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prohlems address on t11e inside front cover. Submitted problems should include 
,solutions and relcvant references. Sahmittcd .soltrtion,s should arrive at that address 
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PROBLEMS 

10606. Proposed by Thomas Zuslavsky, Binghamton University, Binghamton, NZ Given a 
positive integer m ,  show that there is a positive integer n such that, for any group G of order 
at least n ,  it is possible to choose m elements g l ,  g2, . . . , g, of G so that no product of the 
form . . . g;l with 1 4 k j m and distinct subscripts i l ,  i2 ,  . . . ,ik in ( 1 , 2 ,. . . , m }  
equals the identity. 

10607. Proposed by Juan-Bosco Romero Mdrquez, Universidad de Valladolid, Valladolid, 
Spain. Evaluate 

2X+ 4X+ . . . + (2n)X
lim (

n - f w  l X+ 3X+ . . . + (2n -

for x > 0. 

10608. Proposed by Victor Zulgallel; Steklov Mathematical InstituteJt. Petersburg, Russia. 
Let S be a compact convex set in the plane. If 1 is any line of support for S ,  let f (1) be the 
length of the shortest curve that begins and ends on 1 and that together with 1 surrounds S .  
Prove that if f ( 1 )  is independent of 1 ,  then S is a circle. 

10609. Proposed by Donald E. Knuth, Stanford University, Stanford, CA. Let 

Prove that 
m + n + l  + lmn.

C f = l  a", m ,  n )  = 2 
a(n ,  m ,  n )  --

2 

10610. Proposed by Richard Hall, University of Portsmouth, Portsmouth, England. Given 
a positive integer m ,  let C ( m )be the greatest positive integer k such that, for some set S of 
m integers, every integer from 1 to k belongs to S or is a sum of two not necessarily distinct 
elements of S. For example, C ( 3 )  = 8 with S = ( 1 , 3 , 4 ) .  
(a )Show that, for all 6 > 0, 1/4 < c ( m ) / m 2< 1/2 + 6 for all sufficiently large m.  
(b)* Improve the asymptotic bounds in part (a). 
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10611. Proposed by Zoltdn Sasvdri, Technical University of Dresden, Dresden, Germany. 
Find the largest value of a and the smallest value of b for which the inequalities 

1 +J-. 
< Q ( x )  < 

I+,/-
2 2 

hold for all x > 0, where 

10612. Proposed by John l? Robertson, Anistics/Aon, New York, NI: Fermat proved that 
there are no nontrivial 4-term arithmetic progressions all of whose terms are integer squares. 
(a )Find all 5-term arithmetic progressions such that all terms but the fourth are squares. 
(b) Call two arithmetic progressions essentially different if the ratios of corresponding terms 
differ. For each integer m > 6 show that there are infinitely many essentially different m-
term arithmetic progressions such that the first 3 terms and the mth term are squares. 

SOLUTIONS 

A Fairly General Family of Integrals 

10393 [1994,573]. Proposed by Jean Anglesio, Garches, France. Show that 

where a > 0 and 1 5 r 5 n (except for a = 0, r = 1) .  

Solution by Jet Wimp, Drexel University, Philadelphia, PA. The Gamma function r ( o )  is 
analytic for a # 0, -1, -2 , .  ..; it satisfies r ( a  + 1) = a r ( a ) ,so r ( r )  = ( r  - I ) !  when 
r is a positive integer. Also, we have 

. d l a ( a + l )  . . . (a + r  - 2 )
11m -- = lim 

"-+I-r d a  r ( a )  u - t l - r  r ( a  + r )  

a ( a + l )  . . . (a + r  - 2 )  
u - t l - r  r ( a  + r )  

forr  = l , 2 ,  . . . .  
Expanding ( 1 - e-X )n by the binomial theorem, integrating term by term, and using fre-pxxu-l d x  = r (a )p-"  for p ,  a > 0 yields 

for a > 0. The range of validity of the integral in ( B )  may be extended from a > 0 to 
a > -n. In fact, this integral is analytic for complex a with real part greater than -n. 

For a = 1 - r ,  r = 1 ,2 ,  . . . ,n ,  the right side of ( B )  is indeterminate: the sum in the 
numerator is zero (it is an nth difference of a + k to a nonnegative integral power less than 
n) and the denominator must be zero in the limit since the integral is clearly not. We now 
take the limit of (B) as a -+1 - r ,  r = 1 , 2 ,  ...,n using L'HospitalYs rule. Differentiating 
the numerator using &(a +k)-" = -(a +k)-" ln(a +k )  and the denominator using (A) 
gives the result. 
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