have the relations given by

COROLLARY 4.1. For a biased graph £ without half edges we have
Lat® Q = Lat G(2) n Lat Ly(Q),
Lat L(Q) = Lat®(2) u Lat G( [€1),
Lat L,(2) = Lat®(Q) v Lat G(||2]),

64 .. THOMAS ZASLAVSKY

the latter a disjoint union where SeLat G(||2]|) corresponds to Suey€
Lat Lo(£).

The maximal elements of Latb Q are all of rank n— ¢(Q) and have corank
c(2)—b(R2) in G(2).

" Proof. This is all clear except possibly the last remark. A maximal
balanced flat is the closure of a maximal forest, hence has ¢(2) components
(counting isolated nodes), all balanced. 1

One would like to find a common theoretical basis for the bias and lift
matroids in which Theorems 2.1 and 3.1(B) can be combined in a single
statement and proof. The lack of a common framework is apparent in
[35], where all the examples come in pairs that must be treated separately
although they are derived from the same biased graphs by the bias and lift
matroid constructions. I have not found a unified description but it is
possible to show that the two matroids have a certain uniqueness. That is
the intent of Theorem 4.5, below.

A natural partial ordering of matroids on the same set is by their inde-
pendent sets. We say M is weaker than N, M > N, if every independent set
of N is independent in M. From part (c) of Theorems 2.1 and 3.1 we have
at once

COROLLARY 4.2. If Q is a biased graph, then L(£2)< G(£).

We can therefore characterize G(Q2) as the strongest possible matroid
M > L(2) whose circuits are connected. What if we required only that M
be intermediate between L and G, in other words that L M < G?

Problem 4.3. (a)Given £, what matroids M on E may exist that are
intermediate between L(2) and G(2)? (b)Is there a systematic way to
construct intermediate matroids?

I think these are difficult questions, in part because it is not clear what
ought to be considered a “systematic” construction. A reasonable inter-
pretation is that it is a mapping M from the class of biased graphs or some
subclass (the domain) to matroids such -that M() is a matroid on E(Q2)
and M(Q]S) is defined and equal to M(2)|S for each S< E(2). For
instance, G and L are the constructions assigning to £ the bias and lift
matroids, respectively. We may call an intermediate-matroid construction
any M such that L(2)<M(Q) < G(RQ) for all  in the domain of M.

A priori, it is plausible to suppose that almost any biased graph with
L # G supports intermediate matroids in which some of the circuits with
two disjoint circles, are connected and others are not, and the larger @ is,
the more intermediate matroids it has. This turns out not to be the case.
A biased. graph is full if every node supports an unbalanced edge.
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PROPOSITION 4.4. Let Q be a finite biased graph that is full and complete.
Let M be an intermediate matroid on E; that is, L(Q)S M<K G(Q). Then
M= L(Q) or G(Q).

Proof. Let © be full and complete; we may assume there is one
unbalanced loop 7%; at each node v; and that all other edges are links. Let
M be an intermediate matroid, L = L(Q), and G = G(R). Let H;= {h,, h;}
and Cle;)=H;vey, where e,; denotes a link v;v;.

We show that either all H are circuits or all C(e;) are. Suppose H; and
H, are circuits; then by circuit exchange (and since M>L) Hy is a circuit.
Suppose C(e;) and C(e;) are circuits. By circuit exchange there is a circuit
D<{h; ey, s h,} containing ;. Since D contains a lift circuit, which can
only be H,., H, itself is not a circuit in M. Therefore C(ey) is a circuit for
each link between v; and vy.

We show next that each circuit C of M is a bias or lift circuit. Suppose
a circuit C is neither a bias nor a lift circuit. Then C contains no bias circuit,
so its components are r unbalanced unicycles Uy, Us, .., U, and perhaps
some trees, where r>2 because M>L. Let C; be the circle in U,
v,€ N(C,), and e, C; and let e:v,v, be a link. C;UC, is independent in
M, for otherwise C would be a lift circuit. The set D= C; U C,Ue, being
a bias circuit, is dependent in M, hence a circuit. By circuit exchange
between C and D, (C U e)\e; contains a circuit C ’_whose cyclomatic number
is necessarily lower than that of C. Since C' cannot be a lift circuit (because
if C' & C,.it contains the isthmus e) or a bias circuit, it in turn can be
modified as above. Eventually one gets a circuit with at most one circle,
but that contradicts M = L. Hence after all C must have been a bias or lift
circuit.

Suppose now that M has a circuit C which is a lift circuit but not a bias
circuit; that is, C = C, U C,, where C, and C, are node-disjoint unbalanced
circles. Let v,e N(C;) and e; € Cy. By exchange with the circuit C; L hy,
there is a circuit C'€C,u C,U hi\e;. C' can only be C,u h,. Exchange
with C, U h, leads to the conclusion that H;, and consequently all H; are
circuits. A

On the other hand suppose M has a circuit C which is a bias but not a
lift circuit. Thus Cis a loose handcuff C; L C, U P, P being a path connecting
v, € N(C,) to v,e N(C,). By circuit exchange with C; Uk, there is a bias
or lift circuit C’' < Cuh,\e; (where e € Cy), which can only be the bias
circuit C, U P U hy or the lift circuit C, U k. Actually the former obtains,
for if C,uUh, were a circuit, exchange with C,uUh, would imply that
C,u C, is dependent, contradicting C’s being a circuit. By exchanging with

C, U h,, we deduce that Py h, U h, is a circuit. Thus H,, is not; it follows
that all C(e,) are circuits. '

From the last two paragraphs we conclude that Mequals Lor G. 1
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